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h i g h l i g h t s

• Configurational entropy spectral analysis is developed with spectral power as a random variable.
• The proposed spectral analysis yields Burg’s maximum entropy spectral analysis.
• The maximum entropy spectral analysis encompasses the Burg entropy spectral analysis and two configurational entropy spectral

analyses.
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a b s t r a c t

Configurational entropy spectral analysis (CESAS) is developed with spectral power as
a random variable for streamflow forecasting. It is found that the CESAS derived by
maximizing the configurational entropy yields the same solution as by the Burg entropy
spectral analysis (BESA). Comparison of forecasted streamflows by CESAS and BESA shows
less than 0.001% difference between the two analyses and thus the two entropy spectral
analyses are concluded to be identical. Thus, the Burg entropy spectral analysis and two
configurational entropy spectral analyses form the maximum entropy spectral analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The entropy theory comprising the Shannon [1] entropy and the principle of maximum entropy (POME) [2,3] has been
widely applied in hydrology [4–8]. The advantage of using the entropy theory is that it combines statistical information
with physical characteristics and provides least-biased estimation. However, it was not used for forecasting until Burg [9,10]
developed the maximum entropy spectral analysis (MESA) which is called the Burg entropy spectral analysis (BESA). The
Burg entropy is defined in terms of frequency f as a random variable:

HB(p) =

 W

−W
ln[p(f )]df (1)

where frequency f is considered as a random variable, W is the Nyquist frequency, and p(f ) is the normalized spectral
density taken as the probability density function (PDF) of f .
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For a stationary randomprocess BESA computes spectral power from the autocorrelation of given lags, without assuming
autocorrelation of unknown lags as zero [11]. It has an advantage over classical method in terms of computational ease,
short and smooth spectra with a high degree of resolution, and robustness of estimates and their stability. As a result, BESA
has been widely applied to spectral analysis of geomagnetic fields, climate indices, surface air temperature, geophysical
exploration, tide levels, precipitation, and runoff [12–21]. BESAhas also been employed for long-termstreamflow forecasting
and real-time flood forecasting [22–25,6,7] and has been shown to have an advantage in long-term streamflow forecasting
over traditional stochastic methods, but has not been found to be superior for short-term flow forecasting.

Themaximum entropy spectral analysis can be derived using the configurational entropy introduced by Frieden [26] and
Gull and Daniell [27], which is defined as

HCF (f ) = −

 W

−W
p(f ) ln[p(f )]df . (2)

It is noted from Eq. (2) that the configurational entropy is defined in the same form as the Shannon entropy. The
configurational entropy spectral analysis with frequency as a random variable (CESAF) is shown to be preferred over BESA
for autoregressive moving average (ARMA) and moving average (MA) processes [28]. CESAF has been applied to monthly
streamflow forecasting, and has been found to perform better than BESA [29].

On the other hand, configurational entropy spectral analysis can be derivedwith spectral power as a randomvariable (CE-
SAS). The streamflow time series yt , t = 1, 2, . . . , T can be transferred to spectral powers xk, k = 1, . . . , n, in the frequency
domain by the Fast Fourier transform. For each frequency fk there is one associated spectral power xk. Let x⃗ = (x1, x2, . . . , xn)
and let it be assumed that each probability density function p (xk) is considered independent identically distributed. Then
the joint probability density function can be noted as p(x⃗) = p(x1) · · · p(xn). Now assuming each spectral power xk as a
random variable, the configurational entropy is defined as

HCS(p) = −


D
p(x⃗) ln[p(x⃗)]dx⃗ = −E{ln[p(x⃗)]}. (3)

However, it was shown by Gray [30] that if xk came from anN-dimensional Gaussian distribution, then the joint distribution
can be given by

p(x⃗) =


1
2π

 n
2


1
detℜ

 1
2

exp


−
1
2
x⃗tℜ−1x⃗


(4)

where det ℜ is the determinant of the autocorrelation matrix defined by

ℜ = E[Y TY ] =


ρ0 ρ1 · · · ρn−1 ρn
ρ1 ρ0 · · · ρn−2 ρn−1
...

