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Abstract The inverse-distance weighting (IDW) method is
considered as one of the most popular deterministic methods
and is widely applied to a variety of areas because of its low
computational cost and easy implementation. In this paper, we
show that the classical IDW is essentially a zeroth-order local
kernel regression method with an inverse distance weight
function. Thus, it suffers from various shortcomings, such as
the boundary bias. Considering the advantages of the local
polynomial modeling technique in statistics, the classical IDW
was generalized into a higher-order regression by the Taylor
expansion and then computed by means of a weighted least-
squares method. Surface modeling of rainfall fields in China
indicated that the generalized IDWswith the first- and second-
orders are more accurate than the classical IDW in terms of
root mean square error (RMSE). The example of digital ele-
vation model construction with a group of sample points
showed that the two generalized IDWs have better RMSE
and mean error than the classical IDW. Furthermore, the
second-order IDW has a better performance than the ordinary
kriging in terms of RMSE. A theoretical analysis demonstrat-
ed that the gradient-plus-inverse distance squared method
presented by Nalder and Wein (Agric For Meteorol 92(4):

211–225, 1998) is a first-order form of the generalized IDW
expanded on spatial coordinates and elevation. In a word, the
generalized IDW can incorporate multiple covariates, which
can better explain the interpolation procedure and might im-
prove its accuracy.
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Introduction

Spatial interpolation is a procedure of estimating the value of
an attribute at a location by using values of the same attribute
sampled at neighbor points (Chen and Yue 2010; Falivene
et al. 2010; Lloyd 2005). The guiding principle for all spatial
interpolation methods is the Tobler’s first law of geography,
which states that everything is related to everything else, but
nearby things are more related than distant things.
Interpolation is mainly used to convert data from point obser-
vations to continuous fields so that the spatial patterns sam-
pled by these measurements can be compared with the spatial
patterns of other entities (Burrough and McDonnell 1998).
Spatially interpolated continuous fields are widely used as
inputs to a broad variety of modeling activities. These include
ecological, geomorphological, epidemiological, and hydro-
logical modeling procedures (Moore et al. 1991).

Broadly, interpolation methods can be defined as being
probabilistic and deterministic (Delbari 2014; Khashei-Siuki
and Sarbazi 2013; Shahbeik et al. 2014). Both the two types of
methods can be applied using all the available data (global
neighborhood) or using a subset of nearby data within a local
neighborhood centered on the location where interpolation is
performed. Probabilistic geostatistical methods rely on spatial
autocorrelation, and account for distance and direction when
determining the importance of points used for interpolation
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(Oliver andWebster 1990) whereas, in deterministic methods,
the point influence is modeled based on assumptions, but
empirically derived. The inverse-distance weighting (IDW)
method is one of the most popular deterministic methods
because of its low computational cost and easy implementa-
tion. Moreover, in various practical applications, a large num-
ber of comparative studies between different interpolators
indicated that IDW may be as good as or better than kriging-
based techniques when there is a problem of making mean-
ingful estimates of the field spatial structure from sparse data
(Boman et al. 1995; Brus et al. 1996; Gallichand andMarcotte
1993; Kravchenko 2003; Weber and Englund 1992). At pres-
ent, there has been a large body of literature on applications of
IDW into a variety of fields, and it may be concluded that
IDW is being established as a necessary interpolation tool in
many GIS software packages.

