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ABSTRACT
We describe an approach for extracting semantics of tags,
unstructured text-labels assigned to resources on the Web,
based on each tag’s usage patterns. In particular, we fo-
cus on the problem of extracting place and event seman-
tics for tags that are assigned to photos on Flickr, a popu-
lar photo sharing website that supports time and location
(latitude/longitude) metadata. We analyze two methods
inspired by well-known burst-analysis techniques and one
novel method: Scale-structure Identification. We evaluate
the methods on a subset of Flickr data, and show that our
Scale-structure Identification method outperforms the exist-
ing techniques. The approach and methods described in this
work can be used in other domains such as geo-annotated
web pages, where text terms can be extracted and associated
with usage patterns.

Categories and Subject Descriptors: H.1.m [MODELS
AND PRINCIPLES]: Miscellaneous

General Terms: Algorithms, Measurement

Keywords: tagging systems, event identification, place iden-
tification, tag semantics, word semantics

1. INTRODUCTION
User-supplied “tags”, textual labels assigned to content,

have been a powerful and useful feature in many social media
and Web applications (e.g. Flickr, del.icio.us, Technorati).
Tags usually manifest in the form of a freely-chosen, short
list of keyword associated by a user with a resource such
as a photo, web page, or blog entry. Unlike category- or
ontology-based systems, tags result in unstructured knowl-
edge – they have no a-priori semantics. However, it is pre-
cisely the unstructured nature of tags that enables their util-
ity. For example, tags are probably easier to enter than
picking categories from an ontology; tags allow for greater
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flexibility and variation; and tags may naturally evolve to
reflect emergent properties of the data.

The information challenge facing tagging systems is to
extract structured knowledge from the unstructured set of
tags. Despite the lack of ontology and semantics, patterns
and trends emerge that could allow some structured infor-
mation to be extracted from tag-based systems [11, 17, 23].
While complete semantic understanding of tags associated
with individual resources is unlikely, the ability to assign
some structure to tags and tag-based data will make tag-
ging systems more useful.

Broadly, we are interested in the problem of identifying
patterns in the distribution of tags over some domain; in
this work we focus on spatial and temporal patterns. Specifi-
cally, we are looking at tags on Flickr [10], a popular photo-
sharing web site that supports user-contributed tags and
geo-referenced (or, geotagged) photos. Based on the tempo-
ral and spatial distributions of each tag’s usage, we attempt
to automatically determine whether a tag corresponds to
a “place” and/or “event” (see Section 3 for definitions).
For example, the tag Bay Bridge1 should be identified as
a place, and SIGIR2007 should be identified as an event.
Tag usage distributions are derived from associated photos’
metadata. While the correctness of the time and location
metadata for each individual photo is suspect [5], in large
numbers, trends and patterns can be reliably extracted and
used [9, 14].

Extraction of event and place semantics can assist many
different applications in the photo retrieval domain and be-
yond, including:

• improved image search through inferred query semantics;

• automated creation of place and event gazetteer data
that can be used, for example, to improve web search by
identifying relevant spatial regions and time spans for
particular keywords;

• generation of photo collection visualizations by location
and/or event/time;

• support for tag suggestions for photos (or other resources)
based on location and time of capture;

• automated association of missing location/time meta-
data to photos, or other resources, based on tags or cap-
tion text.

In this work we do not apply our analysis to a specific appli-
cation, but rather investigate the feasibility of automatically
determining event/place semantics for Flickr tags.

1We use this format to represent tags in the text.



This paper represents, to our knowledge, the first attempt
to extract place and event semantics for tags. Accordingly,
we are exploring a number of possible methods. We in-
troduce a new method tailored to event and place identifi-
cation, Scale-structure Identification, and demonstrate how
this method outperforms methods borrowed from other do-
mains.

Furthermore, we note that our general approach to se-
mantics extraction, and the methods we present as instan-
tiations of this approach, can be applied to any information
sources with temporal and spatial encodings from which we
can extract textual terms – like GeoRSS blog data and geo-
annotated web pages or Wikipedia articles. Additionally,
the general approach of analyzing a distribution of occur-
rences over a domain (in our case space and time) to infer
semantics could be extended to other metadata domains like
color (hue/saturation), visual features, audio features, and
text/semantic features.

To summarize, the contributions of this paper are:

• a generalizeable approach for extracting tag semantics
based on the distribution of individual tags;

• the modification, application, and analysis of existing
methods to the problem of event and place identification
for tag data;

• Scale-structure Identification – a new method for ex-
tracting patterns from usage data;

• a practical application of these methods to extract event
and place semantics from tags associated with geotagged
images on Flickr.