...
ρn−1 ρn−2 · · · ρ0 ρ1
ρn ρn−1 · · · ρ1 ρ0

 (5)

where ρn is the autocorrelation of the nth lag. [Define matrix Y .] Substitution of Eq. (4) into Eq. (3) yields

HCS(p) = ln[(2πe)
N
2 (detℜ)

1
2 ]. (6)

It is noted that the autocorrelation is linked to the spectral density. Thus, replacing the autocorrelation in Eq. (6)with spectral
density, the result is [give the intermediate steps] H(f ) =

 W
−W ln [p(f )] df , which is the Burg entropy.

The objective of this paper therefore is to derive the configurational entropy spectral analysis with spectral power as a
random variable, and to show how it yields Burg entropy spectral analysis.

2. Review of Burg entropy spectral analysis

Using the principle of maximum entropy, Burg [9,10] developed BESA for a stationary random process, which provides
a basis to connect the spectra with the autoregressive (AR) process. By maximizing the Burg entropy in Eq. (1) with the use
of the method of Lagrange multipliers, he obtained the spectral density as

P(f ) =
1

N
n=−N

λne−i2π fn1t

(7)
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where λn are the Lagrange multipliers. To extend the autocorrelation and forecast time series, Burg [9,10] showed that
Eq. (7) is equivalent to the spectral density of the AR process, which can be expressed as

P(f ) =
σ 21 +

N
n=−N

anzn
2

(8)

where σ 2 is the variance of streamflow values, z = exp[−i2π f1t], and an are the prediction coefficients.
Then, Burg [9,10] modified the Levinson algorithm [31] for estimating the prediction coefficients by using both forward

and backward forecasting errors. The original Levinson algorithm can be written as

aNs =

 1, s = 1
aN−1
s + cNa∗N−1

N−s , 1 < s < N
cN , s = N

(9)

where cN is called the reflection coefficient. Byminimizing the backward and forward prediction error, Burg [9,10] computed
the reflection coefficient as

cN =

−2
M

m=1
wm(bmfm)

M
m=1

wm(b2m + f 2m)

(10)

where wm are the weight factors such that
M

m=1 wm = 1, and fm and bm are the forward and backward prediction errors,
respectively, which are defined as

fm = am−1y2 + · · · + a1ym + ym+1 (11)

and

bm = y1 + a1y2 + · · · + am−1ym. (12)

It has been shown that the Levinson–Burg algorithm is equivalent to the least-squared fitting of a discrete-time all-pole
model to streamflow data series [32,33].

3. Development of configurational entropy spectral analysis

The configurational entropy spectral analysis is developedwith spectral power as a randomvariable. Therefore, unlike the
original Burg entropy, the probability density function of spectral power is first obtained by maximizing entropy, then the
spectral density. With the entropy defined in Eq. (3), the alternative way to derive the maximum entropy theory consists of
the following steps: (1) construct the constraints, (2) determine the probability density function, (3) determine the Lagrange
multipliers, (4) determine the spectral power, (5) extend the autocorrelation or autocovariance, and (6) forecast streamflow.

3.1. Specification of constraint

The probability density function of spectral power must satisfy:
D
p(x⃗)dx⃗ = 1. (13)

The other constraints are constructed from the relationship between spectral power and autocovariance. Let Sk denote
the expected value of xk, written as

Sk =


D
xkp(x⃗)dx⃗. (14)

It is known that the mean spectral power Sk is the Fourier transform of autocovariance Rr . On the other hand,
autocovariance can be expressed as the inverse Fourier transform of the spectral power Sk as

Rr =

n
k=1

Sk exp(2π ir1tfk) =

n
k=−n

Skcrk −N ≤ r ≤ N (15)

where crk = exp(2π ir1tfk), r is the lag, 1t is taken as 1 month for monthly streamflow, fk = k/N , and N is the largest lag
for given autocorrelation or autocovariance, usually taken as 1/4 or 1/2 of the streamflow length T . Substituting Eq. (14) into
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Eq. (15), the autocovariance is determined from the probability density function as

Rr =


D

n
k=1

xkcrkp(x⃗)dx⃗, −N ≤ r ≤ N. (16)

Thus, the autocovariance function from lag −N to N with Eq. (16) is considered to consist of 2N + 1 constraints for applying
the maximum entropy spectral analysis

3.2. Determination of distribution of spectral power

The probability density function is computed by maximizing entropy using the method of Lagrange multipliers. Using
constraints in Eqs. (13) and (16), the Lagrangian function L(p) can be written as

L(p) = −


p(x⃗) ln[p(x⃗)]dx⃗ + (λ0 − 1)


