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a b s t r a c t

Periodic monitoring and multi-scale characterization of urban sprawl is essential for improving urban
planning and development. However, historical sprawl analysis is not well suited for the neo-
urbanization occurring in most cities in China due to the limited data available. This paper proposes a
concise and cost-effective method for automating the extraction of urban boundaries (UBs). The method
uses integrated land-use information entropy (LUIE) model along with ordinary Kriging based on a
gridded land-use map derived from Landsat imagery to extract UBs. Results indicate that overall
extraction accuracies greater than 90% were obtained using an 800 m-resolution LUIE combined with
Kriging. The method was applied to identify UBs in Wuhan, China during 1987e2010, and the UBs were
characterized at multiple scales and analyzed using landscape metrics. Results show varied landscape
dynamics at local administrative and city scales. The study demonstrates that the method for UB
identification and multi-scale analysis has the potential to contribute to sprawl monitoring and mea-
surement at multiple spatial scales. Moreover, the findings from this study can potentially guide policy
makers and urban planners tasked with understanding and controlling development occurring under
neo-urbanization strategies in China.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

Urbanization as a vital humaneenvironment interaction has
become a momentous force impacting regional and global sus-
tainability. Numerous cities and metropolitan areas across
the world have witnessed rapid urbanization characterized by
disorderly urban sprawl, rapid population growth, and persistent
economic improvements since the 1960s (Amiri, Weng,
Alimohammadi, & Alavipanah, 2009; Arribas-Bel, Nijkamp, &
Scholten, 2011; United Nations, 2012). In particular, urban sprawl
characterized by unsustainable land-uses and imbalanced land
cover dynamics has profoundly impacted urbanerural habitats,
local biodiversity, hydrologic networks, and regional climate
(Bhatta, Saraswati, & Bandyopadhyay, 2010; Haregeweyn, Fikadu,
sources Management, China
a. Tel./fax: þ86 27 67883088.
ytongc@gmail.com (L. Tong),
n (Y. Liu).
and should be considered
Tsunekawa, Tsubo, & Meshesha, 2012), among others. Further-
more, intensive sprawl is predicted to continue, particularly in
developing countries (Cohen, 2006; Mulligan, 2013). Curbing
excess sprawl and working toward sustainable planning strategies
have become the focus of both scholars and urban planners
(Elmqvist et al., 2013).

Neo-urbanization, which is the transformation of historically
rural and impoverished areas into developed cities, has been
facilitated by China in the recent years. As the most populous
developing country, China has been experiencing unfaltering eco-
nomic and social strides since the 1980s, and the national urban
population has increased from 0.14 billion to 0.71 billion over the
period 1970e2012 (National Bureau of Statistics, 2013). Fostered by
increasing consumption and investment, the per capita Gross Do-
mestic Product (GDP) rose to 38,325 RMB Yuan in 2012, almost a
one hundred-fold increase over the per capita GDP in 1970.
Moreover, public services including education, healthcare, and
transportation have greatly improved (Knight, 2013). Consequently,
to accommodate the demand for urban land to sustain these ac-
tivities, chronic disorderly sprawl has been occurring nationwide
(Hubacek, Guan, Barrett, & Wiedmann, 2009; Oizumi, 2011;
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Taubenb€ock et al., 2014). As a result of poor planning, many cities
have suffered from massive traffic jams, steep rises in home prices,
and ecological issues such as water pollution and atmospheric haze
(Dhakal, 2009; Hu, Chen, Wang, & Xu, 2013; Siciliano, 2012). Car-
rying out successful neo-urbanization strategies that focus on
curbing accelerated urban expansion, fostering the agglomeration
of urban, suburban and rural regions, and promoting a habitable
environment is extraordinarily important for achieving sustain-
ability (CDRF, 2013). However, effective strategies for sustainable
urban growth have not yet been achieved despite the fact that
China's central and local governments are endeavoring to curb
excess expansion and shape land-use transitions using policy in-
struments (Bai, Shi, & Liu, 2014).

One of main reasons that China has not been able to implement
effective strategies for sustainable growth is because it has been
difficult to identify and explain the intrinsic forces driving sprawl at
multiple scales (Hersperger, Franscini, & Kübler, 2014; Kane,
Tuccillo, York, Gentile, & Ouyang, 2014). This challenge has
inspired researchers to strengthen analyses on the history and
drivers of urban sprawl. The first step in this quest is to identify the
urban boundaries (UBs), which constitute the bona fide boundaries
between urban lands and all other non-urban areas (Han, Lai, Dang,
Tian, & Wu, 2009). With rapidly changing urban landscapes,
methods for frequent and accurate UB extraction are urgently
needed. Additionally, these methods are also extremely useful for
regular sprawl monitoring and sustainable land use management,
especially in China where most cities do not have historical UB data
(Chen, Liu, & Tao, 2013).

In recent years, remote sensing has become a viable method for
identifying UBs (Tannier & Thomas, 2013). Since the launch of
Landsat 5 in 1984, the Landsat program has provided a continuous
set of near-time surface reflectance data at a relatively low cost
(Patino & Duque, 2013), and the program is anticipated to continue
for many years supported by the recent launch of Landsat 8. The
availability of archived historical imagery makes it possible to
extract UBs over a prolonged temporal period and monitor areas
across large scales.

