
The Likelihood of Vulnerability Rediscovery and

the Social Utility of Vulnerability Hunting

Andy Ozment∗

Computer Security Group

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/users/jo262/

Abstract

Initial attempts to apply software reliability growth models to the pro-
cess of vulnerability finding relied upon noisy data. Here, a more appro-
priate data collection process is discussed and employed to identify the
age of vulnerabilities in OpenBSD 2.2. A number of models are tested
against the data and two are found to have acceptable goodness-of-fit.
These models indicate that the pool of vulnerabilities in the system is be-
ing depleted. However, models that also fit the data but do not indicate
depletion may also exist. While this result is thus not conclusive, it does
suggest that more investigation is needed and that, contrary to prior work,
vulnerability depletion cannot yet be ruled out. It is thus possible that
vulnerability hunting can result in a more secure product and can provide
a social benefit. Patch announcements and vulnerability reports are also
used to quantitatively (albeit roughly) demonstrate that vulnerabilities
are often independently rediscovered within a relatively short time span.
This finding provides a quantitative and qualitative rationale for vulner-
ability disclosure policies intended to pressure vendors into more rapidly
providing patches. Although neither result is conclusive, both contradict
previous work by providing support for the conclusion that vulnerability
hunting is socially useful.

Keywords: vulnerabilities, vulnerability rediscovery, vulnerability disclosure
policies, security metrics, software reliability, computer security, information
security

∗This work was funded by a Marshall Scholarship and an Overseas Research Student
Award.

Version [914] to be presented at:
The Workshop on Economics and Information Security. June 2-3, 2005: Cambridge, MA, USA.

1 Introduction

There exists a significant community of individuals who are interested in com-
puter security and who take it upon themselves to discover and report software
vulnerabilities. These ‘benign identifiers’ are not necessarily employed by or
associated with the vendor of the products they analyze; nor are they attack-
ers, those whose primary aim is to use the vulnerabilities to unlawfully attack
systems.

Nonetheless, the means by which the benign identifier informs the vendor
and the public of a vulnerability is a topic of dispute. In the past, a benign
identifier might have notified the vendor of the vulnerability and then waited
an indeterminate length of time until the vendor released a patch that fixed it.
In the 1990s, discontent with the length of time some vendors were taking to
release patches led to the creation of public ‘full-disclosure’ fora (e.g. the Full
Disclosure and Bugtraq mailing lists). In these fora, benign identifiers publish
vulnerability reports that detail the existence of the vulnerability and sometimes
go so far as to give instructions on its exploitation.

The creation of the full-disclosure fora provoked a policy debate: was public
welfare served better by releasing a vulnerability report before the vendor’s
patch (instantaneous disclosure) or from delaying the report until the patch was
ready (responsible disclosure)?1 Advocates of instantaneous disclosure argue
that it enables users to mitigate the impact of the vulnerability and pressures
software vendors to provide patches more rapidly. Advocates of responsible
disclosure argue that notifying attackers of the existence of the vulnerability
without simultaneously providing a patch results in increased social cost due
to attacks. Implicit in both arguments is the assumption that vulnerabilities
should be found and fixed because they are likely to be rediscovered by malicious
actors: if a vulnerability has been found by a benign identifier, it should be
fixed before an attacker independently rediscovers and exploits it. In [Res04],
Rescorla questions this underlying assumption and argues persuasively that:

1. Vulnerability hunting does not significantly decrease a product’s pool of
latent vulnerabilities during the product’s life span. It thus does not result
in a significantly higher quality or more secure product.

2. The independent rediscovery of a vulnerability is unlikely: a benign iden-
tifier is unlikely to identify vulnerabilities that would otherwise be discov-
ered by an attacker.

3. As a result, both instantaneous and responsible disclosure provide little
benefit. Indeed, from a public welfare perspective, they are actually detri-
mental: vendor patches and vulnerability reports by benign identifiers

1Nomenclature like ‘benign identifier’ and ‘responsible disclosure’ is not value free and is
hotly debated. I use it out of convenience and in accordance with its usage in the popular
media. When possible, I employ the terminology of [ATX04] and [KT04] to facilitate the
creation of a standard nomenclature.

2

alert attackers to vulnerabilities they would not have discovered on their
own.

However, Rescorla notes that his data set is noisy and problematic, and he
recommends the collection of better data. This work answers his challenge by
using a better data set to re-examine his arguments and also by considering
new evidence from deployed software. First, the stochastic software reliability
models used in the initial work are considered and it is shown that the data set
does not adequately conform to the requirements of these models. The creation
of a data set that does comply with these requirements is discussed; such a
data set is then analyzed. The results are not definitive, but they suggest
that vulnerability hunting may deplete the pool of latent vulnerabilities in a
product. As a result, such efforts may provide the social benefit of a more
secure product. Second, alternative data sources are used to demonstrate in a
less mathematically rigorous manner that some non-trivial level of rediscovery
is in fact occurring with respect to Microsoft products.

These results suggest that the social utility of vulnerability hunting is more
complicated than previously argued, and that it may actually be socially bene-
ficial. Thus, where prior work could assume that some inputs to a social welfare
model were negligible or overwhelming, the findings here suggest that a more
careful analysis of the cost and benefits of vulnerability hunting is required.

2 Relevant Literature

The relevant literature can be divided into two groups. Section 2.1 provides an
overview of the policy debate between advocates of responsible disclosure and
advocates of instantaneous disclosure. Section 2.2 presents work that challenges
the assumptions underlying the disclosure policy debate and briefly discusses the
literature on software reliability growth models.

2.1 Vulnerability Disclosure Policy

Advocates of responsible disclosure do acknowledge that vendors may not release
patches promptly or at all without the benign identifier threatening to make
the vulnerability public; many solve this dilemma by giving vendors a deadline.
Three prominent responsible disclosure policies emphasize timely and continuing
contact between the benign identifier, the coordinating center (e.g. CERT/CC2)
and the vendor in order to ensure that the patch is released promptly: [CER00],
[Pup01], and [CW02].3 The CERT/CC policy is perhaps the most important, as
CERT/CC is often used as a mediator between benign identifiers and vendors.
Their policy gives a forty-five day deadline for the vendor to resolve the problem,
although extensions may be granted if the vulnerability is a particularly difficult
one to remediate. The latter two policies emphasize that the reporter and vendor

2CERT/CC was previously the Computer Emergency Response Team Coordinating Center
3The [CW02] policy has been retracted by its authors.

