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1. THE HADAMARD CONJECTURE. HISTORICAL REMARKS

Historically, sign matrices with orthogonal rows (or columns) have been considered first by
Sylvester in 1867 [Syl67], but the Hadamard conjecture has been introduced by Hadamard in 1893
[Had93]:

Conjecture 1.1. For any dimension N which is a multiple of 4, there exists a N x N Hadamard
matrix, i.e. a sign matric H € My (£1) with orthogonal rows (or columns).

In these notes, we would like to take the following perspective on the Hadamard problem. A
Hadamard matrix belongs to two different sets: one hands, it is a (multiple of an) orthogonal
matrix, hence, it has an analytical flavor. On the other hand, its entries are +1, hence it also has a
combinatorial flavor. We call this setting the Hadamard landscape, see Figure 1. On the left hand
side, we are in the domain of analysis, while on the right half of the picture, we find ourselves in
combinatorics-land. We shall see that one can study Hadamard matrices looking from one half or
the other half of the landscape. We shall discuss two such approaches: the historical one, based on
determinants (Section 2), and a new approach, analytical in nature, based on the ¢; norm (Section
4).

The smallest order for which no Hadamard matrix is known is N = 668. The most recent
progress in this direction has been made by Kharaghani and Tayfeh-Rezaie in [KTR05], where they
show that a Hadamard matrix of order 428 exists. In Figure 2, we have represented a Sylvester
Hadamard matrix of order 2° = 512 and the Hadamard matrix of order N = 428 found in [KTRO05].

Several relaxation of the Hadamard conjecture have been considered. For example, if one is
willing to consider rectangular matrices, the following parameter was introduced: for a given integer
n, let r(n) be the largest number r such that there exists a r x n £1-valued matrix H such that
HH'" = nl,. The Hadamard conjecture is equivalent to the statement that r(4k) = 4k, for any
integer k. de Launey and Gordon proved the following result in [dLGO1].

Theorem 1.2. Fiz ¢ > 0. Then, assuming the FExtended Riemann Hypothesis is true, for any
n = 4k large enough,

r(n) > n/2 —n'7/22+e,
In other words, for each allowed dimension, there exists “half” a Hadamard matriz.
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FIGURE 1. The Hadamard Landscape.

FIGURE 2. Hadamard matrices of order 512 (left) and 428 (right).

2. THE DETERMINANT OF SIGN MATRICES

Hadamard’s initial approach in [Had93] came from the right hand side of the “Hadamard land-
scape”: he considered the determinant function on £1 matrices.

Theorem 2.1. Let X be a N x N complexr matrix, with entries in the unit disk. Then,
|det X| < NN/2,
A sign matriz X achieves equality iff X is Hadamard.

Proof. We shall use Fischer’s inequality [Bha97, Problem I1.5.6], which states that for any positive
semidefinite matrix A and any pinching C, det A < detC(A). We have

N N
| det X|? = det(XX*) < [[(XX*)ii = [ [ llll* < NV,
i=1 i=1
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where we have denoted by x; the i-th row of X. O

Note that the determinant of sign matrices has some other interesting properties: it is easy to
see that, for any sign matrix S of size N, 2V~! divides det S (which is, of course, an integer);
the values of p for which there exists a sign matrix S with det S = 2¥~!p have been recorded
at http://www.indiana.edu/~maxdet/spectrum.html. Many inequalities exist for the maximum
determinant of N x N sign matrices; see [OS07] for some recent progress, and sequence A003433
in [Slo16].

For random Bernoulli sign matrices (the entries S;; of S are ii.d. random variables, taking
the values £1 with probability half), it has been shown [TV06] that the absolute value of the
determinant of S is, with high probability, almost maximal (with respect to the exponent of N):

|det S| > N(1/2—e()N,
The probability that S is singular has also been thoroughly investigated. Important progress has
been obtained recently in [BVW10], where it is shown that
P(S is singular) < (1/v2 + o(1))V,

improving on a constant of 3/4 obtained in [TVO07].

The smallest and the largest value the permanent can take over sign matrices has also been
considered, see [Wan05]. In the random case, Tao and Vu showed [TV09] that the permanent is of
the same order as the determinant: almost surely as N — oo,

‘ perS\ > N(1/270(1))N‘

In both results, for the determinant and the permanent, one can replace the inequality by an
equality, since the upper bound follows from Chebyshev’s inequality and the following fact

IE|detS|2 :H~3|perS|2 — NI = NydFe(M)N

3. THE ¢/1 NORM OF ORTHOGONAL MATRICES

The concept of almost Hadamard matrices which will be discussed later was introduced in
[BNZ12], relying on an idea introduced in [BCS10]. The starting point is the following trivial
observation. In the Hadamard landscape picture (1), Hadamard matrices lie at the intersection of
two classes of matrices: (multiples of ) orthogonal matrices and sign matrices. Note that both these
sets of matrices have fixed Euclidean norm:

YU €O(N), |Ulz=VN
VS e My(£l),  [S]2 = N.