Theoretically, UBs can be extracted from remotely sensed im-
agery as soon as the degree of urban development reaches a size
that it can be identified at the resolution of the image. Land-use
classification is an appropriate and universal method for identi-
fying UBs since urban areas are usually comprised of artificial
structures such as residential, commercial, industrial buildings, as
well as spectrally different natural areas including green space and
water (Weber, 2001). Methods such as artificial neural networks,
expert systems, vegetation-impervious surface-soil (VIS) classifi-
cations, and support vector machines have been widely applied in
urban land-use classifications (Foody, 2000; Pacifici, Chini, &
Emery, 2009; Pal & Foody, 2010). Nonetheless, the resolution of
the imagery and the heterogeneity characteristic of urban land-
scapes make it difficult to automatically map detailed urban lands
solely using optical remote sensing methods (Cockx, Voorde, &
Canters, 2014). The use of ancillary datasets such as census data,
road networks, impervious surface coverages, landscape metrics,
land parcel attributes, and radar data were recently documented to
improve urban classifications (Abed & Kaysi, 2003; Berger et al.,
2013; Chaudhry & Mackaness, 2008; Hermosilla, Palomar-
V�azquez, Balaguer-Beser, Balsa-Barreiro, & Ruiz, 2014; Hu &
Wang, 2013; Schneider, Friedl, & Potere, 2014; Soergel, 2010; Wu,
Qiu, Usery, & Wang, 2009). Fractal methods have also been docu-
mented as a successful component in aiding in locating UBs
(Tannier & Thomas, 2013; Tannier, Thomas, Vuidel, & Frankhauser,
2011). However, ancillary datasets such as the ones described above
as well as high-resolution imagery are costly and are seldom
available for multiple areas across time and space. In terms of using
intelligent algorithms, they are usually time-consuming and
computationally expensive (Richards, 2013), and the contemporary
frameworks are unrealistic when extrapolating UB identification to
regional scales. Indeed, it is becoming more and more difficult to
define and identify urban areas with the rapid pace of urban sprawl
(Hollis, 2013; Rocchini et al., 2012; Weber & Puissant, 2003).
Straightforwardmethods for automated UB extraction from remote
sensing images without the use of ancillary datasets are needed.

This work aims to develop a simple method for UB extraction
using Landsat images and use this method to analyze the diverse
effects of urban growth at multiple scales for landscapes in China.
The paper first introduces the study area and image processing
techniques followed by a detailed description of the methodolog-
ical framework for extracting UBs. Assessment of the UB identifi-
cation method and the findings from the multi-scale sprawl
analyses are reported in the Results section. The effectiveness of the
proposed method for UB extraction and the concept of multi-scale
sprawl analyses are discussed, and conclusions for potential ap-
plications derived from this work are provided in the final section.

Study area and image processing

Wuhan, the capital of Hubei province, is located in central China
near the middle reaches of the Yangtze River. It comprises a
downtown and six suburbs covering a total area of 8495 km2

(Fig.1). The landscape is primarily plains (39.3%), water (26.1%), and
mountains (18.2%). The majority of plains except for in the urban
extents are used for agriculture. The downtown is divided into
three parts (Hankou, Hanyang, and Wuchang) by the Yangtze and
Han Rivers. Wuchang is the provincial education and administra-
tive center. Hankou is where the regional commercial, financial and
local administrative district is located, and Hanyang is the indus-
trial center. With the Yangtze and Han Rivers as well as the Beijing-
Guangzhou Railway (BGR), Wuhan has become the transportation
hub of China generating increasing social and economic growth
(Cheng, Turkstra, Peng, Du,&Ho, 2006;WuhanMunicipal Statistics
Bureau, 2013). As such, Wuhan has experienced accelerated ur-
banization since 1987 and has benefited from land transaction and
economic reform policies. However, unceasing migration, con-
struction, and economic growth have spurred unmitigated sprawl,
which is threatening local social and ecological stability (Du,
Ottens, & Sliuzas, 2010). Also, due to the dramatic economic and
social development in downtown, urbanerural/suburban social
gaps are observed. Therefore, the government and planners are
now trying to reconfigure the city boundary expansion process and
uncover its driving forces in order to moderate the rapid expansion
and promote integrated urbanerural planning.

Multi-temporal Landsat (TM/ETMþ) images taken from the US
Geological Survey were adopted for deriving land-use information
in the study (Table 1). Landsat ETMþ images taken during 2010,
after the scan line corrector failed, were repaired with a self-
adaptive local regression model (Lin & Bao, 2005). Preprocessing
including geometric, atmospheric, and radiometric correction as
well as mosaicking was performed using ENVI 4.8. Land-use data-
sets of Hankou, Dongxihu, Hannan, and Huangpi, provided by the
Hubei Province Department of Land Resources (DLRH) were used to
assess the UB extraction method.

Maximum likelihood classification (MLC) was employed for
land-use classification. For generating a relatively high-quality
classification, a Principal Component Rotation (PCR) and local sta-
tistics were used in the MLC as they have been shown to improve
MLC results (Deng, Wang, Deng, & Qi, 2008; Ghinire, Rogan, &
Miller, 2010). Specifically, the first three principal components of
the original Landsat bands (with an accumulated variance of almost
0.9) were determined using PCR. Next, the Getis-Ord Gi index (Getis



Fig. 1. Location of study area in Wuhan, China. BGR is the Beijing-Guangzhou Railway.
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& Ord, 1992) was computed for each component using rook con-
nectivity with varying spatial lags from 1 to 6. The Gi statistic is a
local spatial statistic that measures the concentration of a certain
variable and therefore can be used to indicate local high and low
clustering within the study area. The optimal lag for the Gi index is
determined by testing through the MLC results. Ultimately, four
land-use classes, impervious areas, water, vegetation, and others
(Table 2), were classified through MLC using the combined PCR and
Gi clustering results as input.