We formally define our problem in Section 3. Then we de-
scribe the methods (Section 4) and report on our evaluation
(Section 5). We begin by reviewing the related work.

2. RELATED WORK
We address related work from a number of relevant re-

search areas, including: event detection in time-stamped
data such as web queries and personal photo collections;
location-based analysis of spatially distributed data such as
GPS positions, demographics information, or even informa-
tion on the web; and analysis of tagging systems.

Many scientific domains have studied the general problem
of time-based event detection. Time Series analysis tech-
niques such as ARIMA [4, 18] analyze trends in time series
data with the goals of (1) explaining spikes and valleys over
various time windows and (2) producing future trend fore-
casts. In particular, our Näıve Scan methods (see Section 4)
are similar to previous work on global event detection in
web query logs [25] and access logs [13] where events are
semantically defined as “bursts” (cf. [15]).

More germane to this paper is the problem of event iden-
tification in personal photo collections [12, 20, 24]. A key
characteristic of the personal photo collection domain is
the general assumption of “a single camera”, which reduces
event identification to a problem of temporal segmentation.
Events are considered to be a single segment of time over
which a single activity was taking place, providing a coher-
ent, unifying context. Prior work on this problem has ap-
plied a number of techniques: some rely primarily on time
[12], others use both locations and times [20, 21], and an-
other looks at the text annotation associated with photos
[24]. This type of event-identification is different than ours

since (1) we consider multi-person collections of photos and
(2) we are interested in whether tags describe events, not
whether a segment of time refers to a specific event for a
specific person.

Related to event identification is the extraction of mean-
ingful information from location-based data. Recent efforts
in ubiquitous computing systems identify meaningful loca-
tions and places for GPS and other location tracking tech-
nologies [1]. In epidemiology, efforts to identify and localize
disease outbreaks [16] are closely related to the place iden-
tification problem we address in this paper. Specifically, we
borrow some techniques from the disease/outbreak analysis,
where data is sparse and dependent on the underlying pop-
ulation statistics, as these two properties are echoed in our
data for each tag.

More semantically-rich location analysis problems have
been studied in the domain of web-based information re-
trieval. Specifically, the field of “GeoIR” has had two thrusts
relevant to this paper. First, attempts were made (e.g. [2,
6, 8]) at extracting geographic information for a web page,
based on the page links and network properties, as well as
geographic terms that appear on the page. Our system de-
scribed here could potentially help these systems by identi-
fying additional geographic terms and defining their spatial
scope. The second related research effort in GeoIR focused
on extracting the scope of geographic terms or entities based
on co-occurring text and derived latitude-longitude informa-
tion [3, 22]. With geo-annotated photos and tags, as well
as any system with direct location annotation, the potential
exists not only to delineate known geographic terms, but
also to identify new regions of interest based on the data.

Tagging systems in general have been of increasing re-
search interest. Most of the prior research has looked at de-
scribing tagging systems [17], or studying trends and prop-
erties of various systems [11]. Some efforts have looked at
extracting ontologies (or, structured knowledge) from tags
[23] – a similar goal to ours, yet using co-occurrence and
other text-based tools that could augment the methods an-
alyzed in this paper.

More directly related to this paper are research efforts that
analyzed Flickr tags (and other term associated with Flickr
photos) together with photo location and time metadata [9,
14]. These projects applied ad-hoc approaches to determine
“important” tags within a given region of time [9] or space
[14] based on inter-tag frequencies. However, no determi-
nation of the properties or semantics of specific tags was
provided. Naaman et al. created spatial models for terms
appearing in geo-referenced photograph labels [19], but did
not detect the location properties of specific terms.

3. PROBLEM DEFINITION
In this section, we provide a formal definition of our data

and research problem. Our dataset includes two basic ele-
ments: photos and tags. Each geotagged photo has, in ad-
dition to other metadata, an associated location and time.
The location, `p, (consisting of latitude-longitude coordi-
nates) associated with photo p generally marks where the
photo was taken; but sometimes marks the location of the
photographed object. The time, tp, associated with photo
p generally marks the photo capture time; but occasionally
refers to the time the photo was uploaded to Flickr. Both
location and time are recorded at high resolution (micro-
seconds of degrees for location, seconds for time).



Tags are the second basic element type in our dataset.
We use the variable x to denote a tag. Note that each photo
can have multiple tags associated with it, and each tag is
often associated with many photos. Based on the locations
and times associated with photos, we can define the location

and time usage distributions for each tag x: Lx
4
= {`p | p is

associated with x} and Tx
4
= {tp | p is associated with x}.

