
Combining Models, Diagrams and Tables
for Efficient Requirements Engineering:
Lessons Learned from the Industry

Christophe Ponsard 1, Robert Darimont 2, Arnaud Michot 1

1. CETIC Research Centre
Rue des frères Wright 29/3, 6041 Gosselies, Belgique

{christophe.ponsard,arnaud.michot}@cetic.be

2. Respect-IT S.A.
Place des Peintres, 7/201, 1348 Louvain-la-Neuve, Belgique

robert.darimont@respect-it.be

ABSTRACT. Requirements Engineering (RE) involves a number of artifacts of different nature
(models, structured text, tables, diagrams). Capturing and maintaining the relationships be-
tween those artifacts is currently not an easy task but definitely helps in both improving the
quality and level of automation of requirements specification. Through several industrial appli-
cations, this paper looks at how the interactions between RE artifacts happens in practice and
how to provide better tool support for them. Our experimental framework used KAOS model-
based goal-oriented approach to investigate different industry use scenarios like identifying
concepts within source documents or producing requirements/evaluation/cost estimates tables
from the RE model. As a result of our findings, we have implemented related extensions to a
goal-oriented RE tool.

RÉSUMÉ. L’ingénierie des exigences (IE) implique de nombreux artefacts de nature diverse tels
que modèles, texte structur’e, diagrammes et tables). Capturer et maintenir les relations entre
ces artefacts reste une tâche difficile mais qui a un impact véritable à la fois sur la qualité
et le niveau d’automatisation de la production d’un cahier des charges. Sur base de nom-
breuses applications industrielles, ce papier décrit comment les interactions entre ces différents
artefacts s’organisent en pratique et comment leur fournir un meilleur soutien outillé. Notre
cadre expérimental s’est appuyé sur la méthodologie orientée but KAOS afin d’étudier différents
scénarios industriels tels que l’identification de concepts dans les documents sources ou la pro-
duction de tables d’exigences/evaluation/estimation de coûts. Le résultat de cette étude à mené
à l’implémentation d’extensions dans un outil d’ingénierie d’exigence.

KEYWORDS: Requirements Engineering, goal-orientation, industry case studies, tool support

MOTS-CLÉS : Ingénierie des exigences, orientation buts, cas d’étude industriels, support outillé

1. Introduction

Requirements Engineering (RE) is a process involving many activities such as
elicitation, analysis, specification, validation and management as shown in Figure 1.
Several artifacts are involved in this process either as input, output or internal part of
the process (Abran et al., 2001)(Sommerville, 2010). Those artifacts can take various
forms in order to best support the related activity. The elicitation phase typically relies
on interview transcripts whiteboard pictures or existing documentation from which re-
quirements are identified. The analysis phase will structure those requirements either
directly in a text processor or using an explicit model supported by a dedicated tool.
The specification phase will produce system and/or software requirements specifica-
tion usually taking the form of well structured documents according to company spe-
cific templates or standards like IEEE830 (IEEE, 1998). Those documents are gener-
ally not only composed of text but also typically rely on diagrams and tables. In order
to convey the information in the most convenient format for its accurate description
and understanding. A number of diagram notations has been agreed upon and stan-
dardised for this purpose, for example UML use cases/sequence diagrams/statecharts,
SysML requirements diagrams, Business Process Modelling Notation (BPMN). Like-
wise, tabular notations are very popular in order to list requirements together with their
characteristics. Dedicated tabular notations are also widely used to precisely describe
specific aspects of the system such as its behaviour. For example state transition table,
SCR tables, or IO tables.

Figure 1. Requirements Engineering Process (adapted from Sommerville)

Across the different activities of the requirements engineering process, several ar-
tifacts of various forms are produced, processed, transformed and combined often
iteratively. For example considering the validation of the first version of the require-
ments specification, some new requirements might be identified and need to be in-
cluded in the requirements model. From there, specific diagrams and tables need to

be updated and re-included in an updated version of the requirements specification.
Although a number of existing tools can trace the impact of such changes, they are
often mostly limited to the management of documents and some kind of tables (IBM,
2002)(Dassault Systems, 2010). However they fail to address a number of scenarios,
like involving diagrams, language translation, and performing quantitative processing
like costs estimates.