Methods

Land-use information entropy model

Regional landscape heterogeneity is the consequence of in-
teractions between humans and their surrounding natural envi-
ronment and is determined by structural land use attributes such as
connectivity, diversity, and fragmentation (Gaucherel, 2009;
Valbuena, Verburg, Bregt, & Lightenberg, 2010). Landscape het-
erogeneity often varies between rural and downtown areas (Kane
Table 1
Landsat images used in the study.

Sensor WRS-2 path/row Date acquired

Landsat5 TM 123/039 08/03/1987, 08/12/1994
123/038 09/10/1987, 08/12/1994
122/039 09/19/1987, 10/24/1994

Landsat7 ETMþ 123/039 10/13/2002, 09/17/2010
123/038 10/13/2002, 09/27/2010
122/039 11/07/2002, 10/28/2010
et al., 2014; Lopez, Bocco, Mendoza, & Duhau, 2001; Mohan,
Pathan, Narendrareddy, Kandya, & Pandey, 2011; Schneider &
Woodcock, 2008; Siciliano, 2012; Tian, Qi, & Zhang, 2012),
reflecting differences in land-use diversity including patch size and
land-use class types (Haregeweyn et al., 2012; McGarigal & Marks,
1995; Plexida, Sfougaris, Ispikoudis, & Papanastasis, 2014).
Recently, entropy theory has been shown to be capable for
analyzing land-use diversity (Morelli, Pruscini, Santolini, & Perna,
2013). According to the Shannon entropy index (Shannon, 1949),
the land-use information entropy (LUIE) model for characterizing
land-use diversity from gridded land-use maps is defined as:

LUIE ¼ �
Xn
i¼1

Piloge Pi (1)

where LUIE refers to the value of land-use information entropy, loge
is the natural logarithm, Pi is the area proportion (Xi=

Pn
i¼1Xi) of the

i-th patch, Xi is the area of the i-th patch, and n is the total number
of patches in the zone. The zones for calculating LUIE are
Table 2
Land-use classes used in the study.

Land-use classes Description

Impervious areas Areas containing artificial surfaces including residential,
commercial, industrial areas, and transportation
infrastructure.

Water Lakes, rivers, ponds, marshlands, and other water bodies.
Vegetation Cropland, forest, garden plots, and areas covered with

dense and sparse vegetation.
Others Bare land and other land covers not mentioned above.
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predetermined grid squares of a specific size that comprise multi-
ple map pixels. By replacing the Pi with Xi=

Pn
i¼1Xi, the above for-

mula can also be expressed as:

LUIE ¼ �
Xn
i¼1

" 
Xi

,Xn
i¼1

Xi

!
loge

 
Xi

,Xn
i¼1

Xi

!#
(2)

Through mathematical derivations we obtain:

LUIE ¼ loge
Xn
i¼1

Xi �
 Xn

i¼1

Xiloge Xi

!,Xn
i¼1

Xi (3)

With a given grid size, the pixel area (
Pn

i¼1Xi) is constant. By
replacing

Pn
i¼1Xi with S, Equation (3) can be reduced to:

LUIE ¼ loge S�
 Xn

i¼1

Xiloge Xi

!,
S (4)

LUIE values range from 0 to ∞. A value of 0 indicates the land-
use distribution is compact and homogeneous, while high values
indicate fragmented landscapes. Land use transformations
frequently occur near the UB, and therefore these areas typically
exhibit the highest LUIE values (Han et al., 2009). LUIE values will
also generally increase with increasing distance from the city
center. By identifying the highest LUIE values between the city
center and rural fringe, the UB can be mapped. Additionally, land-
use diversity often varies at different spatial scales (Aguilera,
Valenzuela, & Botequilha-Leit~ao, 2011), therefore LUIE values will
vary with grid size as well. Large, homogenous areas such as water,
impervious surfaces, and vegetation will typically contain a single
land-use type in a grid cell and generate LUIE values of 0. In
contrast, LUIE values for areas bordering the urban fringe will vary
with changing grid size. The impact of grid size on LUIE computa-
tion and UB identification should be examined, and the size of grid
cells adopted should be optimized through performance evalua-
tion. This will be discussed in the Results section.

UB extraction framework

LUIE values reflect the complexity of land-use in each grid cell.
Accordingly, LUIE values in the center of urban and rural areas
should be lower than those in the intermediate zones. Likewise,
homogeneous urban and rural areas will likely be bordered by
more complex land use activities. To extract the UBs, instead of
Fig. 2. Method for UB extraction
using an arbitrary LUIE threshold, profile maps of LUIE are first
extracted by searching for cells with the highest LUIE value along
radii from the center of the largest built-up patch of each admin-
istrative area out to the margins (Fig. 2). The pixel where the LUIE
attains its maximum value can be regarded as the UB.