Using this data we address the following problem:

Can time and place semantics for a tag x be
derived from the tag’s location, Lx, and time, Tx,
usage distributions?

Example place tags are Delhi, Logan Airport and Notre

Dame. Similarly, example event tags are Thanksgiving, World
Cup, AIDS Walk 2006, and New York Marathon (interestingly,
New York Marathon represents both an event and a place).
Examples of tags not expected to represent events or loca-
tions are dog, party, food and blue.

The first step in determining whether a tag refers to an
“event” or “place” is to define these terms. We aimed for
definitions that address both general human perception and
the generic (i.e. socially common) semantics of “event” and
“place” [27]. We propose that:

Event Tags are expected to exhibit significant temporal
patterns.

Place Tags are expected to exhibit significant spatial pat-
terns.

The term “significant” in these definitions is intention-
ally vague – designed to capture the idea that “event” and
“place” are socially defined (as illustrated by the examples
above). More concretely, the definition refers to the fact
that a person can expect New York Marathon to appear sig-
nificantly more often every year around November and in
New York City; whereas dog should appear at almost any
time and in almost any location. We expect a reasonable
human judge to be able to determine, for any tag and the
set of photos associated with that tag, whether or not the
tag represents an event and/or a place.

It is important to consider both event and place tags rela-
tive to some pre-defined geographic region. For example,
carnival may not exhibit any patterns world wide, but
does have temporal patterns if we are only considering ma-
jor cities in Brazil. Similarly, Palace may have distinct
location-based patterns in certain regions (say, London) but
no significant patterns world wide. For simplicity, we do not
introduce notation to handle the specification of geographic
regions – we generally assume that the set of photos consid-
ered by the algorithm is such that for all photos p in the set,
`p is contained in the given region.

Related to regions is the concept of “scale”. The basic
idea is that tags may exhibit significant temporal or spatial
patterns at various scales. For example, museum refers to
specific locations within the San Francisco Bay Area, while
California is not expected to show significant patterns if
our region is limited to San Francisco. Similarly, conferences
lasting multiple days (e.g. SIGIR 2007) and even holidays
with significant activity prior to a specific date (e.g. Christ-
mas), do not appear to be events at the hour or single day
scale, but do exhibit distinctive time patterns relative to
longer time scales. Accordingly, the methods described be-
low search for significant patterns at multiple spatial and
temporal scales.

4. EVENT/PLACE IDENTIFICATION
The goal of our analysis is to determine, for each tag in the

dataset, whether the tag represents an event, and whether
the tag represents a place. The intuition behind the various
methods we present is that an event (or place) refers to a
specific segment of time (or region in space). So, the “signifi-
cant patterns” for event and place tags should be manifested
as bursts over small parts of time or space. More specifically,
the number of usage occurrences for an event tag should be
much higher in a small segment of time than the number
of usage occurrences of that tag outside the segment. The
scale of the segment is one factor that these methods must
address; the other factor is calculating whether the num-
ber of usage occurrences within the segment is significantly
different from the number outside the segment.

To simplify the discussion, we describe the methods as
they pertain to event identification. The notions of segments
and scales are not domain specific – i.e. both time and
space can be divided into segments (perhaps overlapping) of
various scale. Any place/space specific issues are addressed,
but otherwise the translation to place-based analysis is left
to the reader.

In the remainder of this section, we describe the methods
in detail. We first present adaptations of two well-known
techniques to the problem at hand. Then we present a new
method for event and place identification: Scale-structure
Identification.

4.1 Borrowed Methods
At a high level, the steps for the modified, burst-detection

methods are the following:

1. Scale Specification – Choose an ordered set of scale
values, R = {rk | k = 1 . . . K, rk1 > rk2 ⇐⇒ k1 > k2}.
We generally choose an exponentially increasing set of
scales (e.g., rk = αk for some α > 1.0).

2. Segment Specification – For each scale rk define a fi-
nite set of time segments to search over, say Yrk . We
use a regularly spaced grid where the grid size is based
on the scale; but overlapping or arbitrary segments are
possible.

3. Partial Computation – For each scale rk and each
time segment in Yrk , compute a statistic on Tx that
captures some aspect of the tag’s usage pattern in time
(likely, although not necessarily, based on some relation-
ship between the usage occurrences within a time seg-
ment versus outside of the segment).

4. Significance Test – Aggregate the partial computation
statistics for each time segment at each scale to deter-
mine whether tag x is an event.

5. Identify Significant Segments – Provided a signifi-
cant pattern for x is found, determine which scales and
time segments correspond to the event.