The purpose of this paper is to present a consolidated view of interaction scenarios
involving those different RE artifacts. Those scenarios were identified after conduct-
ing several real world requirements specification projects together with a systematic
review of popular diagrammatic and tabular notations used in the field. Those experi-
mentations also drove the development of specific extensions to a model based toolset
supporting the KAOS goal oriented requirements engineering method (Lamsweerde,
2009)(Respect-IT, 2005). In order to ease the application of what we learned to other
methods and tools, our paper describes our implementation using some abstractions
for the requirements meta-model, document structure and way to query information.

Table 1. Overview of the Industrial Case Studies

Year Domain Location Purpose #reqs #pages Notations used
2004 Accessibility Belgium Domain

model
185 108 goal diagrams, structured text, ranking table

2006 Grid computing Europe SRS 52 137 Structured text, req. tables, sequence dia-
grams

2007 Child care Brussels As-Is 126 182 BPMN, statecharts, tables (high level goals)
2009 Parliaments Belgium Call for

tender
187 127 Structured text, req. tables, goal diagrams

2010 Banking Brussels internal
tem-
plates

N/A N/A Structured text, context/goal/BMPN/informa-
tion diagrams

2011 Smart Cards Brussels test
plan

N/A 230 Command tables, Finite State Machines

2012 Child care Brussels Call for
tender

173 267 Structured text, Event Process Chains, Use
cases, req tables

2013 Electronic Nurse
record

Brussels Call for
tender

223 151 Structured text, process models, req tables and
diagrams

2014 Cloud comput-
ing

Europe SRS,
arch.

200 187 Structured text, req. tables, sequence dia-
grams

2014 Accounting Belgium SRS 210 170 Structured text, req tables and diagrams

As a support for our survey and experimentation work, our paper relies on about
ten large requirements specifications involving big industrial players in Belgium and at
international level. Table 1 give a overview of the size and contest of each case study.
For confidentiality reasons, only the application domain and geographic location is
mentioned. Our paper will also focus more specifically on three of those cases in order
to illustrates some scenarios: the Belgian parliamentary administrations, an industrial
Cloud interoperability project and a smart cart development project.

This paper is structured as follows. In section 2, we state the problem by per-
forming a survey of popular ways to describe artifacts used within the requirements
engineering process. Specific scenarios are identified and specified as user stories.
In section 3, a consolidated view of all those user stories is proposed and some ab-
straction in order to be able to describe their relations in an implementation indepen-

dent way is introduced. In section 4, we describe the concrete implementation of the
prototype we used to carry out or experimentations. In section 5, we illustrate our
experimentation on a number of scenarios using excerpts of real world requirements
specifications. In section 6, a critical discussion is carried out to point the achieve-
ments and areas of improvements, also in the light of related work. Finally in section
7, we draw some conclusions and discuss future work.

2. Survey of Artifacts used in the Requirements Engineering Process

This section reviews different kinds of artifacts of different forms already men-
tioned in the introduction. The identification is strongly based on the artifacts used
in our industrial experience as described in Table 1. It is consolidated with literature
material. The goal is not to be exhaustive in identifying those artifacts but rather to
identify interesting ways those artifacts combine and interact within the requirements
engineering process. For this purpose, we will make use of a user story template of
the following form which will enable to capture both the interaction requirement but
also the key actor and the underlying purpose.