During this procedure, we adopt a search step length coincident
with the raster size of the LUIE distribution. Grid points with the
highest LUIE value along each radius should be filtered to remove
abnormal points that are not initial constituents of the UB before
final extraction. These points usually exist in three situations: (a)
small urban open spaces such as green parks, hills, or wetlands, (b)
areas with compact patches or mixed impervious areas, vegetation,
or water away from the UB, and (c) narrow mixed urban belts near
the boundary (Fig. 3). The first two situations would not be
considered urban boundary. For the third situation, spatial inter-
polation (e.g., ordinary Kriging) can be used to extract the exact UB
by providing a finer-resolution value for the LUIE. If the identified
largest impervious patch is a concave polygon, it can be divided into
patches for extracting the UB (see Fig. 2).
Kriging interpolation

Kriging is a geostatistical interpolation technique that uses a
weighted average of neighboring values to estimate unknown
values at a given location (Krige, 1951; Mantheron, 1963). Kriging
follows the equation:

Zðx0Þ ¼
Xm
i¼1

wiZðxiÞ (5)

where Z(x0) is the value to be estimated at the location of x0, Z(xi) is
the known value at the site of the i-th sample xi, wi is a weight, and
m is the number of sites, which is defined by the user as the size of
the moving search window.

Using Kriging, a comparative analysis is carried out to test the
impacts of scale on the location of the UB. First, LUIE is calculated
for grids with cell sizes of 100 m, 200 m, 400 m, 600 m, 800 m,
1000 m and 1200 m. Second, ordinary Kriging is performed using
the LUIE points to generate a continuous LUIE surface with a final
raster resolution of 30 m. Finally, the UB is extracted from the
original LUIE distribution (non-kriged) and kriged surface, respec-
tively. Accuracy of the extracted UB is assessed for each grid cell size
in order to ultimately optimize the process.
and the schematic diagram.



Fig. 3. Atypical situations that should be noted when extracting UBs. Several areas of
heterogeneity can be encountered including (a) open spaces within urban areas, (b)
cells grouped with open spaces away from the urban fringe, and (c) mixed narrow
urban belts.
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Urban growth analyses

Annual growth rate
Using the method described above, UBs are extracted for each

administrative region in Wuhan from Landsat images (1987, 1994,
2002, 2010). Annual Growth Rate (AGR) is calculated following
(Taubenb€ock et al., 2014):

AGR ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Atþi=At
i
q

� 1
�
� 100% (6)

where AGR is the annual urban growth rate for the period from t to
t þ i. At and Atþi are the area of urban land in time t and t þ i,
respectively, and i is the time interval.

Box-counting dimension
Fractals are objects with the geometric property of self-

similarity, meaning that each portion can be considered as a
reduced-scale image of the whole (Mandelbrot, 1967). Accordingly,
most natural and social features resemble fractals (Hu et al., 2013;
Tannier et al., 2011). The degree of complexity (i.e., fractal dimen-
sion) can be used tomeasure the complexity of features. The higher
the fractal dimension, the more complex the geometry. Fractal
geometry allows for analyzing complex process by overcoming the
rigidity of Euclidean geometry, therefore it provides a useful means
for describing urban form and characterizing expansion (Jafari &
Babadagli, 2013; Tannier & Thomas, 2013). The box-counting
method operates by breaking a dataset into smaller box-shaped
pieces to investigate patterns:

D ¼ lim
ε/∞

½loge Nð 3Þ=logeð1= 3Þ� (7)

where D is the box-counting dimension and N( 3) is the measured
magnitude of the boxes of size length 3 covering the measured
object. The value of D reflects the irregularity of an object whereby
a high value of D indicates the object is highly irregular. In this
study, the box-counting dimension (D) is adopted as a measure of
the irregularity of the UB.
Landscape metrics
Dramatic land-use changes also affect urban form through

altering the patterns of the landscape. Landscape metrics such as
patch density (PD), largest patch index (LPI), landscape shape index
(LSI), mean fractal dimension index (FRAC_MN), Shannon's di-
versity index (SHDI), and the interspersion juxtaposition index (IJI),
are significant indicators for evaluating landscape attributes such as
diversity, connectivity, and fragmentation (Gaucherel, 2009;
McGarigal & Marks, 1995). Integrated PD and LPI metrics are use-
ful for analyzing urban sprawl patterns (Taubenb€ock et al., 2014).
High PD and low LPI values usually reveal dispersed expansion
patterns. Similarly, LSI, FRAC_MN, IJI and SHDI are widely used for
landscape connectivity and diversity research (Patino & Duque,
2013). Increasing LSI, FRAC_MN and IJI are indicators of inter-
spersed landscapes. The six landscape-level metrics mentioned are
adopted here to measure the impacts of urban sprawl at different
spatial scales including local administrative districts as well as the
entire regional Wuhan extent.

Results

Assessment of the UB extraction method

The performance of the UB extraction at different scales is
compared. To recap, first the regional LUIE distributions of Wuhan
in 2010 were computed for grids with a pixel size of 100 m, 200 m,
400 m, 600 m, 800 m, 1000 m and 1200 m, respectively. Then, fine-
resolution (30 m) LUIE maps were generated through ordinary
Kriging interpolation. Results indicate large differences between
LUIE distributions when computed for the different resolutions
(Fig. 4). The proportion of pixels possessing high LUIE values in-
creases with grid size, which is particularly pronounced in the areas
surrounding the downtown. Low LUIE values are generally ob-
tained in the central downtown, the mountainous areas of north-
western and northeastern Wuhan, and the districts mainly covered
by water and vegetation in southwestern Caidian, Hannan, and
southeastern Jiangxia. Despite the varied ranges of local LUIE,
regional land-use diversity generally increases with increasing grid
size from 100 m to 1000 m (Fig. 5). Narrow LUIE ranges and low
mean LUIE values are observed for the 1200 m-resolution LUIE as
well as the interpolated surfaces in all study regions. Standard
deviation (StdDev) curves, an indicator measuring the discreteness
of the dataset, show that increasing heterogeneity of LUIE distri-
butions occurs in almost all regions with as pixel size increases
from 100 m to 1000 m. Furthermore, the ranges of the kriged LUIE
values are relatively more confined than those of the non-kriged
LUIE values. The kriged LUIE output from the 600 m-resolution
LUIE shows the widest range in LUIE values.