Before describing each method, we introduce some neces-
sary notation. First, we use Tr(x, i) to denote how many
times tag x was used in time segment i (the subscript in-
dicates that the segment is defined in relation to scale r).
The maximum value for Tr(x, i) is the number of photos in
the segment – we use Nr(i) to denote the number of photos
taken during time segment i. Some of the methods below
also require the total number of tag usage occurrences in a
segment – we denote this as Tr(i) =

P
x Tr(x, i).



4.1.1 Näıve Scan Methods
The Näıve Scan methods are an application of a standard

burst detection method used in signal processing [25]. The
method computes the frequency of usage for each time seg-
ment at each scale. The method identifies a “burst” when
the frequency of data in a single time segment is larger than
the average frequency of the data over all segments plus two
times the standard deviation of segment frequencies.

The clear majority of tags in our data have sparse usage
distributions which results in low average frequencies and
low standard deviations. Consequently, the standard formu-
lation of this method suffers from too many false positives.
To combat this problem we compute the average and stan-
dard deviation values from aggregate data – either from all
of the photos or from all of the tags combined. We further
relax the condition that the number of tag occurrences be
larger than the mean plus two standard deviations – instead
requiring that the ratio of these values be larger than some
threshold, which we can vary for optimal performance.

For Näıve Scan I, the partial computation (Step 3) for

each tag x is specified by: Tr(x,i)
µN +2σN

, where µN is the mean

of {Nr(i)|i = 1 . . .} and σN is the standard deviation of
{Nr(i)|i = 1 . . .}. We use a variable threshold of this statis-
tic in identifying events (Step 4).

To identify the segments of time corresponding to an event
for a tag (Step 5 above), we simply record the segments that
pass the significance test (Step 4 above). Specifically, we
record the values of i and r where the partial computation
statistic is larger than the threshold.

We omit the details of Steps 1 and 2 (how to search over i
and r) since any brute force search method applies. We also
remind the reader that the formulation for location-based
burst detection is analogous.

An alternative approach, which we refer to as Näıve Scan
II, compares the individual tag occurrences to the total num-
ber of tag occurrences, instead of the number of photo oc-
currences. The reasoning behind this modification is based
on the assumption that if tag x captures the important as-
pects of a photo, then that photo will require few tags in
addition to x.

The partial computation statistic is Tr(x,i)
µT +2σT

, where µT is

the mean of {Tr(i)|i = 1 . . .} and σT is the standard de-
viation of {Tr(i)|i = 1 . . .}. If every photo had the same
number of tags, these results would be identical to those
produced by Näıve Scan I. However, as photos can have an
arbitrary number of tags, with some photos using far more
tags than others, the Näıve Scan II method does produce
(slightly) different results.

4.1.2 Spatial Scan Methods
The Spatial Scan methods are a standard application of

the Spatial Scan statistic [16], a burst detection method
used in epidemiology. These methods assume an underly-
ing probability model of observing some phenomenon over
some domain. The methods then test whether the number
of occurrences of a phenomenon in a segment of the domain
(e.g. segment of time) is abnormal relative to the underlying
probability model. This abnormality test is performed for
each segment.

To illustrate how the Spatial Scan methods work, we de-
scribe an example from our data. Consider eatbrains, which
refers to a slightly obscure event that took place in San

Francisco (where people dressed up as zombies and walked
around certain neighborhoods). Suppose: (1) over the 2+
years covered by our data, q denotes the global probability
of this tag being applied to any photo; (2) all M photos
tagged with eatbrains occur within a single two hour seg-
ment, and (3) there are a total of N photos taken during
this same two hours. If eatbrains refers to an event of any
significance, M should be quite a bit larger than qN . The
Spatial Scan methods are designed to test whether the value
M represents a significant deviation from the global proba-
bility distribution (an important note is that q is not defined
a-priori, it is derived from the data.)

The expression for the partial computation statistic for
Spatial Scan I is:

max
i,r

“Tr(x, i)

Nr(i)

”Tr(x,i)

·
“Σı̂6=iTr(x, ı̂)

Σı̂6=iNr (̂ı)

”(Σı̂6=iTr(x,ı̂))

·
“Σı̂Tr(x, ı̂)

Σı̂Nr (̂ı)

”−(Σı̂Tr(x,ı̂))

· I
“` Tr(x,i)

Nr(i)

´
>

` Σı̂6=iTr(x,ı̂)

Σı̂6=iNr(ı̂)

´”
where I(·) is the indicator function. For details on the
derivation of this expression see Kulldorff [16].