As < agent >, I need < interaction_requirement > so that < goal >

2.1. Document Structure

Having a well-defined structure for the Requirements Document (RD) is important
both from the RD user and RD producer. Standardised structures have been published
as international standard such as the IEEE830, now replaced by the (IEEE, 1998;
ISO/IEC/IEEE, 2011) or public templates like Volere (Atlantic Guild, 2014). Specific
translation constraints may also apply to multilingual requirements documents. This
results in the following user stories:

– US1: As RD User, I need to have a agreed well-structured document so that I
can easily find my way in it and have confidence about the document quality.

– US2: As RD Producer, I need to have an agreed well-structured document so
that I can make sure everything is covered and structured according to domain usage.

– US3: As RD Translation Manager, I need to extract textual output in a specific
table format so that the translation process can be easily managed.

2.2. Diagram Notations

Diagram notations are very popular in software and system engineering and sev-
eral notations have been standardised like UML for modelling software related as-
pects (OMG, 2011b), SysML for system-wide modelling (OMG, 2011b) or BPMN
for modelling business processes (OMG, 2011a). Specific diagram notations of those
standards are useful for requirements engineering such as the UML use case, UML
and SysML state diagrams and BPMN. SysML also includes a simple requirements

diagram. However more elaborated requirements models are supported by specific
methods such as i*/URN (Yu, Mylopoulos, 1997), KAOS (Lamsweerde, 2009) or
GSN (Kelly, Weaver, 2004). Figure 2 illustrates a part of the goal model for a Cloud
Management System used as case study in section 5. It shows the refinement of a goal
into requirements and their assignment to specific software components.

Figure 2. Example of Goal Model for a Cloud Management System

Considering the availability of such models it is also important in order to ease the
way they are inserted in text documents. It also helps to automate the generation of
specific byproducts, for example if the diagram is providing a specific view on infor-
mation available in the requirements engineering model. This results in the following
user stories:

– US4: As RD Producer, I need to be able to easily insert and update manually
maintained figures in dedicated part of the RD so that the update effort is low.

– US5: As RD Produced, I need to be able to automate the generation of the
diagrams that can be derived from information available in the RE model so that the
update is efficient and consistency is guaranteed.

2.3. Tabular Notations

Tabular notations are very popular in requirements engineering and specification
because they carry a lot of information in one structural form that the human reader
can easily scan, understand and check. Just like the case of diagrams, an number of
standard tabular notations are commonly used. The most common form of table is the
requirements table listing requirements by tailing specific attributes such as their ID,
short name, definition, priority, etc. Table 2 shows a typical requirements table found
in the CCDS case.

Table 2. Example of Requirements Table

Id Name Definition Resp. Prior. Ref.
R22 Initial Risk Assess-

ment Provided
The Reservation Scheduling maintains for each running job a
risk data structure that was initialised during the negotiation.

Risk As-
sessment

High P1

R23 Dynamic Change
in Risk Reported

The Extended Monitoring process monitors critical parame-
ters about the resources and reports dynamic changes.

Extended
Monitoring

High P3

More specific notations are also widely used, such as state transition tables which
describes state diagrams or SCR tables based on the Parnas four variables model or
IO tables (Herrmannsdorfer et al., 2008) (Hummel, Thyssen, 2009). Those tabular
notations are more specific to the specification of control systems. Notice also that
such tables can be redundant with diagrams and should be consistent with them. An
example of a state-transition table extracted from the EMV case is shown in Figure 3.

Figure 3. Example of State-Transition Table for the EMV Smart Card Specification

This results in the following user stories:
– US6: As RD Producer, I need to be able to automatically generate requirements

tables from the RE model so that the document can easily be updated.
– US7: As RD Producer, I need to be able to maintain the consistency between

table, RE model and related diagrams so that the document consistency is guaranteed.

3. Consolidated Interaction Scenarios and Problem Abstraction

3.1. Summary table

Based on the previous section, we identified four main artifact types which are:
RE models, text documents, diagrams and tables. Using the identified user stories we
can populate a table showing how each kind of artifact can interact with another one
in an input/output relationship. Furthermore, we can also systematically question all
the gaps to identify interesting missing interactions. Scenarios identified during that
"gap analysis" mainly relate to model transformations, to the use of table to automate
large update of specific model attributes (e.g. validated priority information) and to
more quantitative reasoning typically carried out through some spreadsheet output.