D
p(x⃗)dx⃗ − 1


+

N
r=−N

λk


D

n
k=1

xkcrkp(x⃗)dx⃗ − Rr


(17)

where λr are the Lagrange multipliers. Taking the partial derivative of the Lagrangian function with respect to p(x⃗), and
equating the derivative to zero, one obtains

∂L(p)
∂p(x⃗)

= ln[p(x⃗)] + λ0 +

N
r=−N

λr

n
k=1

xkcrk = 0. (18)

Thus, the least-biased probability distribution of spectral power becomes

p(x⃗) = exp


−λ0 −

N
r=−N

λr

n
k=1

xkcrk


. (19)

3.3. Determination of Lagrange multipliers

It is noted from Eq. (19) that the spectral power estimated by maximizing the entropy involves Lagrange multipliers. To
compute the Lagrange multipliers, Eq. (19) is substituted into constraints Eqs. (13) and (16). Then, one obtains

D
exp


−λ0 −

N
r=−N

λr

n
k=1

xkcrk


dx⃗ = 1 (20)

and

Rr =


D
exp


−λ0 −

N
r=−N

λr

n
k=1

xkcrk


n

k=1

xkcrkdx⃗. (21)

It is shown that 2N + 2 nonlinear equations need to be solved for computing the Lagrange multipliers.

3.4. Determination of spectral power

The expected spectral power can be determined by

Sk =


xkp(xk)dxk =


xk exp


−

λ0

n
−

N
r=−N

λrxkcrk


dxk. (22)

Let A = exp(−λ0). Then, Eq. (19) can be written as

p(x⃗) = A exp


−

N
r=−N

λr

n
k=−n

xkcrk


= A exp


−

n
k=−n


N

r=−N

λrcrk


xk


. (23)

Integrating Eq. (23) for xk over 0 to infinity yields

1 =


∞

0
p(x⃗)dx⃗ =


A exp


−

n
k=−n


N

r=−N

λrcrk


xk


dxk

= A
n

k=1


exp


−


N

r=−N

λrcrk


xk


dxk = A

n
k=1

1
N

r=−N
λrcrk

 . (24)

Thus, A =


k


N

r=−N

λrcrk


. (25)



H. Cui, V.P. Singh / Physica A 442 (2016) 91–99 95

Inserting Eq. (25) in Eq. (23) yields a multi-variate exponential distribution as

p(x⃗) =

n
k=−n


N

r=−N

λrcrk


exp


−


N

r=−N

λrcrk


xk


. (26)

Thus, the spectral power can be solved for by inserting Eq. (26) into Eq. (22), which yields

Sk =
1

N
r=−N

λrcrk

(27)

where the Lagrange multipliers are computed from solving Eqs. (20) and (21).

3.5. Extension of autocovariance

It is seen from Eq. (27) that the spectral power derived by CESAS is in the form of inverse polynomials similar to BESA
shown in Eq. (7). The only difference is that Eq. (7)was normalized to spectral density, while Eq. (27) is in the form of spectral
power. Thus, Eq. (27) is also equivalent to the spectral power of the AR process in Eq. (8), which can be written as

Sk =
1

N
r=−N

λrcrk

=
1

N
r=−N

λrz−r

=
121 +

N
n=0

anz−n

2
(28)

where z = exp(−2π ir1tfk), an are the forecasting coefficients, and ∆2 is the gain satisfying the Yule–Walker equation [34].
Eq. (28) shows that the spectral power obtained by CESAS satisfies the form of linear prediction as BESA did. Thus, the
denominator in Eq. (28) becomes

N
r=−N

λrz−r
= ∆−2 1 + a1z + a2z2 + · · · + aNzZ

 
a + a∗

1z
−1

+ a∗

2z
−2

+ · · · + a∗

Nz
−N

= ∆−2
N

s=0

aszs
N

s=0

a∗

s z
−s

= ∆−2
N

r=−N

N−r
k=0

ak+ra∗

kz
r . (29)

From Eq. (29), the Lagrange multipliers can be expressed by the convolution of forecasting coefficients as

λr =
1

∆2

N−r
k=0

ak+ra∗

k . (30)

Thus, the autocorrelation can be extended using the coefficients as

RN+1 = a1RN + a2RN−1 + · · · + amRN+m−1. (31)

It is noted that the extension of the autocorrelation is the same as BESA. However, the computation of forecasting
coefficients has two procedures for CESAS. First, Lagrange multipliers have to be solved from nonlinear equations (19) and
(20). Second, the forecasting coefficients are determined by solving Eq. (30). As a result, it has lower computation efficiency
than BESA using the Levinson–Burg algorithm.