LUIE curves of Hankou in 2010 along three directions indicate
that the regional LUIE distributions are anisotropic (Fig. 6). The
curves plotted for the 800 m LUIE and the associated kriged
outcome show different shapes. The curves along the northeastern
and northwestern radii have a single peak, while several peaks are
observed in the LUIE curve along the southwestern radius.
Comparatively, curves plotted from the original LUIE map are
relatively smoother than those delineated from the kriged map.
Furthermore, the varying LUIE curves and corresponding local
land-use diversity are closely related. Areas inside the urban extent
of Hankou contain fragmented open spaces, such as Xibei Lake,
Zhongshan Park, Houxianghe Park, and Changqing Park, which
possess high local land-use diversity and create the abnormal
heights of the LUIE curves (Fig. 6-a). These peaks generate the
trough in the LUIE curves where the urban areas are located (Fig. 6-
b). Complex land-uses in the more remote Hankou are shaped by
the intense land transformations and insular units grouped with



Fig. 4. LUIE distributions for Wuhan, China in 2010.
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cropland, ponds and rural settlements, which also leads to peaks in
the LUIE curves (Fig. 6-d). The above-mentioned situations do not
accurately indicate urban areas and should be rejected when
identifying UBs. Locations with the highest local LUIE values are in
fact suitable indicators for the UB (Fig. 6-c). The optimal LUIE values
adopted for indicating the UB located are varied. Along the three
radii in Hankou (northeastern, northwestern, and southwestern),
the LUIE values of the UB at the 800 m resolution are 1.21, 1.17, and
1.03, respectively. Optimal values for the kriged LUIE are 1.20, 0.92,
and 0.70, respectively. These results indicate that using absolute
LUIE thresholds to identify the UB would be erroneous.
The actual UBs of Hankou, Dongxihu, Hannan, and Huangpi
were obtained from a land use map created in 2010 by the DLRH.
Actual and identified UBs of Hankou, Dongxihu, Hannan, and
Huangpi in 2010 are shown in Fig. 7. The urban areas of Hankou and
Dongxihu were agglomerated in 2010 (Fig. 7a, d), and the respec-
tive boundary cannot be distinguished from the LUIE distribution.
Hence, the extracted UB contains the entire urban areas of Hankou
and Dongxihu (HankoueDongxihu region).

The results shown in Fig. 7 support the concept that urban areas
are formed not only by impervious surfaces but also by natural
spaces including green spaces and lakes (Hollis, 2013). Results also



Fig. 5. Statistics for the LUIE distributions in Wuhan, China in 2010.
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show the varying performance of the UBs extracted from different
resolution LUIE maps (800 m vs. 1000 m). These results support the
optimization of grid size according to local land-use diversity when
computing the LUIE as it can improve the effectiveness of UB
extraction. Generally, differences between the extracted and actual
UBs were observed in areas possessing higher land-use diversity.

Based on the actual and extracted UBs, thematic maps of true
and classified urban areas within a minimum circle extent that
could synchronously contain both the true and extracted UBs were
composed. Then, we developed a confusionmatrix for assessing the
performance of the UB. Results show mixed accuracies for overall
Fig. 6. Land-use maps and LUIE curves for Hankou, China in 2010 plotted from 800 m LUIE
natural spaces (water, vegetation) that can induce local high LUIE; b: urban areas possessing
water, vegetation, and impervious surfaces remote from the urban fringe but generating hi
accuracy (OA) and the kappa coefficient (KC) (Fig. 8). For Hankou
and Dongxihu, accuracy varies from 100 m to 800 m (OA/KC,
97.03%/0.9261) using the kriged and non-kriged LUIE. A continuous
decrease in accuracy is then observed for both sets of results at the
coarsest resolutions. The non-kriged LUIE outperformed the kriged
surfaces for UB extraction in Hannan at 100 m, 200 m, 400 m,
600 m, 1000 m and 1200 m. However, significant accuracy
improvement is seen for the 800 m results, which had an OA of
92.71% and a KC of 0.925. In contrast, the differences between the
multi-scale LUIE-based UB extraction in Huangpi were relatively
inconspicuous. The original 600 m, 800 m and 1000 m-resolution
and kriged LUIE along three radii. a: areas inside urban districts filled with fragmented
plunging LUIE curves impacted by situation a; c: areas of the actual UB; d: units with

gh LUIE values.



Fig. 7. Actual and extracted UBs using the standard LUIE for (a) HankoueDongxihu, (b) Hannan, and (c) Huangpi, and actual and extracted UBs using the kriged LUIE for (d)
HankoueDongxihu, (e) Hannan, and (f) Huangpi.
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LUIE more accurately identified the UB. Although the highest ac-
curacy for Huangpi was generated using the kriged 1000 m LUIE, it
is worth noting that the OA from the kriged 800 m LUIE was also
quite high (OA ¼ 90.55%). Accordingly, the 800 m grid size inte-
grated with Kriging was continually the most reliable for extracting
UBs and was therefore adopted for UB identification in the
remainder of the study (Fig. 9).