3

should negotiate to ensure that the vendor has a reasonable length of time to
create a patch while not unnecessarily dragging its feet.

Arora et al empirically compare the results of the instantaneous disclosure
policy with those of the responsible disclosure policy. They find that instanta-
neous disclosure does force vendors to provide patches more rapidly than oth-
erwise, and that it also increases the probability that the vendor will provide a
patch at all. They note, of course, that the number of attacks against that vul-
nerability is increased (possibly from a starting point of zero) by instantaneous
disclosure and thus that overall social utility may decline [AKN+04].

In a separate work, Arora et al model a policy for disclosure in which social
planners (e.g. CERT/CC) threaten to publicly disclose a vulnerability if the
vendor does not provide a patch before a deadline. Vendors are averse to bearing
the increased cost of developing a patch rapidly rather than more leisurely.
In Arora et al ’s model, the social planner is explicitly motivated by the fear
of attacker independent rediscovery : that a malicious actor will independently
rediscover the vulnerability and then exploit it. Their model includes the time
that an attacker independently rediscovers the vulnerability as stochastic, with
a likelihood that increases as time passes since the vulnerability was found by
the benign identifier.

They find that neither instantaneous disclosure nor non-disclosure is so-
cially optimal. Furthermore, without a deadline, vendors do not provide patches
rapidly enough. In their model, the social planner discloses after a period less
than that desired by the vendor, so that vendors are motivated to release patches
more quickly. Early disclosure (if it does not result in a hurried patch release by
the vendor) thus accepts some losses due to exploitation against a longer delay
in patch release, which may have resulted in attackers independently rediscover-
ing the vulnerability. Their results are not altered when they expand the model
to include incomplete compliance in users’ implementing patches [ATX04]. Un-
fortunately, they fail to weigh the costs of early disclosure against the risk of
attacker independent rediscovery.

In a later work, Hasan Cavusoglu, Huseyin Cavusoglu, and Srinivasan Raghu-
nathan also create a game theoretic model of the vulnerability disclosure process
[CCR05]. They consider the amount of time venders are given to create a patch
before the vulnerability information is made public–including the extremes of in-
stantaneous public disclosure or never disclosing the vulnerability. They model
the benefits and costs of vulnerability disclosure policies to vendors, social co-
ordinators (e.g. CERT/CC), vulnerability identifiers, and users. They find that
no single policy is always optimal: instead, the social coordinator should alter
the amount of time available to the vendor in accordance with the cost of creat-
ing a patch (e.g. its difficulty), the vulnerability’s risk, and the user population.
Although no single policy is optimal, an optimal policy does always exist. How-
ever, for vulnerabilities that affect multiple vendors, no policy can guarantee
that all vendors will release a patch.

In both [ATX04] and [CCR05], the impetus for releasing patches quickly is
the fear of attacker independent rediscovery. Although Rescorla argues that the
likelihood of such rediscovery is small, the results below demonstrate that it is

4

non-negligible and should not lightly be dismissed.

2.2 Security Reliability Modeling

One of the key assumptions underlying the conclusion of [ATX04] is the belief
that attackers are likely to rediscover any vulnerability found by a benign identi-
fier; however, Rescorla argues that vulnerability discovery is a largely stochastic
process and the likelihood of rediscovery is low [Res04]. In that work, Rescorla
gathered vulnerability finding information from the ICAT vulnerability database
and examined it in two ways: from the perspective of products and from the
perspective of vulnerabilities. For the former, a single version of four operating
systems was selected,4 and the number of vulnerabilities found per quarter in
each operating system was analyzed. For the latter, he examines the age dis-
tribution of 1,391 vulnerabilities found between 1997 and 2002 (not just those
vulnerabilities related to the four operating systems).

Rescorla’s analysis is based upon software reliability growth modeling (see
[Goe85], [AIA93], and [Lyu96] for summaries of the literature). This field has
produced a number of different models of the process by which faults are iden-
tified. (In this paper, I use fault interchangeably with bug : both refer to a
software design or implementation flaw that is not related to security. Flaws
related to security are referred to as vulnerabilities.) Typically, a software en-
gineer will plot the identification of faults versus time and then attempt to fit
a stochastic model to the data points. Models that fit within acceptable con-
fidence intervals are then used to determine: the total number of faults in the
system, the amount of testing remaining until the next fault is identified, the
amount of testing necessary to identify some percentage of the total faults, etc.
Reliability growth models can be divided into those which require the data to be
the time-between-faults and those which require the number of faults found in a
set interval of time (i.e. failure count models). The former models may require
that program execution time be tracked, while the latter are often used with
calendar time. These models thus test whether the reliability of the program
is increasing: when the models fit the data, they are essentially modeling the
decrease in the pool of flaws that exist in the product and the corresponding
decrease in the likelihood that a flaw will be discovered. When such tests are
performed with respect to vulnerabilities, they are used to test whether the
security of the program is increasing: e.g. that the number of vulnerabilities
remaining in the program is significantly decreasing.

Rescorla applies both a linear and an exponential Goel-Okumoto [GO79]
model to his program-perspective data. Neither model provides an acceptable
fit and thus neither suggest that the security of these programs is increasing. For
the vulnerability-perspective data, vulnerabilities were divided into four cohorts
based on year of introduction (1997–2000). Only the 1999 cohort shows any sig-
nificant trend towards a decrease in the number of remaining vulnerabilities.

4Windows NT 4.0 (released 1996-08), Solaris 2.5.1 (1996-05), FreeBSD 4.0 (2000-03), and
Redhat Linux 7.0 (2000-08). The ICAT database Rescorla utilized was from 2003-05-19.

5

Using the entire data set (rather than single-year cohorts), both an exponential
and a Weibull distribution provide reasonable fits; however, even the more op-
timistic of these shows the half-life of a vulnerability to be approximately 2.5
years.