3.6. Forecast

It is known that using the coefficients for extending the autocorrelation in Eq. (31) to weigh the time series yields the
least squared prediction [10,23]. Thus, for stationary normalized time series, forecasting follows the way of extending the
autocorrelation or the autocovariance function as:

yT+1 = a1yT + a2yT−1 + · · · + amyT+m−1 (32)

wherem is the order of forecastingmodel, and is identified by the Akaike information criterion (AIC) or Bayesian information
criterion (BIC) [35,36].

4. Application

4.1. Data description

The proposed derivation of configurational entropy spectral analysis was verified using observed streamflows from the
US Geological Survey (USGS)website. Five stationswere selected fromMinnesota River, UpperMississippi River, Iowa River,
Des Moines River and Illinois River, which are listed in Table 1 along with their drainage areas and locations.
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Table 1
Selected stations from Mississippi River watershed.

Location Station Area (km2) Latitude Longitude

Minnesota River 05301000 10489 45°01′17′′ 95°52′05′′

Upper Mississippi River 05420500 221704 41°46′50′′ 90°15′07′′

Iowa River 05449500 1111 42°45′36′′ 93°37′18′′

Des Moines River 05476000 3237 43°37′06′′ 94°59′05′′

Illinois River 05543500 21391 41°19′37′′ 88°43′03′′

Table 2
Streamflow characteristics.

Location Period Mean (m3/s) Standard deviation (m3/s) Peak (m3/s) Peak/mean

Minnesota River 2005–2010 67.0 15.8 105.4 1.6
Upper Mississippi River 1994–2000 1693.8 566.1 2877.5 1.7
Iowa River 2002–2009 9.3 4.8 26.8 2.9
Des Moines River 2002–2009 13.7 9.1 37.0 2.7
Illinois River 2006–2011 375.1 86.2 531.4 1.4

Table 3
Prediction coefficient estimated using BESA and CESA.

Prediction coefficient BESA CESAS Difference

a0 1.000 1.000 0.000
a1 0.462 0.462 0.000
a2 0.182 0.181 −0.001
a3 −0.043 −0.043 0.000
a4 0.153 0.153 0.000
a5 −0.238 −0.237 0.001
a6 0.039 0.039 0.000
a7 0.068 0.068 0.000
a8 −0.078 −0.078 0.000
a9 −0.033 −0.034 −0.001
a10 −0.055 −0.054 0.001
a11 0.036 0.036 0.000
a12 0.686 0.686 0.000

The selected five stations are distributed over the whole Mississippi River watershed, and the drainage area varies from
1111 km2 to 221,704 km2. Thus, streamflow characteristics are quite different from station to station. Basic statistics of
streamflow of Mississippi River are listed in Table 2 that show that averaged monthly streamflow discharge varies from
9 m3/s to over 1700 m3/s and the standard deviation varies from 4.8 m3/s to 570 m3/s. The peak streamflow represents
the average of yearly maximummonthly streamflow, which is shown to be 1.4–2.9 times the mean streamflow.

4.2. Parameter estimation

The coefficients of prediction by CESAS and BESA theories are computed for theMinnesota River, and are listed in Table 3.
The prediction coefficients of BESA were estimated from the Levinson–Burg algorithm, while the prediction coefficients
of CESAS were obtained by solving Eq. (30) numerically. As shown in the table, the difference was minimal for the two
methods, which is less than 0.001. However, the computing speed was faster using the Levinson–Burg algorithm for BESA.
The recursive Levinson-algorithm is more efficient, as it involves the order of N2 operations with memory storage on the
order of N compared to the order of N3 operations by the Newton–Raphson method for solving the nonlinear equations.

4.3. Results and comparison

Streamflow was forecasted using Eq. (30) by CESAS. Fig. 1 plots the forecasted streamflow in the Mississippi watershed
with 90% confidence intervals. The forecasting lead year varied from 1 year to 3 years based on the characteristics of
streamflow. For rivers like the Upper Mississippi River with sharp repeated peaks every 12 months, CESAS was capable
to forecast with high r2 over 0.9 for up to a 3 year lead time. But for the Minnesota River, where peak streamflow was less
significant, CESAS only forecasted for a 1 year lead time with r2 of 0.766.