Urban growth for period 1987e2010

Table 3 shows rapid urban sprawl with an AGR of 8.57% in
Wuhan. Urban areas increased from 11,407.84 ha to 75,602.28 ha
during the period 1987e2010 (Table 4). The downtown, which was
the major site where expansion occurred, comprised 89.08%
Fig. 8. Accuracy of UB extracti
(6481.3 ha) and 89.54% (9982.65 ha) of the total growth during the
first two periods 1987e1994 and 1994e2002, respectively. How-
ever, urban sprawl slowed after that as it was impacted by declining
space for development, increasing ecological protection policies,
industrial restructuring, land-use transformations, and urban-
erural development. Instead, growth increased in the suburbs,
especially Caidian, Dongxihu, Huangpi, and Jiangxia. From 2002 to
2010, the most intense expansion occurred in these areas, and they
account for almost 85% of the total increase of urban land
(64,194.43 ha) since 1987 and are accompanied by an AGR of
12.33%. Furthermore, 17.6% (8063.24 ha), 15.5% (7082.71 ha), and
10.5% (4812.27 ha) of the total increase in growth was observed in
Dongxihu, Jiangxia, and Caidian, respectively. Clearly, growth rates
vary throughout the local districts of Wuhan. Generally, the
on at various resolutions.



Fig. 9. Extracted urban areas. a: Jiangxia. b: Xinzhou. c: Hannan. d: Caidian, Dongxihu, and the downtown. e: Huangpi. Caidian was not incorporated until 1992, and so the UB was
not extracted in 1987. The urban areas of Hankou and Dongxihu (Hanyang and Caidian) were agglomerated in 2010.
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suburbs experience small spatial increases in urban areas with
higher AGRs, while the downtown experiences large-scale in-
creases in urban areas with relatively stable and low AGR. The AGRs
of the downtown during the study periods are all below 11%, while
the suburbs exceed that of the downtown and overall Wuhan.
Particularly, for the third period 2002e2010, intense development
of industrial and residential land contributes to a high local AGR in
Dongxihu (54.3%) and Caidian (38%). The reconstruction of the host
town, expansion of universities, and unchecked development of
commercial and recreational lands are the causative forces driving
the high pace of urban sprawl occurring in Huangpi and Jiangxia.
Xinzhou is the only district that has witnessed decreasing AGRs
since 1987.

Multi-scale landscape dynamics occurred in Wuhan during
1987e2010

The box-counting dimensions show relatively weak dynamics
for the UBs during 1987e2010 in both the suburbs and downtown
(Table 5). In general, the dimensions contract for all urban areas of
Wuhan after 1987. During the period 1987e1994, slightly
decreased dimensions are observed for the downtown and Xinzhou
Table 3
Annual Growth Rate (AGR) (%) of urban areas for the period 1987e2010.

District 1987e1994 1994e2002 2002e2010 1987e2010

Hankou 6.83 5.8 7.39 6.66
Hanyang 6.79 10.34 9.43 8.93
Wuchang 7.19 5.75 7.38 6.75
Dongxihu 17.06 6.66 54.33 24.77
Caidian e 15.27 38.00 26.12
Hannan 16.7 2.97 19.99 12.81
Huangpi 11.54 5.68 36.07 17.3
Jiangxia 16.8 11.07 36.35 21.12
Xinzhou 14.55 13.97 13.05 13.82
Overall 7.30 6.02 12.33 8.57

Note: The UB for Caidian in 1987 was not extracted because it was not a recognized
district until 1992.
indicating homogeneous urban growth. Suburbs with relatively
large-scale sprawl and low AGRs, notably Dgongxihu and Jiangxia,
saw increasing dimensions. During the second period from 1994 to
2002, the dimension increased in Hankou, Hanyang, Caidian,
Dongxihu, and Huangpi, while it decreased in Wuchang, Hannan,
Jiangxia, and Xinzhou. Further analysis shows that suburbs that
possess high AGRs and accelerated expansion rates usually
generate decreasing box-counting dimensions. During the final
stage from 2002 to 2010, dimensions decreased for all regions
except Caidian, Dongxihu, Huangpi, and Jiangxia. The factors
shaping urban morphology are mixed (Elmqvist et al., 2013;
Tannier & Thomas, 2013). Impacted by the local topography and
land-use distribution including water bodies and forests, high di-
mensions were still obtained during the rapid urban growth in
Hanyang, Wuchang, Hannan and Xinzhou. Meanwhile, due to the
compact industrial and residential land use and improvement of
public facilities, Hanyang generated a less complex UB after 2002.

In the districts profoundly influenced by human activities,
specifically urban construction, landscape metrics show similar
dynamics over time. In general, the downtown exhibited increasing
LPI and falling PD in both the local regions and urban extents
(Fig. 10aec). Consequently, decreasing LSI and SHDI were observed
Table 4
Area (ha) of urban areas in 1987 and urban growth over the period 1987e2010.

District Urban areas in 1987 Newly increased urban areas

1987e1994 1994e2002 2002e2010

Hankou 3946.19 2106.31 2169.52 4984.68
Hanyang 1349.55 787.90 2557.57 4960.34
Wuchang 5731.03 3587.09 5255.56 11,185.12
Dongxihu 51.25 103.15 104.16 8063.24
Caidian e 127.08 268.97 4812.27
Hannan 107.29 208.91 83.51 1317.64
Huangpi 75.51 86.67 90.21 2714.29
Jiangxia 94.22 185.15 367.53 7082.71
Xinzhou 52.79 83.87 252.41 648.59
Overall 11,407.84 7276.13 11,149.43 45,768.87



Table 5
UB box-counting dimensions.