The final result of this process is shown in Table 3 which references the above user
stories. In this table, the lines are the source artifacts while the columns are the target
artifacts. Previously identified user stories are referenced using their identification
number.

Table 3. Input/Output scenario combinations

In/Out RE Model Text Document Diagram Table
RE Model Export

(package,
variant)

US1/2: explanation
Concept reference

US5: generate goal
breakdown
Responsibility...

US6:Req. table
Traceability Matrix
US3: translation ex-
port

Text Docu-
ment

Page reference
Concept creation

US4: illustration
Extraction

– –

Diagram (Model editing) Referenced concepts (Format conversion) US7:Content listing
Table Automate update

(batch import)
US3: translation im-
port

Layout view from
query

Cost estimates

3.2. Problem Abstraction

In order to ease the description of how the above interaction scenarios can be best
supported, we introduce some abstractions for the description of the different kinds
of artifacts as well as some operations that can be carried out on them. This will also
enable a better reuse of the experiment approach using different tools.

RE Models. The requirements engineering model is always structured according to
some underlying meta-model. Such a meta-model will typically capture concepts like
goals, requirements, software components (or agents), and processed information (e.g
using a class model). In the scope of this paper, we will use the KAOS meta-model
which is depicted in Figure 4.

Figure 4. The KAOS Meta-model

Documents. We consider documents as a linear structure composed of a sequence of
sections. Each section can start with a (sub)title and combine contents composed of
texts, diagrams or tables as described by the following simple BNF grammar.

Document_Structure = Section*
section = [title], Content*
Content = Text | Diagram | Table

A typical operation is the generation of a concrete document based on a given
document structure:
GENERATE Document_Structure AS Target_Format
Target_Format = Text | Table

Diagrams can either be manually produced or automatically generated. An manually
produced diagram has just some given reference whereas an automatically generated
diagram results from the layout of concepts extracted from the RE model typically
using some query which produces the list of identifiers to show in the diagram. A
standard query language is OCL but in the scope of this paper we will use the OQL
query language as it is the query language supported in our prototype and is quite sim-
ilar to SQL (ODMG, 1998). Based on the identifier list, an adapted layout algorithm
should be applied using a reliable layout engine (like GraphViz (AT&T Research,
2014)).
LAYOUT { Model_Concepts } AS Layout_Type
Layout_Type = Hierarchical | Orthogonal | Circular
Model_Concepts = QUERY ON Model

Tables are also expressed as queries over the model as for diagrams. Those queries
can specify a number of attributes that will be arranged in columns where each query
result will form a line.

4. Prototype Description

4.1. Existing Tool Base

The prototype we used for our experimentation was implemented on top of the
Objectiver goal oriented requirements engineering tool (Respect-IT, 2005).

Objectiver has a full support of the KAOS meta-model. It also includes a document
meta-model as well as a report model. This was mapped on simple structure text in
versions 2 and extended to OpenOffice (ODT format) in version 3. This also means
that ODT documents can embed live references to model concepts using an URL of
the type: "obj:\\unique_id". Thus a goal or requirement can be directly created from a
source document or cross-referenced in some output documents. Those references are
consistently and efficiently updated, including the production of a [deleted concept]
reference in case a concept was removed from the model.

4.2. Extensions

A first extension we developed was adding spreadsheet support to the tool. We
used the ODS format to keep it consistent with ODT textual format and ease the in-
tegration of both kind of content. ODS documents have a more limited meta-model
than ODT which is mainly directed towards using it as output. For example, it is also
not possible to embed concept reference within an ODS.