As in the Näıve Scan methods, the significance test (Step 4)
uses a single, variable threshold value – tags whose par-
tial computation statistic exceeds this value are identified as
events. Also, by storing the values of i and r where the par-
tial computation statistic is larger than the threshold we can
identify the segments in time when events occur (Step 5).
Finally, details of Steps 1 and 2, how to search over i and
r, are likewise omitted since brute force search methods are
sufficient.

Similar to the Näıve Scan II modification, we developed
Spatial Scan II using the total number of tags that occur in-
side segments. We omit the partial computation expression
for Spatial Scan II – it can be produced by simply replacing
occurrences of Nr(i), the number of photos in each segment,
with Tr(i), the number of tags in each segment, in the partial
computation expression of Spatial Scan I (above).

In the four methods described above, we determine the
segments of time for each scale independent from the actual
usage distributions of the tags. Additionally, these meth-
ods can only propose a-priori time segments as the times of
events. In the worst case, these segments might hide the ac-
tual time of an event by splitting the usage occurrences into
adjacent segments, none of which are above the significance
test threshold. The next method we describe addresses the
issue of a-priori defined time segments.

4.2 Scale-structure Identification
The Scale-structure Identification method performs a sig-

nificance test (Step 4 above) that depends on multiple scales
simultaneously and does not rely on a-priori defined time
segments. Accordingly, the Scale-structure Identification
method performs all the steps listed above except the Seg-
ment Specification step (Step 2).

The key intuition behind Scale-structure Identification is
the following: if tag x is an event then the points in Tx, the
time usage distribution, should appear as a single cluster
at many scales. The clustering mechanism used in Scale-
structure Identification is similar to the clustering mecha-
nism in the scale-space method developed by Witkin [26].
However, whereas Witkin was interested in any structure
that exhibited robustness over a range of scales, we are in-



terested in the robustness of a single type of structure – a
single cluster.

Consider the graph over Tx where edges between points
exist if and only if the points are closer together than r
(recall that r is the scale variable). Let Yr be the set of
connected subcomponents of this graph. The Partial Com-
putation step (Step 3 above) computes the entropy of Yr for
each scale r. Specifically, the partial computation statistic

is defined as: Er
4
=

P
Y ∈Yr

(|Y |/|Tx|) log2(|Tx|/|Y |). We use
the entropy value as a measurement of how similar the data
is to a single cluster since entropy increases as data becomes
more distributed. We are interested in low entropy struc-
tures, Yr (note that Er = 0 when the usage distribution is
a single cluster, i.e. |Yr| = 1).

For place identification we simply replace Tx with Lx in
the calculation of Er (we compute the distance between
points in Lx as the L2 distance between the points as they
lie on a sphere).

A caveat to the partial computation statistic concerns pe-
riodic events. Periodic events have strong clusters, at multi-
ple scales, that are evenly spaced apart in time. Practically,
because tags occur in bursts, we also require that a periodic
tag exhibit at least three strong clusters (to rule out tags
that just happened to occur in two strong temporal clus-
ters but are not truly periodic). Of course, this assumption
could result in some false negatives (e.g. recurring events
that only appear twice in our dataset), but it is necessary
due to the sparse nature of our data (to mitigate these false
negatives we could check whether the two strong clusters
were spaced apart at some culturally meaningful distance
like one month, one year, etc.).

We check for periodic events by: (1) identifying “strong”
clusters (i.e. clusters that contain at least 2% of the data),
(2) measuring how far apart the strong clusters are, (3)
making sure the cluster variances are not too big relative
to the distances between clusters (i.e. the standard devia-
tions of the usage distributions for each cluster should be,
on average, smaller than 10% of the average inter-cluster
distance), and (4) making sure the distances between clus-
ters are “even” (i.e. the standard deviation of inter-cluster
distances is smaller than 10% of the average inter-cluster
distance). If a tag’s temporal distribution passes all of these
tests2, we re-compute the scale structure for this tag by
treating time as modulo µ, the average inter-cluster dis-

tance. Specifically, we re-compute Yr from T ′x
4
= {t modulo µ | t ∈

Tx} using the distance metric ‖t1 − t2‖
4
= min(|t1 − t2|, |µ +

t1 − t2|, |µ + t2 − t1|). Intuitively, this modulo adjustment
to the time dimension aligns the “strong” clusters so that
they will be treated as a single cluster. For example, if a
tag’s temporal distribution has 3 strong clusters that are
on average 365 days apart, the modulo adjustment to time
corresponds to the cyclical calendar year.

Finally, the significance test calculation (Step 4) aggre-
gates the partial computation statistics simply by summing
them over the set of scales:

PK
k=1 Erk . This summed value

is tested against a threshold to determine if the tag is an
event. By recording the scale structures at each scale, we
can determine which time segments strongly characterize an
event tag (Step 5). In fact, we can then characterize the tag,
or rather the event it refers to, at multiple scales.