Despite its popularity, the classical IDW always suffers
from several limitations such as the constant and isotropy
distance–decay relationships throughout the entire study area.
Thus, many improved versions of IDW have been developed.
Some researchers tried to improve the ability of the classical
IDW to deal with anisotropic observations. For example,
Tomczak (1998) developed an automated anisotropic IDW
to estimate rainfall magnitude at unmeasured locations. This
method can provide a realistic estimate of uncertainty for each
predicted location. Taking river anisotropy into account,
Merwade et al. (2006) proposed an elliptical IDW with an
elliptical distance measure to interpolate river channel ba-
thymetry. Results indicated that it provides a simple and
computationally faster alternative to complex kriging
methods. Some scholars attempted to capture the optimal
power parameter and number of neighbors of IDW. For
example, Chang et al. (2006) developed a variable-order
distance IDW based on the generic algorithm to minimize
the difference between estimated and measured precipitation
data. Lu and Wong (2008) presented an adaptive IDW, where
the power parameter is allowed to vary according to the spatial
pattern of the sampled points in the neighborhood. Babak and
Deutsch (2009) employed a statistical approach to find the
optimal power parameter and number of neighbor points. de
Mesnard (2013) argued that, from elementary laws of physics,
the optimal power of distance depends on the form of pollu-
tion encountered, such as radiant pollution (including radio-
activity and sound), air pollution (plumes, puffs, and motion-
less clouds by using the classical Gaussian model), and pol-
luted rivers. Some researchers pointed out that there are many
spatially distributed data sets that are improperly represented
by Euclidean distances and require specified distance mea-
sures which can accurately represent their complex geograph-
ic connectivity. For example, based on the fact that spatial
distribution of events observed on a network can be analyzed
more accurately with network-based methods, Shiode and
Shiode (2011) developed a network-based IDW to help more

accurately predict unknown spatial values along networks.
Greenberg et al. (2011) employed the cumulative, raster-
based least-cost-distance to define the distance between two
locations and found that this new distance-based-IDW yields
more realistic interpolation of water temperature. Zhou and
Sha (2013) introduced three similarity measures for IDW
interpolation, namely, spatial distance measure (SDM), non-
spatial attribute similarity measure (NSAM), and their hybrid
(SDM+NSASM). Simulation results showed that NSASM
and SDM+NSASM presented a better similarity of soil prop-
erties between soil points when compared with traditional
SDM. Compared with the classical IDW, almost all variants
have higher interpolation accuracy for attribute estimation.

Methodologically, IDW is essentially a kind of Nadaraya–
Watson kernel smoother with an inverse distance kernel. It is
well known that this smoother always leads to less accurate
function estimates than the local linear approach and cannot
even estimate a linear surface without bias (Cleveland et al.
1988). Moreover, it suffers from the so-called boundary effect
(Cai 2001; Hastie and Loader 1993). In other words, bias of
the function estimates is larger at the boundary of the explor-
atory variable space than in the interior. This is due to the
serious asymmetry of sample points around the interpolation
location in the kernel neighborhood, when the location is close
enough to the boundary.

Recently, the local polynomial modeling has been received
much attention in statistics because of its good features in-
cluding good asymptotic properties of bias and variance of the
estimates, good behavior in terms of minimax efficiency, and
the ability of automatically correcting the boundary effect
(Fan and Gijbels 1996).Wang et al. (2008) empirically proved
that the local polynomial modeling obviously reduced the
boundary bias of the coefficient estimation of geographically
weighted regression (GWR). Therefore, in this paper, the
classical IDW is generalized using the local polynomial
modeling to avoid the boundary effect and improve its inter-
polation accuracy.

Generalization of IDW

IDW is a type of deterministic method for spatial inter-
polation with a known scattered set of points. The
assigned values to unknown points are calculated with
a distance–decay weighted average of the values avail-
able at the known points. Suppose that a surface is a
graph of a function, z=m(x), the value of m(x) at
location x0 is estimated by IDW as follows,

m x0ð Þ ¼
X
i¼1

n

wi0 f xið Þ=
X
i¼1

n

wi0 ð1Þ
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where f(xi) represents the value of the ith neighbor sample
point around the location x0; n is the number of neighbor
sample points used for spatial interpolation; wi0 is the weight
of f(xi) expressed as,

wi0 ¼ d −p
i0 ð2Þ

where di0 is the distance between the point x0 and the ith
neighbor point; p is the power parameter determining the
significance of the sample points upon the interpolated value.
If the distance between the sampled location and the interpo-
lated location increases, the weight that the sampled point has
on the interpolation decreases (Burrough and McDonnell
1998). So a higher power results in less influence from distant
points. It can be shown that estimating m(x0) with Eq. 1 is
equivalent to solving the following optimization problem,

arg min
m x0ð Þ

X
i¼1

n

wi0 f xið Þ−m x0ð Þð Þ2

¼ arg min
m x0ð Þ

f −Im x0ð Þð ÞTW f −Im x0ð Þð Þ ð3Þ

where f ¼ f x1ð Þ½ f x2ð Þ ⋯ f xnð Þ�T ; I is a unit matrix,

n a m e l y , I ¼ 1 1 ⋯ 1½ �T ; W¼diag
w10 w20 ⋯ wn0ð Þ .
The equivalence between Eqs. 1 and 3 can be proved as

follows. Letting the first derivative of Eq. 3 with respect to
m(x0) equal to zero, we can obtain,