District 1987 1994 2002 2010

Hankou 1.0061 0.9981 1.0018 1.0039
Hanyang 1.0261 1.0231 1.0427 1.0067
Wuchang 1.0403 1.0137 1.0094 1.0116
Caidian e 1.0545 1.0755 1.0039
Dongxihu 1.0149 1.0751 1.0896 1.0067
Hannan 1.0051 1.0278 1.0214 1.0291
Huangpi 1.0925 1.1098 1.1176 1.0896
Jiangxia 1.0243 1.1152 1.0714 1.0454
Xinzhou 1.1141 1.0429 1.0259 1.0779
Overall 1.0879 1.0701 1.0664 1.0539
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in Hankou, Hanyang, and Wuchang, which are experiencing rapid
urbanization. However, in the suburbs where small towns area
located, landscape pattern dynamics are mixed. Decreasing LPI in
all of the suburban regions reveals the loss of dominance of vege-
tation/water during 1987e1994 due to urban sprawl (Fig. 10dei).
However, in the urban areas of Huangpi, Jiangxia, and Xinzhou
impervious surface dominates the local landscape, and LPI in-
creases in line with sprawl (Fig. 10f, g, i). As a result, the loss of SHDI
occurs. For the suburbs Caidian, Dongxihu, and Hannan, LPI and
SHDI are variable suggesting intensive land-use transformations
during urban expansion (Fig. 10d, e, h). Variations such as these
typically result from complex human activities and policies
including environmental protection policies, industrial recon-
structing, and agricultural conservation strategies. It is worth
noting that the disparate dynamics of LPI, IJI, and SHDI at local
scales occur during expansion. Furthermore, significantly different
dynamics for IJI in Huangpi and IJI and SHDI in Xinzhou occur
during 1987e2002 (Fig. 10f, i). Large differences of LSI at different
Fig. 10. Landscape metrics in local districts and local urban areas of Wuhan. Y1: PD, LPI, LSI,
Huangpi. g: Jiangxia. h: Hannan. i: Xinzhou. Note: Local districts refer to downtown and su
scales are observed for Caidian, Dongxihu, Huangpi, Jiangxia, and
Xinzhou (Fig. 10deg, i). The shape of the largest patch (usually
artificially developed surface) in the urban areas is much more
complex than that of the entire region. IJI is sensitive during
expansion represented by the variable plot over time, while
FRAC_MN is relatively constant across time. As such, IJI appears to
be a reliable indicator for multi-scale landscape dynamics.

Lastly, we analyzed the landscape metrics in the regional urban
areas and across Wuhan (Fig. 11). The results demonstrate
increasing PD and LPI and decreasing LSI and SHDI in regional ur-
ban areas of Wuhan. These values suggest constant and compact
growth within the Wuhan UB in 2010. However, variable IJI and
FRAC_MN values are seen for 1987e2010. It is likely that the natural
spaces such as large water bodies, mountain areas, and cropland
have great impacts on the regional landscape at this scale. In
comparison, LPI, IJI, and SHDI have larger ranges at urban scales,
whereas they only change slightly across all of Wuhan.
Discussion

Automated UB identification using remote sensing is essential
for multi-scale sprawl measurements and landscape analyses un-
der rapid urbanization (Chen et al., 2013; Taubenb€ock et al., 2014).
In this study, we proposed a concise framework for UB extraction
from Landsat images based on the LUIE model and analyzed the
rate of sprawl and associated landscape dynamics for different
scales including local and regional administrative districts as well
as the entire city of Wuhan.

The method introduced in the study is based on the hypothesis
that areas near the urban fringe will generate the highest land-use
diversity; thereby allowing the UB to be extracted where the
IJI. Y2: SHDI, FRAC_MN. a: Hankou. b: Hanyang. c: Wuchang. d: Caidian, e: Dongxihu. f:
burbs of Wuhan. Local urban areas are areas within UB (2010) of each local region.



Fig. 11. Landscape metrics of regional urban areas and overall Wuhan, China.
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highest land-use diversity occurs. Accordingly, effective UB
extraction requires (1) accurate local land-use diversity character-
ization, (2) land-use diversity hypothesis testing, and (3) recogni-
tion of the extents with the highest land-use diversity.
Consequently, a LUIE model for computing land-use diversity from
gridded land-use maps and a compact framework for searching for
high LUIE values along the radii of cities was developed. However,
land-use diversity is influenced by land-use patterns, which usually
change with study scale (Bhatta et al., 2010; Morelli et al., 2013;
Schneider & Woodcock, 2008). Local land-use diversity will vary
with different grid sizes when computing LUIE. Furthermore, grid
size is also a causative factor for LUIE resolution that impacts UB
extraction. Hence, comparative analyses of LUIE distributions using
methods that rely on spatial interpolation to provide fine-
resolution LUIE surfaces are indeed essential for efficient UB
identification.