2The percentage thresholds used in these tests were set em-
pirically.

5. EVALUATION
We implemented the methods described above, and per-

formed a direct evaluation of the methods’ performances
over part of the Flickr dataset. The goals of the evaluation
were to establish whether any of the methods can reliably
identify events/places in the tag data; compare the perfor-
mance of the different methods; and evaluate the perfor-
mance with varying parameters. Finally, we seek to under-
stand the type of errors made by the different methods.

We begin by describing the Flickr data used in our eval-
uation. We then provide details on how we generated the
ground truth for the tags in the dataset, and the results of
the evaluation.

5.1 The Flickr Dataset
The data we use in this study consists of geotagged pho-

tos from Flickr and the associated tags. Location and time
metadata is available for roughly fourteen million public
Flickr photos (at the time this paper was written). The
capture time is usually available from data embedded in the
photo file by most digital cameras. While the photo location
could also be provided by the camera, it is more likely to be
entered by the user using maps on the Flickr web site, or
possibly obtained from an external GPS device via synchro-
nization software. In this paper we focus our evaluation on
photos from the San Francisco Bay area. We plot the loca-
tion for every geotagged photo in our dataset in Figure 1. In
Figure 2, we plot the location and time usage distributions
for the tag Hardly Strictly Bluegrass.

The San Francisco Bay area is currently one of the best-
represented geographic regions in Flickr, increasing the like-
lihood of finding significant patterns at sub-city and sub-
region scales. Furthermore, San Francisco is the only such
region for which we could reliably generate the ground truth
(see below). We note, however, that restricting the dataset
to a specific geographic region did not require any alterations
to the methods or the evaluation computations.

In addition to the regional specification, we applied filters
to improve the time/location metadata correctness and to
ensure sufficient data for the analysis. The two filters to

Figure 1: Spatial distribution of all San Francisco
geotagged photos in our dataset (white markers).



Figure 2: Location (top) and time (bottom) usage
distributions for the tag Hardly Strictly Bluegrass

in the San Francisco Bay Area. The zoomed in map
view shows the details of the larger location cluster
from the zoomed out view.

improve correctness were: (1) if the photo’s capture time
was (a) prior than 2004 or (b) not later than the upload
time, the photo was removed; and (2) if the photo’s location
resolution was too inaccurate (i.e. anything other than the
two most accurate levels in the scale from 1–16), the photo
was removed. The filter to ensure sufficient data applied to
tags. Any tag that was used less than 25 times or by only
one user was removed.

Our final dataset consists of 49897 photos with an average
of 3.74 tags per photo (s.d. 2.62). These photos cover a
total temporal range of 1015 days, starting from January 1,
2004. The average number of photos per day was 49.16 (s.d.
89.89), with a minimum of zero and a maximum of 643.

From these photos we extracted 803 unique tags. As ex-
pected, and similar to previous work [9, 11], tag usage was
Zipf-distributed. The maximum number of photos associ-
ated with a single tag was 34325 (for San Francisco), and
the mean was 232.26 (s.d. 1305.40).

The Flickr dataset is rather new, and presents a num-
ber of additional challenges. While Flickr popularity is ris-
ing, the number of geo-referenced photos is still relatively
low. We see sparse activity within every group of photos –
for example, Flickr does not contain photos tagged Golden

Gate Bridge for every day since January 1, 2004. Another
complicating factor is the fact that the data is often un-
even: more photos are likely to be uploaded with the tag
Golden Gate Bridge than Bay Bridge, for example. In the
time dimension, because of the growing active community
on Flickr, an order of magnitude more photos were taken
and uploaded during 2006 than during 2005, complicating
time-based analyses.

5.2 Ground Truth
To generate the ground truth for our evaluation we man-

ually annotated each of the 803 tags. Specifically, we looked
at a sample of pictures associated with each tag in our
dataset, including their locations and times of capture, to

determine whether the tag corresponds to an event, and
whether the tag corresponds to a place. This in-depth anal-
ysis was needed to eliminate errors that arise from obscure
tags (e.g., eatbrains that described a relatively unknown
San Francisco event), and by issues of polysemy and homo-
nymy (e.g., Apple in San Francisco was mostly assigned to
photos of the Apple Computer store). Examining the con-
tent of the photographs was often required – from the photo
and caption content we were often able to generalize, cor-
rect, and interpolate inaccurate or sparse data.