Rescorla thus argues that the pool of vulnerabilities in a product is not sig-
nificantly diminished during that product’s life span; as a result, he concludes
that the pool of vulnerabilities in a product is essentially infinite with respect to
the lifespan of the product. Therefore, an attacker is unlikely to independently
rediscover a vulnerability that has been previously discovered by a benign iden-
tifier: the pool of vulnerabilities is too large (and he assumes that vulnerability
finding is stochastic).5 Thus, while Arora et al conclude that a social planner
should impose a deadline by which vendors must release a patch, Rescorla con-
cludes that full disclosure (both responsible and instantaneous) is not socially
beneficial at all [Res04].

To reach this conclusion, Rescorla models the costs suffered by users after
full disclosure, either benign or instantaneous. He first notes that users patch
their systems slowly (even when it is known that a vulnerability is being ex-
ploited), and some may not patch at all [Res03]. Furthermore, a vulnerability
report or a patch will inform attackers of a vulnerability and help them to create
an exploit for that vulnerability. By forcing vendors to release patches, benign
identifiers ensure that attackers will also be aware of the vulnerability. Since
many systems remain unpatched for some time after the patch is released, those
users will likely suffer the effects of attacks—although unpatched systems may
be those least valued. Rescorla also questions the argument that benign identi-
fiers should seek to find vulnerabilities because those vulnerabilities may already
have been found and utilized by attackers. He believes that an attacker cannot
exploit a vulnerability many times before the vendor learns about the vulnerabil-
ity: the attacker will eventually attack a system that is being carefully watched,
thus alerting the system administrators to the vulnerability. Using these as-
sumptions, Rescorla models the social utility of vulnerability hunting (the work
performed by benign identifiers) and concludes that it is not socially beneficial.

3 Data Sets

Rescorla’s program-perspective results indicate no significant decrease in the
number of vulnerabilities remaining in the four programs he examined, and the
vulnerability-perspective results indicate a vulnerability half-life of at best 2.5
years. However, the ICAT data set [NIS03] with which he worked is problematic
in a number of ways. Section 3.1 discusses the data requirements of software
reliability growth models, while Section 3.2 notes the areas in which the ICAT

5Rescorla does note that vulnerability rediscovery happens on occasion and thus concludes
that some vulnerability hunting is not stochastic. However, he finds this situation rare enough
to exclude it from the cost-benefit analysis. Section 5, below, provides evidence that inde-
pendent rediscovery occurs too frequently to be dismissed and discusses this phenomenon in
more depth.

6

data set fails to fulfill the model requirements. The data collection technique
used in this work was selected to overcome the failures of the ICAT data set; it
is discussed in Section 3.3.

3.1 Model Requirements

While the various models have different applicability requirements, the effective-
ness of all software reliability models is dependent upon three key assumptions
[Goe85] [Lyu96]. They require:

1. A valid operational profile: The environment from which the data
is obtained (usually the testing environment) must be equivalent to the
environment in which the software will be utilized after deployment.

2. Static software: Significant alterations cannot be made to the software
being tested. In general, the only alterations permitted are those neces-
sary to repair faults. Although models like the “Goel Okumoto imperfect
debugging model” can cope with fault patches introducing new faults, no
model can adequately cope with a significant amount of code ‘churn’ due
to added features.

3. That time is normalized for effort: The models’ concept of time
should encompass effort. If program execution time is utilized, this as-
sumption is clearly satisfied. However, if calendar time is used then it
must be normalized for the number of testers participating [Wal01].

From a narrow perspective, Assumption 1 casts doubt upon the applicability
of software reliability models to vulnerabilities: many vulnerabilities rely upon
the adversary intentionally inputting abnormal data (that is, data outside of the
bounds of a normal operational profile). However, a more broad perspective is
that the operational profile includes all possible input. Although this perspec-
tive indicates that software reliability models can be applied to vulnerabilities,
it does imply that vulnerabilities may be identified more slowly than bugs would
be identified.

In addition, chronologically local ‘spikes’ in the number of vulnerabilities
found may indicate the discovery of a new technique for identifying vulner-
abilities. The discovery of a new technique is conceptually equivalent to an
expansion of the operational profile. It also violates an additional assumption
that underlies all of the stochastic reliability growth models: that the times be-
tween failures are independent. Interval models introduce some degree of data
smoothing and thus can better compensate for violations of this assumption
than time-between-faults models.

3.2 ICAT Dataset Shortcomings

The ICAT database used by Rescorla has a number of shortcomings, all but one
of which are corrected by the data collection technique employed in this paper.

7

The ICAT shortcomings are chronological inconsistency, incomplete selection,
and lack of effort normalization.

The ICAT database has inadequate information on the important chrono-
logical information of vulnerabilities: their birth date (i.e. when the vulnerable
code was added to the program) and their death date (i.e. when they were identi-
fied). The birth date of vulnerabilities may be inaccurate because vulnerabilities
may predate those versions of a program for which they are listed in ICAT: the
reporter of the vulnerability frequently tests it against only the most current
version of a program. However, this shortcoming does create a bias in favor of
vulnerability depletion.

The death date of a vulnerability is also only approximately recorded. Be-
fore 2001, ICAT reports a “published before” date; after 2001, it reports the
date when the vulnerability was added to the database. Both approaches may
be inaccurate by several months. Furthermore, even if ICAT does report an
accurate date, that date may be when the vulnerability became public. Some
vendors work on vulnerabilities for months or even years before they release a
patch and the vulnerability becomes public.

Another drawback of the ICAT database is that it does not contain every
vulnerability identified or even a consistent subset of vulnerabilities. ICAT con-
tains only those vulnerabilities that have been assigned CVE identifiers; many
vulnerabilities that predated the creation of the CVE database in September
1999 have never been assigned CVE identifiers.6 Even after that date, not
all vulnerabilities recorded by the vendor or other databases like Bugtraq are
included.

Finally, Rescorla notes that Assumption 3 is also violated: the data is not
normalized for the number of testers (both malicious and benign identifiers). For
vulnerability identification, of course, the number of testers does not necessarily
equate to the number of users. Only a subset of the user population will be
knowledgeable enough to identify and report vulnerabilities. Furthermore, this
subset is also not necessarily a fixed proportion of the total user population:
because these knowledgeable testers may be interested in programs popular in
their community or currently prominent in the media, the ratio of testers to
users may differ between programs and also across time.