A second major work was on the report generator. This component takes as input
a report instantiating the report model and produces either a linear textual document
in the open document format or spreadsheet binder in the open spreadsheet format.
The UNO API is used to produce those ODS based either Open Office or Libre Office
(SUN Microsystems, 2009). Depending on the target format, the behaviour of the
generator will be different. For example a query will resolut in the production of an
additional spreadsheet tab in an ODS binder while it will result in the inclusion of the
table in an ODT document.

Specific information is also stored back into the model for example the page where
a requirement is first described is available from the model and will enable the pro-
duction of traceability tables precisely pointing to that requirement.

Depending on the target format there might be some limitation for example as a
binder are composed of a sequence of spreadsheets only the leaf content of the report
structure is considered.

5. Experimentation

This section reports on experimentations on the interaction scenarios described in
the previous section. The results of some scenarios are also reused in other scenarios
to further demonstrate the chaining possibilities. In order to be concrete, we rely on
the following three specific cases extracted from the list of presented earlier.

– The Parliamentary Access Control eXchange System (PACXS) enabled to share
access control credential across different parliamentary assemblies in Belgium in or-
der to share infrastructure costs and ease the authentication of deputies involved in
multiple assemblies (CETIC, Respect-IT, 2009).

– a Cross Cloud Deployment System (CCDS) developed by the PaaSage
FP7 project and synthesizing the requirements of four supporting case studies
(PaaSage Consortium, 2013).

– The (public) specification of a smart card security module and of the agent inter-
action with the Europay-Mastercard-VISA environment (EMVCo, 2011) which was
fed into a toolset dedicated for test plan development (Devos et al., 2012).

5.1. Requirements tables

A requirements table can easily be generated using an OQL query. Depending
on the structure of the report, requirements tables will be presented using different de-
compositions. They can follow either a goal breakdown structure, an agent breakdown
structure or some other structure as recommended by standards such as the IEEE830
or ISO29148 (IEEE, 1998; ISO/IEC/IEEE, 2011). This will simply affect the way
requirements are being fitted in the query. For example the following query returns all
the requirements that are present in a specific goal diagram. The output of this query
is similar to Table 2.

SELECT req.id, req.name, req. informalDef, req.priority
FROM Diagram AS d, d.elements AS g, g.concept AS req, req.directIsOf as t
WHERE d.name="MyGoalDiagram" and t.name="Requirement"

5.2. Generating the Traceability for Requirements Assignment to Agents

Producing a traceability matrix of how requirements(expectations) are assigned
to specific software components (human agents) is important for different rea-
sons:

– all requirements should be assigned to exactly one responsible agent
– figuring the agent load is important to assess the effort to develop it (for soft-

ware) or the validate how the load can be managed by a responsible human agent

Such a traceability matrix can be produced by the simple following query with
requirements as rows and agents as columns.
SELECT row.id, col.id
FROM Responsibility AS res, res.parent AS row, res.sons.son AS col
WHERE col.Category="Software"

Figure 5. Responsibility Traceability Matrix for the CCDS Case Study

The resulting ODS document is shown in Figure 5 for our CCDS case. A total column
is produced to easily check for the above constraints. In this case some requirements
are not yet assigned to a responsible agent (see right column). Some identified agents
have also currently no assigned requirements, while other are quite complex like the
StochasticReasoner.

5.3. Generating Agent Assignment Diagrams

The DIAGRAM query to produce the list responsibility of responsibility is quite
similar as the one for the traceability matrix except that it is filtering on a single agent
and just returns a list of identifiers.

SELECT req.id
FROM Responsibility AS res, res.parent AS req, res.sons.son AS ag
WHERE ag.name="CrossCloudDeploymentManager"

A circular layout is then applied to this list to produce the diagram shown in Fig-
ure 6. Notice that for agents with a lot of responsibilities (e.g. more than 20) such
diagrams become overloaded and too large so it is advised to keep to a table layout in
that case.