ITW Im x0ð Þ− fð Þ ¼ 0 ð4Þ

or,

ITWIm x0ð Þ ¼ ITW f ð5Þ

so,

m x0ð Þ ¼ ITW f

ITWI

¼
X
i¼1

n

wi0

f xið Þ=
X
i¼1

n

wi0 ð6Þ

Equation 3 implicitly indicates that the function values of
m(x) at xi(i=1,2,⋯,n) are locally taken to be the same con-
stant in order to estimate m(x0) using the weighted least-
squares procedure. This idea is similar to that of GWR
(Fotheringham et al. 2002). Specifically, the regression

coefficients at a focal point are assumed to be locally constant
and computed via least-squares method, coupled with a dis-
tance–decay kernel specifying the weights. In essence, the
classical IDW is only one kind of the Nadaraya–Watson
estimators with an inverse distance kernel, which suffer from
various shortcomings (Cai 2001).

In local polynomial modeling, the regression function is
locally expanded as an r-order polynomial of the explanatory
variables by the Taylor expansion, and the weighted least-
squares method is used to locally estimate the regression
function and its derivatives at each given point in the space
of the explanatory variables. Motivated by this methodology,
we can locally expand the function m(x) at x0 to accurately
estimate m(x0) for x in a neighborhood of x0.

Assuming that the function m(x) is locally sufficient
smooth, it can be expanded at a given point x0 by the Taylor
expansion as follows,

m xð Þ ¼ m x0ð Þ þ m
0
x0ð Þ x−x0ð Þ þ m

0 0
x0ð Þ

2!
x−x0ð Þ2 þ⋯

¼ β0 þ β1 x−x0ð Þ þ β2 x−x0ð Þ2 þ⋯
ð7Þ

where βi ¼ m ið Þ x0ð Þ
i! .

This polynomial is locally fitted by a weighted least-
squares problem as follows,

arg min
β

X
i¼1

n

w0i f xið Þ−β0−β1 xi−x0ð Þ−β2 xi−x0ð Þ2−⋯
� �2

¼ arg min
β

f −Bβð ÞTW f −Bβð Þ
ð8Þ

where β ¼ β0 β1 β2 ⋯½ �T ;B

¼
1 x1−x0ð Þ x1−x0ð Þ2 ⋯
1 x2−x0ð Þ x2−x0ð Þ2 ⋯
⋮ ⋮ ⋮ ⋮
1 xn−x0ð Þ x2−x0ð Þ2 ⋯

2
664

3
775:

The solution of the weighted least squares problem in Eq. 8
can be expressed as,

β ¼ BTWB
� �−1

BTW f ð9Þ

Hence, the estimated value at the location x0 is β0. Namely,
m(x0)=β0.

Comparing Eq. 3 with Eq. 8, we can find that Eq. 8 is a
generalization of Eq. 3. Equation 3 is only the zeroth-order
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case of Eq. 8 with B being a unit vector. Hence, the method of
IDW can be generalized to any arbitrary order by determining
the number of terms retained in the Taylor expansion. In this
paper, only the first- and the second-orders IDWs were tested.

Real-world examples

Surface modeling of rainfall fields

Spatially distributed rainfall field is one of necessary inputs to
many environmental and hydrological models. However, rain-
fall records are often incomplete because of missing rainfall
data in the measured period, or insufficient rainfall stations in
the study region. To resolve these problems, absent rainfall
data are always estimated through spatial interpolation
techniques.