3.3 Collection Technique for the OpenBSD 2.2 Dataset

The OpenBSD operating system was selected as a data source favorable to
the hypothesis that vulnerability hunting can result in a significant decrease in
a program’s vulnerabilities. The OpenBSD security philosophy is in favor of
vulnerability hunting and full disclosure:

“OpenBSD believes in strong security. Our aspiration is to be NUM-
BER ONE in the industry for security (if we are not already there)....

6CVE, the Common Vulnerability and Exposure database is an initiative to provide a
single, widely accepted name to vulnerabilities. Rather than a database of information about
a vulnerability, it simply provides a universal identifier for that vulnerability. ICAT is a
database that provides information on CVE identified vulnerabilities [MIT05].

8

Like many readers of the BUGTRAQ mailing list, we believe in full
disclosure of security problems. In the operating system arena, we
were probably the first to embrace the concept. Many vendors, even
of free software, still try to hide issues from their users. Security
information moves very fast in cracker circles. On the other hand,
our experience is that coding and releasing of proper security fixes
typically requires about an hour of work – very fast fix turnaround
is possible. Thus we think that full disclosure helps the people who
really care about security.” [Ope05]

The earliest stable version of OpenBSD for which vulnerability information is
available is 2.2, released on December 1, 1997. Vulnerability information prior
to 2.2 is not accurate because the developers performed an extensive source
code audit and silently (i.e. without announcing them publicly) fixed a number
of vulnerabilities. Version 2.2 was thus selected for study.

The collection technique utilized overcomes the chronological inconsistencies
that plague the ICAT database. OpenBSD makes every version of its source
code available via an internet accessible CVS repository (version control system).
This repository allows the examination of every change and addition made to
the source code. For each vulnerability, the source code was examined to find its
death date: the date that the vulnerability was repaired in the code. Because
the date utilized is the date on which the repair was checked into the CVE
repository, it closely tracks the date on which OpenBSD was informed. As a
result, even vulnerabilities that impact multiple vendors and thus must be kept
silent for long periods could be accurately tracked.

The vulnerability was then traced back through every preceding change to
the relevant code. The date on which the vulnerable code was first written was
recorded as its birth date. If the fix was itself faulty, the date of the first effort is
used rather than that of the last effort. This simplification is in accordance with
most models’ assumptions that flaws are fixed instantly and without introducing
new flaws.

A wider selection of vulnerability databases was also used, in order to over-
come the coverage problems inherent to the ICAT database. A vulnerability was
included if it was cited as existing by either CVE (i.e. ICAT) or the Bugtraq vul-
nerability database [Sec05]. In addition, any vulnerability for which OpenBSD
provided a patch was also included [Ope05]. The use of Bugtraq and OpenBSD
patch announcements compensate for the shortcomings of ICAT; in particular,
the OpenBSD patch announcements provide coverage prior to the existence of
the other two databases. The initial dataset included any vulnerability from
these sources that was made public between 1997-12-01 and 2000-05-31. This
30 month period included all of the vulnerabilities listed for five releases of the
operating system (versions 2.2—2.6).

Unfortunately, this work does not present a solution to Assumption 3: the
OpenBSD 2.2 chronological data is not normalized with respect to effort. OpenBSD
does not track usage patterns; because it is often used as a server operating sys-
tem, other available sources of usage data are also inadequate (e.g. the number of

9

Program Version Date Released Vulns Introduced* Total Vulns**
OpenBSD 2.2 1997-12-01 39 39
OpenBSD 2.3 1998-05-19 2 30
OpenBSD 2.4 1998-12-01 1 22
OpenBSD 2.5 1999-05-19 1 13
OpenBSD 2.6 1999-12-01 0 4

*The number of vulnerabilities that were born during the period between the previous version and this one. For the
purpose of this study, no version existed prior to 2.2. **The total vulnerabilities listed for each version are those
that existed in the code prior to that version’s release date and were identified after that version’s release date.

Table 1: Vulnerabilities Identified 12/97 – 05/00

internet surfers that utilize OpenBSD). Section 6 discusses a potential research
approach to solving this problem.

Of the initial 44 vulnerabilities identified, 39 dated to OpenBSD 2.2 (see
Table 1). The other four occurred in code that was more recent than that
release, and one proved not to be a vulnerability. The 39 vulnerabilities were
the data source used for the reliability modeling. Note that the data in Table 1
does not necessarily indicate that OpenBSD 2.6 has fewer vulnerabilities overall
than OpenBSD 2.2. Rather, it is potentially an artifact of the right censoring of
the study: with respect to the study’s time frame, code introduced in OpenBSD
2.6 was accessible to testers for far less time than that of OpenBSD 2.2.

Some vulnerabilities shared the same death date or had death dates that
were chronologically close. These data spikes may be caused by vulnerability
dependencies: e.g. publicity for one vulnerability causes other individuals to
search in the same area [Goe85]. This scenario violates the assumption of a
stochastic distribution; however, any bias it introduces is against the hypothesis
that security is increasing.

4 Security Growth in OpenBSD 2.2

Two parametric software reliability models support the hypothesis that vulnera-
bility discovery can increase the security of a product. Both Brooke’s & Motley’s
Discrete SR Binomial Model and Yamada’s S-Shaped Reliability Growth Model
[YOO83] indicate that the vulnerabilities in OpenBSD 2.2 are being depleted.
The former model incorporates the possibility that faults will be introduced into
the code through the patching process. The latter model describes an S-shaped
curve that assumes an initial learning process.

Table 2 lists the ten interval models that were applied to OpenBSD 2.2
vulnerability counts: 30 intervals of one month’s length. The standard devi-
ation of the data was 1.64, and the variance was 2.70. The B&M Binomial
and Yamada S-Shaped models had acceptable chi square goodness-of-fit results,
using maximum likelihood parameter estimation.7 The results of these tests
are shown in Table 2, with the B&M Binomial and Yamada S-Shaped models

7The SMERFS3 reliability engineering tool was used to assess the models’ applicability
[Sto03].