To measure the discrepancy between common sense inter-
pretations of the tags in our dataset and the ground truth,
we also collected a set of labels for the tags generated by hav-
ing four people vote, without access to the photos or their
metadata, on whether the tag referred to an event, a place
or both. This vote-based data exhibited systematic errors
relative to the ground truth data: (1) obscure or un-popular
events and places were often false negatives (i.e. incorrectly
labeled as not being events or places), (2) generic tags like
anniversary and park were often false positives (while they
have clear event and place semantics within a limited scope,
over the whole data set they did not refer to specific time
segments or regions of space), and (3) event tags like Future
of Web Apps were often not labeled as places even though
many events also occur in specific regions of space. For these
reasons, we omit comparison of the place and event identi-
fication methods to the vote-based data.

5.3 Results
Since all of the methods produce ranked results, we can

use standard IR metrics to evaluate performance. For each
tag, the methods produces a number that indicates how
likely this tag is to be an event (or place). Rather than
choosing a single threshold for each method to categorize
the tags, we can vary the threshold dynamically and ex-
amine the tradeoff in terms of recall and precision for each
method.

Plots of the recall vs. precision curves are shown in fig-
ure 3 for places (top) and events (bottom). The X-axis
represents a recall value – the percentage of actual events
(or places) that are identified as events (or places). The
thresholds for each method were adjusted to produce this
recall value. The Y-axis shows the precision – the percent-
age of tags identified as events (or places) that are actually
events (or places). For example, when the threshold for
Scale-structure Identification for events is set so that recall
is 50%, the precision is 82%. We can see in both figures

P-R area Max F1 Min CE
Näıve Scan I 0.4455 0.5279 0.2914
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Näıve Scan II 0.4458 0.5279 0.2914
Spatial Scan I 0.6028 0.5907 0.2441

Spatial Scan II 0.6134 0.5955 0.2416
Scale-structure 0.7034 0.6655 0.1930

Näıve Scan I 0.3291 0.3636 0.1009
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Näıve Scan II 0.3320 0.3590 0.0996
Spatial Scan I 0.4130 0.4811 0.1034

Spatial Scan II 0.4146 0.4785 0.1046
Scale-structure 0.6420 0.6533 0.0648

Table 1: Precision-Recall Area, Maximum F1, and
Minimum CE values for the various methods.



Figure 3: Precision vs. recall for the place (top) and
event (bottom) identification tasks.

that Scale-structure Identification performs better than the
traditional methods, for almost all recall values and for both
event and place identification.

From these curves we computed (1) the area under the
precision-recall curve (P-R area), (2) the maximum value of
the F1 statistic for each method (MAX F1), a metric that
balances precision and recall values, and (3) the minimum
total classification error (Min CE) (cf. [7]). The results
are shown in Table 1, again indicating that Scale-structure
Identification performs better than the other methods.

As an alternative to searching for optimal threshold val-
ues for the methods, one can simply take the top N results
from the ordered lists produced by the methods (where N
is variable). Table 2 shows precision and recall values for
N = 50, 100, and 200. Table 3 lists the top 10 tags for
each method for both place and event detection. Again,
Scale-structure Identification performs better than the other
methods.

We also studied the sensitivity of the Scale-structure Iden-
tification method to the Scale Specification step (Step 1 in
Section 4.1). We varied the exponential base in the scale
sampling scheme from 1.1 to 5.0 (the exponents were pos-
itive integers, marking the sequential position of the scale
value). The results were robust to these changes. One point
to note, however, is that performance slightly, but consis-
tently, improved as the exponential base decreased. In other
words, the Scale-structure Identification method performed

top 50 top 100 top 200
Näıve Scan I 0.58, 0.12 0.52, 0.21 0.47, 0.39

P
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Näıve Scan II 0.58, 0.12 0.52, 0.21 0.47, 0.39
Spatial Scan I 0.82, 0.17 0.68, 0.28 0.60, 0.49

Spatial Scan II 0.80, 0.16 0.69, 0.28 0.61, 0.50
Scale-structure 0.88, 0.18 0.83, 0.34 0.70, 0.58

Näıve Scan I 0.38, 0.21 0.31, 0.35 0.25, 0.56

E
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T

Näıve Scan II 0.38, 0.21 0.31, 0.35 0.25, 0.56
Spatial Scan I 0.50, 0.28 0.40, 0.45 0.33, 0.74

Spatial Scan II 0.52, 0.29 0.41, 0.46 0.33, 0.74
Scale-structure 0.78, 0.44 0.53, 0.60 0.36, 0.81

Table 2: Values for (precision, recall) for different
numbers of returned tags.

better with denser samplings of the space of scale values,
but only slightly. Accordingly, we recommend, for compu-
tational gains, to sample the scale space fairly sparsely as
the results are not strongly affected.