It is noteworthy that we identified UBs along previously selected
directions rather than in abruptly changing areas. Although com-
plex open spaces inside cities and the surrounding fragmented
landscapes could confound extraction, they did not seriously
hinder the method. This is likely because in most districts, espe-
cially in developing countries such as China, the villages and towns
in rural districts and their urban open spaces are usually small in
size and spatially disperse (Lopez et al., 2001; Siciliano, 2012; Tian
et al., 2012). Additionally, these small areas can be profoundly
concealed by coarse resolution images (Lausch & Herzog, 2002;
Mairota et al., 2015). The small parks, wetlands, and villages
could not theoretically generate abnormally high LUIE values using
the optimal grid size of 800 m, for example. Furthermore, individ-
ual abnormal values are not likely to subvert the regional LUIE
distribution. Certainly, we do not suggest that the situations
resulting in abnormally high LUIE inside cities and consequently
low LUIE values near the urban fringe be excluded. Rather, the areas
generating abnormally highest LUIE values that are a result of local
land use anomalies should be identified, assessed, and masked if
necessary prior to UB extraction. Large features adjacent to the
urban core, such as the East Lake in Wuchang, can result in a low
LUIE. In these cases, a priori knowledge of the study areamay useful
for insuring the performance of UB extraction. Moreover, the re-
sults also show that finer-resolution LUIE can improve UB extrac-
tion. Ordinary Kriging simulates variation properties based on
spatial autocorrelation and thus provides high-resolution distri-
butions of spatial variation (Jos�e-Ma & Beatriz, 2006). Additionally,
the method is suitable for analyzing massive spatial datasets
(Abedini, Nasseri, & Ansari, 2008) such as those for complex
landscapes showing spatial self-similarity (Gaucherel, 2009).
Although the moving weighted average method can inevitably
smooth the data and potentially eliminate useful local information
(Valeriano et al., 2006), it has been tested to be reliable and efficient
in UB identification based on highest LUIE values rather than abrupt
changes. The final OAs exceeded 90% in multi-scale districts, Han-
koueDongxihu, Huangpi and Hannan, which exhibit different local
topography. Certainly, there are many methods could be used for
interpolating, such as co-Kriging, multifractal inverse distance
weighting (IDW) and many others (Hu et al., 2013), and these can
be incorporated into future studies.

Under rapid urbanization, landscapes are shaped by social,
economic and ecological development modes (Kane et al., 2014).
Accordingly, four sprawl patterns showing varied multi-scale
landscape dynamics were recognized in the study (Table 6). Sta-
ble growth areas (i.e., Hankou, Hanyang and Wuchang) expanded
with an increase of new urbanized areas and slightly varying AGRs
over time. The compact inner fabric of this urbanization mode led
to decreasing PD, LSI, and SHDI and increasing LPI over time in both
the urban and regional extents. Dongxihu, Caidian, Huangpi, and
Jiangxia experienced accelerated growth and increasing AGRs.
Consequently, fluctuating LPI and IJI metrics were observed at the
regional scale over time, while SHDI varied for the different scales.
Hannan showed a stable growth pattern represented by volatile
AGR dynamics. The disorderly sprawl resulted in disparate LPI and
SHDI at the urban and regional levels. Furthermore, the gradual
growth pattern, which manifests in sustained growth shielded by a
continuous decrease in AGR and diverse multi-scale landscape
dynamics, is found in Xinzhou. Obviously, fluctuating growth is the
most complicated pattern that can easily confound urban growth
monitoring over time. These modes could be an efficient means for



Table 6
Characteristics of growth patterns.

Growth pattern Sprawl rates AGR dynamics Landscape dynamics Example

Stable Increasing at a stable speed Fluctuates slightly Decreasing PD, LSI, SHDI and increasing
LPI independent of study scales

Hankou, Hanyang, Wuchang

Accelerated Increasing at a high speed Decreases slightly,
then increases sharply

Oscillating LPI, IJI in regional areas;
disparate SHDI changes at multi-levels

Dongxihu, Caidian, Huangpi,
Jiangxia

Fluctuating Increasing at fluctuating rates Fluctuates sharply Varied dynamics of LPI, SHDI a different scales Hannan
Gradual Increasing slightly at low speeds Decreases slightly Varied dynamics of LPI, IJI, SHDI at different scales Xinzhou
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further urbanization measurements especially to determine the
driving forces of sprawl (Uuemaa, Mander, & Marja, 2013). How-
ever, the causative factors and influences of urbanizationmodes are
complex. Migration, climate change, economic growth, and
changing land use policies can induce diverse landscapes changes
(Hersperger & Bürgi, 2009; Zenou, 2011). Urbanization remains an
international challenge for scholars and planners to understand the
causative forces for spatial-temporal land-use changes at different
scales (Buxton& Taylor, 2011; Carley, Jenkins,& Smith, 2001; Pôças,
Cunha, & Pereira, 2011). The introduced concise and cost-effective
framework for UB identification is repeatable in similarly urban-
izing areas and can contribute to periodic monitoring of multi-scale
expansion process and their effects on the landscape.

Conclusions

This study provides a cost-effective and concise framework for
extracting UBs from remotely-sensed imagery. The LUIE model for
measuring local land-use diversity together with the framework for
locating extreme LUIE pixels is suitable for frequent UB identifica-
tion at large scales. Applications of UB identification in the years
1987, 1994, 2002 and 2010 in Wuhan, China indicate that the grid
scale adopted for LUIE computation affected UB extraction by
varying degrees. When the method was combined with ordinary
Kriging, the OA of the identification reached 90% in Han-
koueDongxihu, Hannan, and Huangpi. Furthermore, diverse land-
scapes were observed in different local administrative regions and
city scale extents during the rapid urban sprawl that occurred in
Wuhan. Further research will focus on empirical studies consid-
ering the possible influence of land use class types in different re-
gions and the specific driving forces of urban sprawl at different
scales. Carrying out replicable studies on UB extraction in different
regions and characterizing urban growth modes at multiple scales
will greatly aid in curbing excessive expansion, promoting natural-
human development, and realizing appropriate neo-urbanization
strategies in developing countries.
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