10

Model Accuracy Chi Square* χ2 DOF

1. Brooke’s & Motley’s Discrete SR (Binomial) 23.27 9.42 4

2. Brooke’s & Motley’s Discrete SR (Poisson) 22.94 9.72 4
3. Gen. Poisson Weighting 1 (Schick-Wolverton) N/A 9.72 4
4. Gen. Poisson Weighting 2 (Alpha Input) 0.00 9.72 4
5. Gen. Poisson Weighting 3 (Alpha Estimated) N/A 0.00 0
6. Non-homogenous Poisson Model for Intervals 0.00 10.83 4
7. Schneidewind Model (Treatment Type 1) 0.00 10.83 4
8. Schneidewind Model (Treatment Type 2) N/A 2.56 0
9. Schneidewind Model (Treatment Type 3) N/A 83.12 3

10. Yamada’s S-Shaped Reliability Growth 22.95 5.58 4
*The Chi Square tests were run with the default cell combination frequency of 5.

Table 2: Interval Model Results for 30 Single-Month Intervals

Probability of Detecting Faults 0.041
Total No. of Faults 49.63
Total No. of Faults Remaining 10.63

Table 3: Brooke’s & Motley’s Discrete SR Model (Binomial) Results

highlighted. The accuracy column lists the prequential likelihood ratio, used
to differentiate between competing models [AGCL86]; the B&M Binomial and
Yamada S-Shaped model were not significantly different in this regard. Seven
time-between-faults models were also tested; as expected, they were not appro-
priate for the data set–presumably due to its lack of granularity [PTL93].

The fault predictions of the B&M Binomial model are listed in Table 3.
Using a maximum likelihood test, the ‘probability of detecting faults’ parameter
best fits the data at a value of 0.041. The B&M Binomial model assumes that
this parameter is constant for all test runs and is independent of detecting flaws
[AIA93]. The B&M Binomial model also assumes that fixes introduce new flaws
at a constant rate. Here, the reintroduction probability parameter is estimated
as 0.15 faults introduced per fix. Using these parameters, the model supports
the hypothesis of increasing security. The model estimates that 10.63 faults
remain in OpenBSD 2.2. (The total number of faults remaining is an expected
value and thus need not be an integer.) Appendix A has more information on
the model.

The fault predictions of the Yamada S-Shaped Reliability Growth Model
are listed in Table 4. The Yamada model is a variation of the Nonhomogeneous
Poisson Process Goel Okumoto model employed by Rescorla. Yamada et al
considered the fault detection process to be S-shaped, with an initial learning
curve followed by exponential growth in detection and then diminishing returns
to testing [Lyu96]. The assumptions of the Yamada model thus seem at odds
with the character of OpenBSD 2.2. Most of the source code (and thus the vul-
nerabilities) for this release undoubtedly predates it by years: why should there

11

Lower 95% CI Estimate Upper 95% CI
Proportionality Constant 0.089 0.132 0.175
Total No. of Faults 39.0 43.08 57.31
Total No. of Faults Remaining 0.0 4.08 18.31

Table 4: Yamada’s S-Shaped Reliability Growth Model Results

be a peak in vulnerability detection immediately after this release? However,
it is possible that OpenBSD’s security claims with the release of 2.2 prompted
an increase of interest in vulnerability hunting for this operating system. (“We
believe that we are NUMBER ONE in the industry at the moment” [Ope98].)
The Yamada model estimates that 4.08 faults remain in OpenBSD 2.2; with a
95% confidence interval, between 0 and 18.31 faults are predicted to remain.
Appendix B has more information on this model.

The application of multiple reliability growth models to the carefully col-
lected OpenBSD 2.2 data set is thus a partial success. Two fitted parametric
models, B&M Binomial and Yamada S-Shaped, support the hypothesis of sig-
nificantly increasing security. The growth curves of both models are shown with
the points from the data set in Figure 1. However, the two predictions for total
number of faults do vary more than is desirable. The expected total number of
faults remaining is 10.63 for the B&M Binomial model and 4.08 for the Yamada
model. Moreover, the upper 95% confidence estimate for the Yamada model
is that 18.31 faults remain in OpenBSD 2.2: if the true number of faults is
more close to this estimate, then only two-thirds of the vulnerabilities present
in OpenBSD 2.2 were discovered in its first thirty months of utilization.

However, identifying two-thirds of the vulnerabilities in OpenBSD 2.2 is more
impressive than it might first appear. Even thirty months and five versions later,
the vast majority of the OpenBSD code base was created in version 2.2. For
example, note that only four vulnerabilities have been identified as having been
added between 1997-12 and 2000-05.

Although two of the models test had acceptable goodness-of-fit, this result
does not conclusively indicate that vulnerabilities are being depleted. Other
models, not indicative of depletion, may also fit the data.8 In contrast to the
results of [Res04], this work has shown a clean data set with which reliablity
growth models fit. Although the data utilized in this work was significantly more
clean, it was also significantly smaller: more data on both this system and others
is clearly desirable (see Section 6, Future Work). Vulnerability depletion through
vulnerability hunting should not be ruled out, but nor can it be conclusively be
asserted.

8The author thanks Eric Rescorla for pointing out this fact.

12

(a) Fitted Yamada’s S-Shaped Model (b) Fitted Brooke’s & Motley’s Discrete
SR Binomial Model

Figure 1: Models with Acceptable Fit to the Data Set

5 Examples of Vulnerability Rediscovery

If vulnerability rediscovery is likely, then vulnerability hunting by benign iden-
tifiers provides another benefit: vulnerabilities are found and fixed before they
would otherwise have been discovered and exploited by attackers. One means of
ascertaining the likelihood of vulnerability rediscovery is to search for examples
of this phenomenon occurring. A number of examples were found, although
the data is not precise enough for a rigorous mathematical analysis. Nonethe-
less, enough verified examples were found to conclusively disprove Rescorla’s
assumption that rediscovery is unlikely and can be neglected [Res04, 14].

5.1 Evidence of Independent Rediscovery

Examples of independent rediscovery of vulnerabilities are by their nature hard
to find. If the first benign identifier of a vulnerability follows a full-disclosure
policy, then it is difficult for a future benign identifier to claim that she identified
that vulnerability independently. The best source of such information thus
seems to be software vendors who receive more than one report of a vulnerability
while they are working on the patch. Unfortunately, not all vendors record the
additional reports. However, Microsoft security patch bulletins do at times
credit multiple individuals/organizations for reporting vulnerabilities.