We are interested in the intersection of these two classes of matrices, more precisely on deciding
whether this intersection is empty or not. It is thus natural to consider the angle between these
two sets.

Lemma 3.1. Let, for a given dimension N,

N N

hy = U.S) = E U;iS;i = Usil.

N UIEHO&()J(V) . 5) UrenOa()Z(V) L THTY Urenoa()](v) Z_ U]
SeMy (£1) SeMp (1) W1 i,j=1

Consider the function f: O(N) — Ry defined by

N
FUY =" Ul (1)

,j=1


http://www.indiana.edu/~maxdet/spectrum.html
http://oeis.org/A003433
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Then, for any orthogonal matriz U, f(U) < NvV'N, with equality iff VNU is a Hadamard matriz.
Fquivalently,

hy < NVN,
with equality iff there exists a N x N Hadamard matrix.

Proof. Apply Cauchy-Schwarz:

N N N
ST <3| Yo 102 | Y 12 =NVN.

i,j=1 i,j=1 i,j=1

The equality case corresponds to |Us;| = const, which is the case iff |U;;| = 1/V/N, i.e. iff VNU is
Hadamard. O

4. ALMOST HADAMARD MATRICES

We have seen in the previous section that the global maxima of the “component-wise” 1-norm
on the orthogonal group are precisely the Hadamard matrices. Taking the analyst’s viewpoint, we
consider the local maxima instead.

Definition 4.1. An almost Hadamard matriz (AHM) is a square matric H € My(R) such that
U= H/VN € O(N) is a local mazimum of the 1-norm on O(N).

One important feature of the above definition is that AHM exist for any dimension, not only
multiples of 4. The function f from (1) is differentiable at points U having only non-zero elements.
By a classical trick, we show next that we can restrict the search for local maxima only to such
points (see [BCS10, Lemma 3.1] for a proof).

Lemma 4.2. If a matriz U is a local mazimum for the 1-norm on O(N), then U;j # 0 for all i, j.

Let O(N)* = O(N)NMp(R*) be the open set where f is differentiable (actually, piecewise linear).
We have the following important result, the first half of which has been proven in [BCS10, BNZ12].

Proposition 4.3. Given a matriz U € O(N)*, write S = sign(U) € My (+1) for the sign matriz
of U, that is S;; = sign(Uy;;). Then, U is

e a critical point for f iff UTS is a symmetric matriz
e a local maximizer for f iff the sum of the two smallest eigenvalues of U' S is non-negative.

Proof. Let us evaluate the function f on a path in the orthogonal group passing through U. Recall
that the tangent space (at the identity) to the orthogonal group is the vector space of anti-symmetric
matrices A € My(R), AT = —A. For such an A, consider the function F defined on a neighborhood
of 0 by F(t) = f(Ue!). Since the perturbation ¢ is small, we have, for all i,j, |(Ue!4);;| =
S;;(Uet4);;. The first two derivatives of F' read (again, for ¢ small enough):

N
Z Sij(UAetA)ij
i,j=1
N
F'(t) =) Si;(UA%M);
- i i7"

ij=1

F'(t)
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Evaluating the derivatives at t = 0, we get

N
F'(0) =) Si;(UA);
Q=1
= (S, UA)us

=(U'"S, A ys

N
F"(0) = ) S;(UA%),;
ij=1
= (S, UA2>HS
= (U'S9, A% ps.

We now have F'(0) = 0iff U T S is orthogonal to all anti-symmetric matrices, i.e. U TS is symmetric.
The second claim follows from Lemma 4.4. g

Lemma 4.4. Let X € My(R) be a symmetric operator. The following two conditions are equiva-
lent:

(1) The sum of the two smallest eigenvalues of X is non-negative
(2) For all anti-symmetric matrices A, (X, A%) <0.

Proof. Let a = vec A be the vectorization of A, that is
N N
a= Z Aije; ®ej, for A= Z Aijeie;f.
i,j=1 i,j=1

Since A is an anti-symmetric matrix, the same is true for a: a € A2(RY). It is clear (see Figure 3)
that

<Xa A2> = _<AX> A> = —<CL, (IN ® X)a>7
so the second point in the statement is equivalent to P_(Iy ® X)P- being a PSD matrix, with

X o A DA aTo—E .