LAYOUT { DIAGRAM } AS Circular

Figure 6. Responsibility Assignment for the Cross Cloud Deployment Management

5.4. Generating Evaluation Questionnaires

Another interesting scenario is to consider the procurement process, where can-
didates have to be evaluated against their ability to fulfil the requirements with their
solution. Nice evaluation grids can be produced by grouping requirements by agents,

querying standard attributes like name or priority but also more specific attribute re-
lated to the actual reference of the requirement in the specification such as its number
and page in the document.

SELECT req.numberInReport, req.name,
req.priority, req.pageInReport, ag.name

FROM Responsibility AS res, res.parent AS req, res.sons.son AS ag
ORDER BY ag.name ASC

By using stylesheets and some macros, it is then possible to produce the kind
evaluation questionnaire shown in Figure 7 where specific columns should be filled
by the applicants. The returned results can then merged and compared in specific
consolidation spreadsheets.

Figure 7. Example of Evaluation Questionnaire

5.5. Generating Effort Estimation Spreadsheets

Our final scenario is to perform some effort estimates and compare different pos-
sible options which can be specifying as variants in the RE Model. In the scope of this
paper, we will consider that a specific effort field associated with each requirement
is available. This can be filled in by some export. It can also be produced by an ef-
fort estimation method able to compute estimates from requirements. An example of
such a method is the COSMIC Function Points (Dumke, Abran, 2010). The method
requires all requirements to be enforcing using Create/Read/Update/Delete (CRUD)
operations and is outside of the scope of this paper.

In order to produce the effort estimation, we will combine the following three
spreadsheets using a tabular ODS output.

– EFFORT: a simple query to retrieve the requirement.effort
– ALLOCATION: the previously computed traceability matrix of Requirements

vs Agents
– COMPUTATION: a specific spreadsheet performing the processing to compute

module costs and applying styles on it

GENERATE [EFFORT,ALLOCATION,COMPUTATION] AS Tabular

The resulting spreadsheet is shown in Figure 8. The process was applied on two
different variant of the system which should be specified as additional filters earlier in
the process and that we will not detail here.

Figure 8. Effort Estimation for two Variants

6. Discussion and Related Work

We point discuss here some strong point emerging from our experiments as well
as areas of improvement. We also bring some related work in the picture of this
discussion to compare with other approaches and toolsets.

6.1. Strong points

– Rich Model. Using an underlying RE model provides rich traceability mech-
anisms and enables the automatic generation. This can be supported by most tools
supporting a model-based approach like DOORS (IBM, 2002), Reqtify (Dassault Sys-
tems, 2010), Enterprise Architect (Sparx Systems, 2014) or Eclipse-based tools like
TopCased (TopCased, 2011). Like in our case, the majority of tools provide some
query mechanisms including predefined reports and finer grained queries (like OCL
queries on Eclipse EMF models or SQL queries on the underlying database in Enter-
prise Architect).

– Flexibility across artifacts. The experience with the scenarios revealed a lot
of flexibility resulting from the combination of interesting way to combine partial
results, resulting in interesting chains of artifacts of different kinds. For example
addressing the problem of reporting a concept page in a table revealed easy to support
through minor evolution of the tool and relying on all the available transformation
processes. In order to enable this, the tool should support a rich set of interconnection
across different artifacts. With respect to this, most tools have limitations: DOORS
and Reqtify are mainly targeting textual and table report generation but not copying
with diagrams. Moreover Reqtify is only "readonly" and is not designed to reprocess
its own outputs. Enterprise Architect fully supports the interplay of documents and
diagrams. It also supports tabular views (e.g. on diagrams) and for import/export.

– Ease of Combination A key point to carry out our experimentations was the
support for scenarios combination. In our case the main enabler was a visual report

functionality able to include all the manipulated artifacts and provide a specific behav-
ior depending on the output format (e.g. including a query in a report will generate a
formatted table in a document or a spreadsheet tab depending on the output format).
Several tools only provide a report generator that are limited to the generation of stan-
dard template or require a lot of effort to customise their templates. As an alternative
to a visual reporting tool, a good scripting API can also be efficient however it requires
more effort to learn and to deploy.