As a source of information, these bulletins are very limited. First, the mul-
tiple individuals/organizations credited may have collaborated on finding the
vulnerability, rather than identifying it independently. Furthermore, the cre-

13

Number of Reporters
Year Not Credited 1 2 Independent 3 Independent Total
2002 62 71 5 0 138
2003 22 43 4 0 69
2004 22 54 3 2 81
Total 106 168 12 2 288

Table 5: Vulnerability Credits in MS Security Bulletins

ation of a patch seems usually to require less than three months and only rarely
takes more than seven months: the window of time for recording independent
rediscoveries is thus fairly short. In addition, benign identifiers credited with
independently identifying the same vulnerability may have actually found two
reasonably different security flaws that were then linked into one vulnerabil-
ity. Finally, Microsoft may or may not have a policy to acknowledge multiple
independent reporters. Although they have at times done so, they may have
omitted the repeated discoveries at other times. Nonetheless, the security bul-
letins provide a means for ascertaining at least some portion of the times when
a vulnerability has been independently reported to Microsoft.

Fortunately, security professionals often release their own vulnerability re-
port to the public on the date that the vendor releases its patch, and that report
may be used to ascertain when individuals worked together. For this data, vul-
nerabilities are credited as having been identified independently if at least one
of the two reporters (or, correspondingly, two of the three reporters) asserted
via the public vulnerability report or email correspondence with the author that
he independently identified the vulnerability.

Table 5 enumerates the individual vulnerabilities announced by Microsoft
via security bulletins. In the second column is the number of vulnerabilities
for which Microsoft provided no reporting credit: presumably these vulnerabil-
ities were either discovered internally or publicly announced before they were
reported to Microsoft (i.e. instantaneous disclosure). The third column reports
the number of vulnerabilities for which Microsoft identified exactly one reporter.
The fourth column lists the number of those vulnerabilities that had exactly two
independent reporters; the fifth column lists the number of those vulnerabilities
that had exactly three independent reporters. The final column is total number
of vulnerabilities noted by Microsoft in security bulletins.

Table 6 summarizes the total number of confirmed multiple reports in the
second column (i.e. those vulnerabilities for which two or three individuals in-
dependently reported the vulnerability to Microsoft). The third column is the
total number of vulnerabilities for which anybody is credited: both single re-
ports and multiple reports. The final column is the percentage of vulnerabilities
for whom multiple individuals are credited with the report. The final column
thus represents the percentage of vulnerabilities that were independently redis-
covered in the reasonably short time frame that Microsoft was working to create
a patch.

14

Year Multiple Reports* All Credited Reports Multiple/Total
2002 5 76 6.58%
2003 4 47 8.51%
2004 5 59 8.47%
Total 14 182 7.69%

*Reports credited to either two or three independent reporters.

Table 6: Vulnerability Credits in MS Security Bulletins

Report
CVE 1st* 2nd 3rd Date Public Age**
2002-0018 2000-10-31 ? 2002-01-30 456 days
2002-0074 2001-12-03 ? 2002-04-10 128 days
2002-0641 2002-05-28 ? 2002-07-10 43 days
2002-0693 2002-07-31 ? 2002-10-02 63 days
2002-1145 2002-08-23 ? 2002-10-16 54 days
2003-0226 c.2003-01-15 ? 2003-05-28 133 days
2003-0228 2003-03-14 2003-03-23 2003-05-07 54 days
2003-0528 c.2003-07-23 2003-07-29 2003-09-10 49 days
2003-0662 c.2003-04-15 ? 2003-10-15 183 days
2003-0908 c.2003-10-15 ? ? 2004-04-13 181 days
2004-0123 c.2004-01-13 ? 2004-04-13 91 days
2004-0212 2004-05-06 2004-06-20 2004-07-07 2004-07-13 68 days
2004-0214 c.2004-04-15 2004-08-03 2004-10-12 758 days
2004-0216 c.2003-04-15 2004-07-12 2004-10-12 546 days

*Dates preceded by a ‘c.’ are approximate. When the reporter remembered only the week or month, the middle of
that period was chosen. **The length of time that elapsed between when the vulnerability was first reported to
Microsoft and when the patch was released.

Table 7: Timing of Rediscovery

Table 7 lists each vulnerability that was rediscovered and notes the date of
each independent report (as remembered or recorded by the reporter), the date
that the vulnerability became public (when the patch was released), and the
vulnerability’s age (the total length of time between when the vulnerability was
first reported and when it was made public through a patch release). If not
every date on which the vulnerability was reported to Microsoft is known, then
the earliest known date is used: this practice may underreport the age.

These instances of multiple reporting make clear that vulnerability redis-
covery is not unknown. The most interesting information would be to look for
a relationship between the length of time the vendor works on a patch and
the likelihood of rediscovery. Unfortunately, complete information on the dates
when vulnerabilities were reported is unavailable: not every reporter could be
reached or could remember the date on which she reported the vulnerability.

Nonetheless, the information that these bulletins provide is a clear indicator
that vulnerability rediscovery occurs ‘in the wild’ and that it is not particularly
uncommon. If anything, this analysis undercounts them due to the nature of

15

vulnerability disclosure and announcements.

5.2 Possible Reasons for Rediscovery

Intuitively, vulnerabilities are likely to be rediscovered for a number of reasons.
First, the use of similar tools to find vulnerabilities is an obvious source of po-
tential rediscoveries. Second, if the key functionality or security critical portion
of a product is small, then interested individuals will have only a limited area to
search for vulnerabilities. Third, when a new class of vulnerability (e.g. integer
overflows) is discovered, individuals will search for instances of that vulnerabil-
ity in the products in which they are interested. For a popular product, the
more obvious examples of this vulnerability may thus be discovered by multiple
independent individuals.

Fourth, a new class of ‘target’ may be found: for example, a rash of vulner-
abilities were recently found in the file processing portions of graphics libraries.
Between August and October of 2004, twenty-two different vulnerabilities were
published in various graphics libraries used by the various POSIX (e.g. Linux)
and Microsoft operating systems.9

Finally, when a product is newly released, the most obvious vulnerabilities
(e.g. those that arise from a reasonably frequent pattern of usage) seem intu-
itively likely to be discovered by multiple users. Brady et al add that when
products are initially released a surge of flaws will be identified as the product
is used in a more wide range of environments than it was possible for the vendor
to test [BAB99]. However, Arora et al reason differently; they claim that the
socially optimal patching/disclosure times are more lengthy when a product is
more new, because attackers have not yet learned the product [ATX04].