In our test, 750 rain gauges released by the national mete-
orological network of China were obtained. The Albers pro-
jection was adopted to transform geographical coordinates
into rectangular Cartesian coordinates. The Albers projection
(named after Heinrich C. Albers) is a conic and equal areamap
projection that uses two standard parallels. Although scale and
shape are not preserved, distortion is minimal between the
standard parallels. The corresponding elevations of the 750
rain gauges were also obtained from the 1-km Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM)
(download from http://westdc.westgis.ac.cn). After the
preprocessing, each rain gauge has the attributes of the (x, y)
coordinates, elevation, and mean annual rainfall. Considering
the completeness of rainfall records with at least 30 year at
each station during the period from 1951 to 2010, only 722
stations (Fig. 1) were selected. These points were used for
surface modelling of annual mean rainfall field for the period
from 1951 to 2010 by the classical IDW and the generalized
IDWs, respectively. All the IDW methods obtained their
optimal power parameter and number of neighbor sample
points with the leave-one-out cross-validation (LOOCV). In
principle, LOOCV involves using a single observation from
the original sample as the validation data and the remaining
observations as the training data. This is repeated until each
observation in the sample is used once as the validation data.
In LOOCV, the power parameters varied from 1 to 5 and the
number of neighbor sample points from 3 to 70. This wide
value range aims to capture the optimal parameters of the three
versions of IDW and give them a reasonable and impartial
comparison.

Considering the impact of spatial coordinates and
elevation on rainfall, the regression function in the
generalized IDW was locally expanded as a linear func-
tion of spatial coordinates and elevation in this test. The
performances of the IDWs with their optimal parameters
were quantitatively compared in terms of root mean

square error (RMSE) and mean error (ME). RMSE
and ME are respectively expressed as,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

zi−bzi� �2

n

vuuut
ð7Þ

ME ¼

X
i¼1

n

zi−bzi� �

n
ð8Þ

where zi and ẑi are the ith observed and estimated values,
respectively; n is the number of validation points.

Results (Table 1) indicate that the classical IDW and the
second-order IDW have the same optimal parameters.
Namely, the power parameter is 1, and the number of
neighbor sample points is 50. Yet, the first-order IDW has
the power parameter of 2 and 9 neighbor points. In terms
of RMSE, the two generalized IDWs are clearly more
accurate than the classical one. This is expected as the
two generalized methods use the superior statistical mathe-
matical property of minimum error variance and consider
trend in the dataset. However, in terms of ME, the second-
order IDW has the poorest result, which is followed by the
classical IDW and the first-order IDW. This shows that the
second-order IDW is more biased than the other IDWs. In
a word, the second-order IDW might be a good alternative
to surface modeling of rainfall field in terms of variance,
and the first-order IDW in terms of bias.

Figure 2 shows the relationship between the observed and
estimated rainfalls. The results indicate that the classical IDW
has the poorest results, as there are many overestimated and
underestimated points, which are relatively far from the
straight line of y=x. Compared with the classical IDW, the
two generalized IDWs have obviously better results when the
rainfalls are lower than 1,000 mm. In terms of R2, the second-
order IDW is slightly more accurate than the first-order IDW
and the classical IDW.

Mean annual rainfall maps (Fig. 3) show that there are
many ‘bull eyes’ around the rainfall stations in the classical
IDW, which makes the map very coarse. Relatively, the first-
and the second-order IDWs produce much smoother maps
than the classical IDW, and the ‘bull eyes’ are less obvious.
The difference between the first- and the second-order IDWs
is slight, which is difficult to recognize from the maps.
However, the minimum and the maximum rainfalls of the
second-order IDW are slightly smaller than those of the other
IDWs, indicating that the second-order IDW has the obvious
effect of extrapolation. This result is expected as the higher-
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order IDWs allow for the coefficients of the weighted sum in
Eq. 9 to have negative values. Yet, the classical IDW always
have a positive weight (Eq. 3).