6.2. Areas of Improvement

– Connection with other models. The richness of interaction scenarios also de-
pends on the model. In our case it is rather limited to the goal-oriented RE. Other
tools like cover larger domains such as design UML (Sparx Systems, 2014) or soft-
ware product lines (University of Ottawa, 2001). The richer the model is, the greater
the number of interesting interactions will be. Of course a tool must stay limited in
scope and tool interconnectivity is also important (see later point).

– Model Maintenance. As it all model-based approaches corrections have be
applied to the model and require regeneration. Tasks like locating and performing a
correction in the model should be very easy to perform to avoid user rejection and will
result in direct correction in documents that are not any more synchronised with the
other artifacts. A simple recommended feature to reduce some corrections is to have
a spell checker at the source of text capture.

– Roundtrip Update. More powerful roundtrip features could be investigated in
order to be able to directly update from change in the documents. Most tools support
the tagging of requirements description and attributes and support the synchronisation
back to the model. However processing tables and diagrams from the target docu-
ments embedding them is more complex and often requires ad-hoc parsing. There
is currently no easy solution for handling this at least considering traditional office
suites.

– Online tool. The toolset we used as well as a number of major RE tools are
still often based on a fat client architecture possibly connected to a database server.
Nowadays toolsets are quickly evolving moving online in a SaaS mode either explic-
itly dedicated to requirements like (TraceCloud, 2014) or as evolution of other tools
like bugtracker or wikis, e.g. JIRA and Confluence (Atlassian, 2014). Major office
suite are already available online e.g. (Google, 2007), as well as diagramming toolsets
like (Gliffy, 2009) (also available as Confluence plugin).

– Interconnection protocol. Tool integration is best achieved through an open
interaction protocol like OSLC (Arwe, 2013). This protocol is now supported by
several RE tools like DOORS (Jazz) or Enterprise Architect. However OSLC is based
on the linked data principle and only provides the mechanisms to define resources
in terms of RDF properties and query mechanisms. Achieving effective integration
requires some work that could however be guided by our abstractions.

7. Conclusion and Perspectives

In the paper, we captured and documented a number of interesting interaction sce-
narios across several of artifacts types found in the requirements engineering process.
This task relied on a careful review of a set of large requirements specification projects
we carried our over the past ten years. We then looked at how well they were supported
in a current state of the art RE tool. We prototyped a number of extensions to be able
to cope with limitations and more importantly to experiment with combination and
chaining of such scenarios in order to show interesting value added.

Our approach was proved positive, although some threats related to model-based
engineering should be addressed. Interesting opportunities were also identified with
the development of web-based solutions. We also tried to make our work reusable by
others by describing our approach in abstract terms. We believe it is quite easily to
transpose in a toolset providing a good extension API either closed (e.g. Enterprise
Architect) or Open (e.g. Eclipse tools based on EMF like Papyrus, TopCased).

The developed extensions are part of the new V4 release of the Objectiver tool. Our
future work is to support spreadsheets as input and to reference concepts within them.
We are also studying more complex quantitative analysis of goal models. Finally we
also plan to move to web-based tools and improve our tool interconnectivity using
OSLC.

Acknowledgements

This work was funded by the Walloon Region INOGRAMS project (grant number
7171). We warmly thanks our industrial partners for sharing their cases.

References

Abran A., Bourque P., Dupuis R., Moore J. W. (Eds.). (2001). Guide to the Software Engineer-
ing Body of Knowledge - SWEBOK. Piscataway, NJ, USA, IEEE Press.

Arwe J. (2013, May). Open Services for Lifecycle Collaboration, Core Specification Version
2.0. http://open-services.net/bin/view/Main/OslcCoreSpecification.