Each of these potential causes for rediscovery indicates that the process of
vulnerability discovery is heavily biased and that reliability growth modeling
tools are thus of limited utility. The truth seems likely to be some degree of
deterministic influences on a fundamentally stochastic process.

6 Future Work

In order to fully test the validity of the security growth models described in
Section 4, the data set needs to be extended to cover every vulnerability discov-
ered in that operating system. Gathering such data would enable a comparison
between versions of OpenBSD as well: for example, is code added after 2.2 more
or less secure?

Furthermore, comparison data gleaned from other operating systems would
be of even greater benefit. Such data could be used as a metric to compare the

9CAN-2004-0200, CAN-2004-0597, CAN-2004-0802, CAN-2004-0803, CAN-2004-0817,
CAN-2004-0827, CAN-2004-0929 (all buffer overflows), CAN-2004-0599, CAN-2004-0886,
CAN-2004-0888, CAN-2004-0889 (all integer overflows), CAN-2004-0691 (heap overflow),
CAN-2004-0804 (division by zero), CAN-2004-0598, CAN-2004-0692, CAN-2004-0693 (NULL
pointer dereferences), CAN-2004-0687, CAN-2004-0688, CAN-2004-0753, CAN-2004-0782,
CAN-2004-0783, CAN-2004-0788 (misc.)

16

security of different programs. Unfortunately, the precision of data collection
achieved with OpenBSD depends upon the availability of the source code CVS
repository. While an equally exacting data collection process is possible with
Linux distributions, it will not be possible with closed source systems. Nonethe-
less, I intend to examine both closed source systems and additional open source
systems.

In addition, the incongruity between the assertion by OpenBSD that secu-
rity patches can often be created and released within hours [Ope05] contrasts
rather strongly with the amount of time sometimes taken by Microsoft for its
security patches (one security patch in Table 7 was released 758 days after the
vendor was initially informed). A significant part of this time differential may be
the testing and interoperability requirements that are commercially necessary
for Microsoft but that are less pressing for OpenBSD. This difference nonethe-
less deserves study and could provide useful information for the literature on
disclosure policies.

Finally, one way of obtaining information on the number of testers (i.e.
the number of individuals looking for vulnerabilities) would be to examine the
number of unique posters to the most prominent full disclosure fora: the Bugtraq
and Full Disclosure mailing lists. Although these data would not definitively
indicate the programs those posters were examining, they could be used to
define a relative metric. For example, if twice as many posters were active in
2000 than in 1996, vulnerability interval data could be adjusted accordingly.
(Assuming that the ratio of total posters interested in the program remained
constant throughout that period.)

7 Conclusion

This work provides evidence for the independent rediscovery of vulnerabilities.
It re-examines the software reliability growth models used in prior work and
also considers new evidence from deployed software.

The stochastic models used in [Res04] were considered and it is shown that
the ICAT data set does not adequately conform to the requirements of these
models. The ICAT data set has chronological inconsistencies, uneven cover-
age, and does not normalize time for effort. A data collection process was
created to overcome the former two shortcomings; research is underway on how
to compensate for the latter. OpenBSD vulnerabilities were identified through
ICAT, Bugtraq, and OpenBSD patch releases. The source code of each vulner-
ability was then examined, and the CVS repository used to identify both the
birth date and the death date of the vulnerability. Thirty months of data (five
version releases) were collected. Two models, Yamada’s S-Shaped Reliability
Growth Model and Brooke’s & Motley’s Discrete SR Binomial Model provided
an adequate fit to the data. They provide estimates that 4.08 and 10.63 faults,
respectively, remain in the OpenBSD 2.2 source code.

These models support the hypothesis that the pool of vulnerabilities in
OpenBSD 2.2 is being depleted. However, the existence of reliability growth

17

models with an acceptable goodness-of-fit to the data does not conclusively in-
dicate that vulnerability depletion is occuring. Other models, not indicating
depletion, may also fit the data. Furthermore, although the data set is clean, it
is also small. Nonetheless, these models do indicate the need for further investi-
gation. If vulnerabilities are being depleted, contrary to the results of previous
work, then vulnerability hunting may be socially useful: it can help vendors to
significantly decrease the number of vulnerabilities in their products.

In addition, more coarse data sources were used to demonstrate in a less
mathematically rigorous manner that some non-trivial level of rediscovery is
occurring in Microsoft products. Microsoft security bulletins were searched
for instances when more than one individual was credited with the discovery
of the vulnerability. The independence of the discoveries was then confirmed
through private communication with those individuals or their personal security
bulletins.

Although the Microsoft security bulletins provide only small quantities of
noisy data, they do make a strong case that vulnerabilities have a non-trivial
likelihood of being rediscovered. For the three years between 2002–2004, at
least 6.58%, 8.51%, and 8.47% of credited vulnerabilities were found to have
been independently rediscovered during the relatively short time frame in which
Microsoft worked on a patch. If anything, these numbers are conservative and
under represent the likelihood of rediscovery. Rescorla’s model is thus not an
accurate representation of vulnerability finding; on the contrary, full disclosure
may indeed be socially optimal. Because the probability of rediscovery is non-
zero, identifying vulnerabilities may result in their having been removed before
they can be found by attackers, or it may result in vulnerabilities currently ex-
ploited by attackers being identified and remediated more quickly. This finding
supports Arora et al ’s model and thus their claim that the optimal behavior for
a social planner is to disclose vulnerabilities to the public more rapidly than the
vendor would prefer.

Acknowledgements: My thanks go to Eric Rescorla for presenting a new
perspective on an interesting problem, for his advice, and for his feedback. I
also thank the anonymous reviewers and Ross Anderson for their insight and
suggestions. In addition, I gratefully acknowledge the assistance of the individ-
uals who provided me with information about their vulnerability finding efforts:
Peter Winter-Smith, Brett Moore, Dustin Schneider, Jouko Pynnon, Jelmer,
SPILabs, Renaud Deraison, Cesar Cerrudo, Greg Jones, Ophir Polotsky, Joseph
Steinbberg, Noam Rathaus, Michel Trepanier, zenomorph, qFox, Mark Litch-
field, David Litchfield, Rodrigo Gutierrez, Roozbeh Afrasiabi, Yorick Koster,
and Mike Price.