FIiGURE 3. From anti-symmetric matrices to anti-symmetric vectors.

P_ being the orthogonal projector on the anti-symmetric subspace in RY @ RY. However, for any
two orthogonal eigenvectors x,y of X having respective eigenvalues A;, Ay, we have

Ao + Ay

P(IN®X)P_(z®@y—-y®@a)=P-(AMz®y— Ay ®z) = 5 (z®y-—y®ua),
showing that the non-trivial eigenvalues of P_(In ® X)P_ are (A; + Ay)/2 for every ordered pair
of distinct eigenvalues {\;, A\, } of X. O

The condition on the two smallest eigenvalues of the matrix U'S in the result above seems
non-intuitive. We show next a stronger condition is actually satisfied for critical points.
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Conjecture 4.5. Let S € My(%1) be an (invertible) sign matriz, and consider its SVD S =
VAWT for some diagonal matriz with positive entries A and V,W € O(N). For any diagonal

matriz ¥ € M](ffmg(:lzl), define Us, := VIWT. If S = sign(U), then ¥ = Iy and thus U = Pol(S).

If the previous conjecture holds, then for any (invertible) sign matrix S, there is at most one
AHM having sign S: U = Pol(S). So one can enumerate AHM by computing, for any sign matrix
S its polar part, and checking whether

S = sign(Pol(.5)). (2)
This suggests studying the properties of the (partially defined) dynamical system on sign matrices:
S+ 8" = sign(Pol(S)).

Let us introduce now some families of AHM, taken from [BNZ12]. Tt is clear that Hadamard
matrices are AHM. For any positive integer N, the matrix

9-N 2 ... 2 9

T A
Ky=—| ..

N1 o

9 9 ... ... 2-N

is unitary, and one checks easily it is almost Hadamard. These matrices are the most basic examples
of AHM, and they exist for all dimensions.
For odd N, the following matrix is also AH:

-1 —1 27 1 (N-1)m
1 —cos” T  cosT g Cos™ ~ —x—
N-1 _ _1 (N=2
1 | cos 1< N)Tr 1 —COSI% cos~1 ¢ N)”
Ly =—
N
-1 @ —1 27 _ —1 3w
—cosT & cos™ " Cos 1

Another family, defined only for N such that N = ¢% + ¢ + 1, where ¢ = p”* is a prime power,
comes from the adjacency matrix of the projective plane over ;. Here is for instance the matrix
associated to the Fano plane (¢ = 2, see Figure 4), where z = 2 — 4v/2, y = 2 4+ 3v/2:

I = —

LR 8RR
e R

e g seeew

e 8w 8
e R R KR
LER e
Eyveew 8w

Y 4

Using the characterization of AHM in terms of sign matrices, one can exhaustively enumerate
all AHM by simply checking condition (2) for all sign matrices. Picking the best local maxima for
the function f, we could, with the help of a computer, show results in Table 4 for the quantities
hy and the matrices which achieve this maxima. Some of these values (as well as the values for
larger N) were conjectured in [BNZ12].



SOME ANALYTICAL ASPECTS OF HADAMARD MATRICES 7

F1GURE 4. The Fano plane.

’ N ‘ hn ‘ argmax f ‘

2 2v/2 H,
3 5 Ks
4 8 Hy
5 11 K
6| 10vV2 | Hy® Ks
711+12V2 I;

TABLE 1. Values for the maximum ¢; norm on O(N). Blue values indicate the
presence of a Hadamard matrix.

5. SUBMATRICES OF (ALMOST) HADAMARD MATRICES

Many of the known explicit constructions of new classes of Hadamard matrices use lower or-
der Hadamard matrices as building blocks. The Sylvester matrix is an example of this kind of
construction: if Hy is a N x N Hadamard matrix, then

Hy Hy | |1 1
{HN —HN] = [1 —1} © Hy
is also Hadamard. This motivates the study of submatrices of (almost) Hadamard matrices, see

[Vij76, FRWS&8] Regarding almost Hadamard matrices / sign patterns, the following result has been
proven in [BNS14].

A B

Theorem 5.1. Given a Hadamard matric H = [C’ D

] € My(%1) with A € M,(£1), D is an
almost Hadamard sign pattern (AHP) if:

(1) A is invertible, and r =1,2,3 or N > %(74_ \/7‘27—1—8)2
(2) A is Hadamard, and N > r(r — 1)2.
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