Though forecasted streamflow did not fit the observed values exactly, most of the observed values fell inside the 90%
confidence intervals. For example, the mean of forecasted streamflow of Minnesota River turned out as 63.1 m3/s, which
was 5.7% less than the observed value. The peak flow in April was 93.4m3/s, whichwas 11.3% lower than the observed value.
Nevertheless, all the observations fell between the upper and lower 90% confidence intervals, as shown in Fig. 1. However,
there is an exception for Iowa River. Streamflow in Iowa had an unexpected peak streamflow of 26.8m3/s during the second
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Fig. 1. Forecasted streamflow with 90% confidence intervals.

Fig. 2. Forecasted errors using CESAS.

lead year, which exceeded by 38.5% over the past peak streamflow. In this case, the forecasted streamflow was 12.8 m3/s
and the upper 90% was 17.1 m3/s, still smaller than the observed value. It implies that forecasted streamflows with CESAS
were not able to capture the irregular changes in the time series and may miss some unexpected large peaks.

On the other hand, CESASwas not good at forecasting streamflow in low flow season. It can be seen fromDesMoines River
plotted in Fig. 1 that streamflow in this river does not monotonically decrease after the peak, but there is another small peak
during the low flow season. In this case, CESAS forecasted streamflow higher than observation, and the differences between
the observed values and the forecasted values became larger as the lead time increased. As a result, the observed values
fitted the lower 90% confidence intervals for the third lead year as shown in Fig. 2.

Forecasted errors were computed and plotted versus the lead time in Fig. 2. It is seen from the figure that errors for
the Upper Mississippi River had the most random pattern, which suggested that forecasting by CESAS for this river was
consistently satisfactory during the lead time of 3 years. However, forecasted errors for Iowa River and Des Moines River
increased over time, which suggests that CESAS would not be valid for longer lead time forecasts for these rivers.

The forecasted results are verified using the relative error (RE), root mean squared error (RMSE), the coefficient of
determination (r2) and Nash–Sutcliffe efficient (NSE) for all five stations, and are summarized in Table 4. Results showed
good forecasting by the proposed CESAS. The RE values were around 0.1, whichmeans that the forecasting error was around
10%. The r2 values for all the rivers were above 0.7, and r2 was even higher than 0.9 for Upper Mississippi River. Besides, the
NSE values for all cases were higher than 0.4.
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Table 4
Measures of forecasting results for five stations.

Location RE RMSE r2 NSE

Minnesota River 0.083 7.320 0.766 0.484
Upper Mississippi River 0.072 163.578 0.914 0.737
Iowa River 0.129 3.091 0.872 0.675
Des Moines River 0.106 4.661 0.729 0.576
Illinois River 0.069 30.218 0.872 0.658

Fig. 3. Streamflow forecasted using the CESAS and BESA methods.

The prediction coefficients obtained by BESA and CESASmethodswere about the same, with differences less than 0.001%.
As a result, streamflows forecasted by the BESA and CESAS coincided, as shown in Fig. 3. No difference was found in
forecasting streamflow for an accuracy of 0.001 m3/s for rivers from the Mississippi watershed and BESA and CESAS shared
the same confidence intervals as shown in Fig. 3. The drawbacks of CESAS in forecasting irregular flow of dry season in Des
Moines River and non-normal streamflow peak in Iowa River also occurred in the BESA forecasting. This suggests that the
derived CESAS was identical to BESA.

5. Conclusion

The configurational entropy spectral analysis was developed with spectral power as a random variable. Thus, the
maximumentropy spectral analysis encompasses the Burg entropy spectral analysis (BESA) and two configurational entropy
spectral analyses (CESAS and CESAF). The developed CESAS is shown to be identical to the entropy spectral analysis
developed by Burg [9,10]. The derived CESAS is examined using streamflow data obtained from the Mississippi Watershed,
and yields the same results as those estimated from BESA. Besides, CESAS has the same drawbacks as BESA in forecasting
streamflow in low flow season and unexpected peak flows. However, the prediction coefficients are estimated by solving
nonlinear equations, and the computing speed is slower than the Levinson–Burg algorithm. To sum up, CESAS and BESA can
be seen as similar, and the Levinson–Burg algorithm for computing the parameters is recommended.
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