Surface modeling of DEMs

A DEM is the digital cartographic representation of the
elevation of the land at regularly spaced intervals in x
and y directions, with z-values referenced to a common

vertical datum (Burrough and McDonnell 1998; Fisher
and Tate 2006). DEMs have been widely adopted in
various applications, such as geomorphological and
hydrogeological modeling (El Bastawesy 2014; Wakode
et al. 2013), viewshed analysis (Fisher 1992), and the
correction of digital satellite Imagery (Van Niel et al.
2008). DEMs can be constructed based on an interpo-
lation method with a series of sample points.

In this research, the study site is located in Jinan city,
Shandong province, China. Its elevations vary from 109
to 358 m with the standard deviation of 50 m and mean
of 173.5 m. The 2,742 sample points with the vertical
and horizontal accuracies of 10 and 5 cm were random-
ly collected by a total station instrument. The 10-m
DEMs were respectively constructed by the classical
IDW, the generalized IDWs with the first- and the
second-order, and ordinary kriging (OK). OK was per-
formed in the GS+geostatistics software (Robertson
2008). GS+provides all geostatistics components, from
semivariance analysis through kriging and mapping, in a

Fig. 1 Spatial distribution of rainfall station network in China

Table 1 Accuracy comparison between the classical IDW and the
generalized IDWs for surface modeling of rainfall fields

Method Power
parameter

Number of
neighbors

RMSE
(mm)

ME
(mm)

Classical IDW 1 50 160 −8
First-order IDW 2 9 147 6

Second-order IDW 1 50 145 10
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single integrated software program widely praised for its
flexibility and friendly interface. In order to test the
interpolation accuracy, 503 check points (Fig. 4) were
sampled by RKT GPS with a vertical accuracy of 2 cm
and horizontal accuracy of 1 cm, respectively.

For OK, the semivariogram and its parameters were
shown in Fig. 5. We found that it is an exponential
model with the nugget variance (C0) of 1.0 m2, sill
(C0+C) of 2,661 m2, residual sum of squares of
76,814 m2, range (A0) of 547 m, and fitting R2 of
0.991, respectively. The three versions of IDW have
the same optimal power parameter of 1, whereas the
number of neighbor points is different (Table 2). The
first-order IDW has the minimum number of 6, and the
second-order IDW has the maximum number of 22.
Table 2 demonstrates that the classical IDW has the
poorest performance with the RMSE and ME of
3.76 m and −0.16 m, respectively. The other three

methods are much more accurate than the classical
IDW, regardless of RMSE and ME. It should be noted
that, although the semivariogram of OK was good fitted
by the exponential model, the second-order IDW per-
forms slightly better than OK in terms of RMSE. This
result may be inconsistent with the common sense that,
when the spatial structure of data points was accurately
captured, OK is always more accurate than IDW.

The computing time of the three versions of IDW
was also shown in Table 2. Considering that the
semivariogram of OK must be manually obtained and
its cost is difficult to count, its time was not listed. We
can see that the second-order IDW has the most time
cost, which is closely followed by the first-order IDW
and the classical IDW. This result can be expected as
for the second-order IDW, the order of BTWB in Eq. 9
is 6 while, for the first-order IDW, the order is 3.
Furthermore, the classical IDW need not solve the
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Fig. 2 Accuracy comparisons between the estimated and observed mean annual rainfalls of a the classical IDW, b the first-order IDW, and c the second-
order IDW
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system of linear equations like Eq. 9. However, the time
difference among the three IDWs is minor. This is due
to the fact that IDWs always cost much more time to
find the neighbor sample points than to perform
interpolations.

The shaded relief maps of the four interpolation
methods (Fig. 6) show that the classical IDW obtained
the coarsest surface, especially in the left and right
boundary areas. The map of the first-order IDW is
much smoother than that of the classical IDW.
However, there are still many isolated artificial pinks
with a random distribution. Compared with other maps,

those of the second-order IDW and kriging have a good
appearance. Nevertheless, kriging seems to have an ob-
vious smoothing effect, which causes a peak-cutting and
valley-filling problem.