18

A Brooke’s & Motley’s Discrete SR Binomial
Model

This model includes the likelihood that faults may be corrected without in-
troducing new ones (α, below). The initial estimate of this probability is one
of the parameters determined through maximum likelihood estimation. The
probability that there will be ni errors in the ith test interval is [AIA93]:

P (X = ni) =

(
N̄i
ni

)
qnii (1− qi)N̄i−ni (1)

Where N̄i is the number of faults remaining and subject to discovery at the
beginning of test interval i, with the probability α of correcting faults without
introducing new faults:

N̄i =
∑

jεJi
(wjN − αNi−1,j) (2)

And qi is the probability of detecting a fault in the ith interval, using Ki

test effort:

qi = [1− (1− q)Ki] (3)

B Yamada’s S-Shaped Reliability Growth Model

Yamada’s S-Shaped Reliability Growth Model is a finite failure model related
to the Goel-Okumoto model [YOO83] [Lyu96]. It considers the fault discovery
process to be S-shaped. Initially, few faults are found while the testers learn
about the product. This phase is followed by a steep period of exponential
growth in discovery as the most easily found faults are identified. Eventually,
the reliability of the product increases and the number of faults diminishes.

The probability that n cumulative number of faults will be found by time
N t is [AIA93]:

P (N t = n) =
µ(t)nexp(−µ(t))

n!
where n = 0, 1, ... (4)

The mean value function of this model is:

µ(t) = α[1− (1 + βt)e−βt] for α, β > 0 (5)

The instantaneous rate of change for the expected number of faults with
respect to time is known as the failure intensity function. The failure intensity
function is the derivative of the mean value function:

19

λ(t) = µ′(t) = αβ2te−βt (6)

References

[AGCL86] A A Abdel-Ghaly, P Y Chan, and B Littlewood. Evaluation of
competing software reliability predictions. IEEE Trans. Softw. Eng.,
12(9):950–967, 1986.

[AIA93] AIAA/ANSI. Recommended Practice: Software Reliability. ANSI,
1993. R-013-1992.

[AKN+04] Ahish Arora, Ramayya Krishnan, Anand Nadkumar, Rahul Telang,
and Yubao Yang. Impact of vulnerability disclosure and patch avail-
ability - an emprical analysis. In Workshop on Economics and In-
formation Security, May 2004. Minneapolis, MN, USA.

[ATX04] Ahish Arora, Rahul Telang, and Hao Xu. Optimal policy for software
vulnerability disclosure. In Workshop on Economics and Informa-
tion Security, May 2004. Minneapolis, MN, USA.

[BAB99] Robert M. Brady, Ross J. Anderson, and Robin C. Ball. Murphy’s
law, the fitness of evolving species, and the limits of software reli-
ability. Technical Report 471, University of Cambridge Computer
Laboratory, September 1999.

[CCR05] Hasan Cavusoglu, Huseyin Cavusoglu, and Srinivasan Raghunathan.
How to disclose software vulnerabilities responsibly?, 2005. Under
review.

[CER00] CERT/CC. CERT/CC vulnerability disclosure policy, October 2000.
http://www.cert.org/kb/vul_disclosure.html.

[CW02] Steve Christey and Chris Wysopal. Responsible vulnerability
disclosure process, February 2002. http://www.whitehats.

ca/main/about_us/policies/draft-christey-wysopal-v%

uln-disclosure-00.txt.

[GO79] Amrit L. Goel and K. Okumoto. Time-dependent error-detection
rate model for software and other performance measures. IEEE
Transactions on Software Reliability, R-28(3):206–211, August 1979.

[Goe85] Amrit L. Goel. Software reliability models: Assumptions, limita-
tions, and applicability. IEEE Transactions on Software Engineer-
ing, SE-11(12):1411–1423, December 1985.

[KT04] Karthik Kannan and Rahul Telang. Economic analysis of market
for software vulnerabilities. In Workshop on Economics and Infor-
mation Security, May 2004. Minneapolis, MN, USA.

20

[Lyu96] Michael R. Lyu, editor. Handbook of Software Reliability Engineer-
ing. McGraw-Hill, 1996.

[MIT05] MITRE. Common vulnerabilities and exposures, February 2005.
http://www.cve.mitre.org/.

[NIS03] NIST. ICAT metabase: A CVE based vulnerability database,
September 2003. http://icat.nist.gov.

[Ope98] OpenBSD. Cvs - openbsd security page, revision 1.12, February
1998. http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/

www/security.html?rev=%1.12&content-type=text/html.

[Ope05] OpenBSD. OpenBSD security, January 2005. http://www.

openbsd.org/security.html.

[PTL93] Joe Palma, Jeff Tian, and Peng Lu. Collecting data for software re-
liability analysis and modeling. In CASCON ’93: Proceedings of the
1993 conference of the Centre for Advanced Studies on Collabora-
tive research: software engineering, volume 1, pages 483–494, 1993.
Toronto, Canada.

[Pup01] Rain Forest Puppy. Full disclosure policy (RFPolicy) v2.0, 2001.
http://www.wiretrip.net/rfp/policy.html.

[Res03] Eric Rescorla. Security holes... who cares? In Proceedings of the
13th USENIX Security Symposium, August 2003.

[Res04] Eric Rescorla. Is finding security holes a good idea? In Workshop
on Economics and Information Security, May 2004. Minneapolis,
Minnesota.

[Sec05] SecurityFocus. Securityfocus HOME vulns archive: Vendor, 2005.
http://www.securityfocus.com/bid/.

[Sto03] Walt Stoneburner. SMERFS (statistical modeling and estimation
of reliability functions for systems), January 2003. http://www.

slingcode.com/smerfs/.

[Wal01] Dolores R. Wallace. Practical software reliability modeling. In Pro-
ceedings of the 26th Annual NASA Goddard Software Engineering
Workshop (SEW’01). IEEE Computer Society, 2001.

[YOO83] Shigeru Yamada, Mitsuru Ohba, and Shunji Osaki. S-shaped reliabil-
ity growth modeling for software error detection. IEEE Transactions
on Reliability, 32(5):475–484, 1983.

21