Due to space constraints, we do not include detailed re-
sults from our analysis of the segment identification step
(Step 5 in Section 4.1). Briefly, the parts of time and space
that were associated with identified events and places were
mostly accurate. The only systematic errors found were
due to sparse, wrong, or missing data. For example, tags
like October and summer had temporal distributions that
were not representative of the true duration of these events.
While more data will help for some of these tags (e.g. con-
ference names), some events like seasons and months are not
likely have uniform distributions over their true durations.

In terms of error analysis, we identified several classes of
common errors with the Scale-structure Identification meth-
od. First, the majority of false positives and false negatives
for place identification were the result of sparse data. Like-
wise the false positives for event identification were often due
to sparse data. False negative event tags were also caused by
bad data (e.g. incorrect capture time). Additional sampling
and filtering techniques could potentially alleviate some of
these problems.

Overall, the performance of the Scale-structure Identifi-
cation method holds promise for automatic extraction of
place and event semantics. The Scale-structure Identifica-
tion method clearly outperforms the methods borrowed from
other domains. While the difference is significant, we believe
that one reason for the gain is the “single-cluster-like” fil-
tering; the borrowed methods simply look for outlier/bursty
segments without measuring or enforcing the uniqueness of
the segments.

6. CONCLUSIONS AND FUTURE WORK
We have taken a first step in showing that semantics can

be assigned to free-form tags using the usage distribution
of each tag. The ability to extract semantics can improve
current tagging systems, for instance, by allowing more pow-
erful search and disambiguation mechanisms. Additionally,
the knowledge that these methods extract can help with
tasks that outside the scope of the specific system.

In particular, we have shown that location and time meta-
data associated with photos and their tags enables the ex-
traction of “place” and “event” semantics. This mapping
of tags to events and locations could improve image search,
serve as a basis for collection visualization, and assist in



Näıve Scan I Alcatraz, friends, event, PFA, BB, 2006, China Town, Lombard Street, trip, August

P
L
A

C
E

Näıve Scan II Alcatraz, friends, event, PFA, BB, 2006, China Town, Lombard Street, trip, August

Spatial Scan I GG Park, Alcatraz, Baseball, Giants, HSB, de Young, event, SF Giants, PFA, GG Bridge

Spatial Scan II Alcatraz, GG Park, Baseball, HSB, Giants, PFA, de Young, SF Giants, event, GG Bridge

Scale-structure pet cemetary, Revision3, Ruby Red, Dahlias, MashPitSF2, VSHD, Red Devil Lounge, Club Neon, FWA, BH

Näıve Scan I BB, eatbrains, eatbrains2006, zombies, wedding, zombie, zombiemob2006, byobw, BBW, Lombard

E
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Näıve Scan II BB, eatbrains, eatbrains2006, zombies, wedding, zombie, zombiemob2006, byobw, BBW, Lombard

Spatial Scan I BB, wedding, HSB, event, byobw, pride, The FWA, BBW, bigwheel, PFA

Spatial Scan II BB, wedding, HSB, event, byobw, The FWA, pride, 2004, PFA, anniversary

Scale-structure zombiemob, BB 2006, valleyschwag, zombie, zombiemob2006, eatbrains, VSHD, eatbrains2006, zombies, air race

Table 3: Top 10 scored tags for place (top) and event (bottom) identification for each method. Higher scoring
tags appear further to the left. At the optimal F1 threshold, all of the tags were labeled as places (or events).
Italicized tags are false positive errors. Note, we use the following abbreviations: Palace of Fine Arts → PFA,
Bay to Breakers → BB, Golden Gate → GG, Hardly Strictly Bluegrass → HSB, VS Hoe Down → VSHD,
Future of Web Apps → FWA, Bottom of the Hill → BH, and Bring your own Big Wheel → BBW.

other photo-related tasks. This type of knowledge can also
help create an ad-hoc gazetteer for events and locations
that could be used for various tasks beyond photo man-
agement. We plan to revisit the image search, visualization
and gazetteer deployment in future work.

We would also like to extend the system to handle multi-
regional problems. As mentioned above, the tag carnival

may be event-like only in major cities of Brazil; we note
above that the data analysis should be limited to specific
geographic regions. Ideally, we could simultaneously gen-
erate, store, and disambiguate tag semantics for different
regions throughout the world.

Finally, we plan to deploy our methods to other tempo-
rally and spatially encoded data, as they become exceedingly
available on the web. We also look at extending the meta-
data features used, beyond location and time, to verify that
our methods are still effective in extracting other semantics
beyond place and event.
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