Discussion and conclusions

Discussion

Specifically, taking the spatial coordinates (x, y) and
elevation (e) as the independent variables, Eq. 8 with

(a) (b)

(c)

Fig. 3 Mean annual rainfall maps of a the classical IDW, b the first-order IDW, and c the second-order IDW
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Fig. 4 Check points and shaded
relief map of the study site

Fig. 5 Semivariogram and
parameters of OK
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Table 2 Accuracy comparison
between IDWs and OK for
surface modeling of DEMs

Method Power
parameter

Number of
neighbors

RMSE (m) ME (m) Computing
time (s)

Classical IDW 1 7 3.76 −0.16 201.3

First-order IDW 1 6 2.94 −0.03 202.6

Second-order IDW 1 22 2.35 0.01 209.4

OK – 16 2.37 −0.01 –

(a) (b)

(c) (d)

Fig. 6 Shaded relief maps of a the classical IDW, b the first-order IDW, c the second-order IDW, and d OK
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the first-order expansion can be transformed into the
following form,

arg min
β0

X
i¼1

n

wi0 f i−β0−β1 xi−x0ð Þ−β2 yi−y0ð Þ−β3 ei−e0ð Þð Þ2

¼ arg min
β0

X
i¼1

n

wi0 β0− f i þ β1 x0−xið Þ þ β2 y0−yið Þ þ β3 e0−eið Þð Þð Þ2

¼ arg min
β0

X
i¼1

n

wi0 β0−lið Þ2

ð10Þ

where li=fi+β1(x0−xi)+β2(y0−yi)+β3(e0−ei).
In terms of the weighted least squares method, we can

obtain,

β0 ¼
X
i¼1

n

wi0lið Þ =
X
i¼1

n

wi0

¼
X
i¼1

n

wi0 f i þ β1 x0−xið Þ þ β2 y0−yið Þ þ β3 e0−eið Þð Þð Þ

=
X
i¼1

n

wi0

ð11Þ

As illustrated above, we can obtain that that Eq. 11 is
essentially the formulation of the gradient-plus-inverse dis-
tance squared (GIDS) method, presented by Nalder and Wein
(1998). Specifically, GIDS is the first-order form of the gen-
eralized IDW expanded on the spatial coordinates and eleva-
tion. However, when one uses GIDS, the gradients β1, β2, and
β3 must be pre-computed by a multiple linear regression with
x, y, and e as the independent variables (Nalder and Wein
1998) whereas, in the generalized IDW, Eq. 9 can be directly
used to perform spatial interpolation. Thus, the generalized
IDW is more convenient than GIDS in practice.

In principle, a regression function can be expanded on any
variable by the Taylor expansion. However, it is well known
in regression analysis that the independent variables selected
always give a certain explanation to the dependent variable.
Namely, regression function is justifiably expanded on its
explanatory variables. For instances, in the example of surface
modeling of DEMs in this paper, elevation is expanded as a
linear function of spatial coordinates while, in surface model-
ing of rainfall fields, precipitation is expanded on the spatial
coordinates and elevation. In practice, having a series of
independent variables a priori, one can select the most relevant
ones via least angle regression technique widely adopted in
statistics (Efron et al. 2004). In a word, the generalized IDW
can incorporate multiple covariates, which can better explain
the interpolation procedure and possibly improve its accuracy.

It should be noted that kriging and IDW are completely
different interpolation methods, theoretically. The purpose of
this paper is not to replace kriging by the generalized IDW but
to improve the performance of the classical IDW for practical
applications. However, when the spatial structure of sample
points is low or difficult to capture, the generalized IDWs
might take place of kriging for surface modeling.

Conclusions

In this paper, we show that the classical IDW is a zeroth-order
kernel regression method with an inverse distance kernel.
Therefore, it is generalized based on the local polynomial
fitting and then estimated by the weighted least-squares pro-
cedure. Surface modeling of rainfall fields indicates that the
first- and the second-order IDWs have much better perfor-
mance than the classical IDW in terms of RMSE and R2. The
example of DEM construction based on randomly distributed
sample points shows that the generalized IDWs have better
RMSE and ME than the classical IDW. Furthermore, the
second-order IDW performs slightly better than the ordinary
kriging in terms of RMSE. In conclusion, the generalized
IDWs seem to be an alternative to the classical IDW for
surface modeling.
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