Atlantic Guild. (2014). Volere Requirements Template, Edition 17. http://www.volere.co.uk/
template.htm.

Atlassian. (2014). JIRA and Confluence tools. https://www.atlassian.com/.

AT&T Research. (2014). Graphviz - Graph Visualization Software. http://www.graphviz.org.

CETIC, Respect-IT. (2009, January). Parliamentary Access Control eXchange System - Domain
Description, Requirements Specification and Functional Specification.

Dassault Systems. (2010). Reqtify. http://www.3ds.com/products-services/catia/capabilities/
catia-systems-engineering/requirements-engineering/reqtify.

Devos N., Ponsard C., Deprez J.-C., Bauvin R., Moriau B., Anckaerts G. (2012). Efficient reuse
of domain-specific test knowledge: An industrial case in the smart card domain. In ICSE
2012, p. 1123-1132. IEEE.

Dumke R., Abran A. (2010). COSMIC Function Points: Theory and Advanced Practices.
Auerback Publications, Taylor & Francis LLC.

EMVCo. (2011, November). EMV Integrated Circuit Card Specifications for Payment Systems
- V4.3. http://www.emvco.com/specifications.aspx?id=223.

Gliffy. (2009). Diagrams Made Easy. http://www.gliffy.com.

Google. (2007). Google Docs. http://www.google.com/docs/about.

Herrmannsdorfer M., Konrad S., Berenbac B. (2008, March). Tabular Notations for State
Machine-Based Specifications. CrossTalk The Journal of Defense Software Eng., No. 8.

Hummel B., Thyssen J. (2009). Behavioral Specification of Reactive Systems Using Stream-
Based I/O Tables. In Proc. of the 7th IEEE International Conference on Software Engineer-
ing and Formal Methods, pp. 137–146. Washington, DC, USA, IEEE Computer Society.

IBM. (2002). Rational DOORS. http://www.ibm.com/software/awdtools/doors.

IEEE. (1998). 830-1998 - Recommended Practice for Software Requirements Specifications.

ISO/IEC/IEEE. (2011). 29148-2011 - Systems and software engineering - Life cycle processes
- Requirements engineering.

Kelly T., Weaver R. (2004). The Goal Structuring Notation - A Safety Argument Notation. In
Proc. of dependable systems workshop on assurance cases.

Lamsweerde A. van. (2009). Requirements Engineering: From System Goals to UML Models
to Software Specifications. Wiley. Paperback.

ODMG. (1998). Object query language user manual v5.0.

OMG. (2011a). Business Process Model and Notation - version 2.0. http://www.omg.org/spec/
BPMN/2.0.

OMG. (2011b). Unified Modelling Languages - 2.4. http://www.omg.org/spec/UML.

PaaSage Consortium. (2013). D6.1.1 Initial Requirements. http://www.paasage.eu/images/
documents/PaaSage-D6.1.1-Initial-Requirements.pdf.

Respect-IT. (2005). Objectiver Requirements Engineering Tool. http://www.respect-it.com.

Sommerville I. (2010). Software engineering (9th ed.). Harlow, England, Addison-Wesley.

Sparx Systems. (2014). Enterprise Architect. http://www.sparxsystems.com.au.

SUN Microsystems. (2009, April). OpenOffice.org 3.1 Developer’s Guide. https://wiki
.openoffice.org/w/images/d/d9/DevelopersGuide_OOo3.1.0.pdf.

TopCased. (2011). Open Source Toolbox for Critical Systems. http://www.topcased.org/.

TraceCloud. (2014). Requirements Management - Agile, Waterfall, Change Control. https://
www.tracecloud.com.

University of Ottawa. (2001). jUCMNav: Juice up your modelling.
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome.

Yu E. S. K., Mylopoulos J. (1997, April). Enterprise modelling for business redesign: The i*
framework. SIGGROUP Bull., Vol. 18, No. 1, pp. 59–63.

