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Abstract This paper develops a minimum relative entropy

theory with frequency as a random variable, called MREF

henceforth, for streamflow forecasting. The MREF theory

consists of three main components: (1) determination of

spectral density (2) determination of parameters by cepstrum

analysis, and (3) extension of autocorrelation function.

MREF is robust at determining the main periodicity, and

provides higher resolution spectral density. The theory is

evaluated using monthly streamflow observed at 20 stations

in the Mississippi River basin, where forecasted monthly

streamflows show the coefficient of determination (r2) of

0.876, which is slightly higher in the Upper Mississippi

(r2 = 0.932) than in the Lower Mississippi (r2 = 0.806).

Comparison of different priors shows that the prior with the

background spectral density with a peak at 1/12 frequency

provides satisfactory accuracy, and can be used to forecast

monthly streamflowwith limited information. Four different

entropy theories are compared, and it is found that the min-

imum relative entropy theory has an advantage over maxi-

mum entropy (ME) for both spectral estimation and

streamflow forecasting, if additional information as a prior is

given. Besides, MREF is found to be more convenient to

estimate parameters with cepstrum analysis than minimum

relative entropy with spectral power as random variable

(MRES), and less information is needed to assume the prior.

In general, the reliability of monthly streamflow forecasting

from the highest to the lowest is for MREF, MRES, config-

uration entropy (CE), Burg entropy (BE), and then autore-

gressive method (AR), respectively.

Keywords Minimum relative entropy � Streamflow

forecasting � Spectral density � Cepstrum analysis �
Configurational entropy � Burg entropy

1 Introduction

The minimum relative entropy (MRE) spectral analysis,

also called minimum cross-entropy spectral analysis, was

developed by Shore (1979, 1981) with spectral power as a

random variable. The MRE theory has shown higher res-

olution in spectral estimation, and is more accurate in

detecting locations of spectral peaks than other spectral

computation methods (Papademetriou 1998). Cui and

Singh (2016a) applied MRE to monthly streamflow fore-

casting and showed its advantage over traditional autore-

gressive (AR) method or Burg entropy (BE) spectral

analysis for both peak and low flow values with longer lead

times. However, there is a minor drawback in the MRE

theory that it suffers from restrictions on the nature of the

process and dependence on the form of the assumed prior

probability density function (Shore 1981; Tzannes et al.

1985). The selected exponential distribution as prior was

tested by Cui and Singh (2016a) using 50–100 years of

historical data, which may not always be available. To

overcome the restriction on the prior, Tzannes et al. (1985)

developed a general method of minimum relative entropy,

where frequency was considered as a random variable.

When a uniform prior is assumed, MRE reduces to the
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configurational entropy (CE) theory (Frieden 1972; Gull

and Daniell 1978). Thus, in this paper the general method

of MRE theory will be developed for streamflow fore-

casting. To distinguish the two MRE theories in the series,

the one used by Cui and Singh (2016a) will be referred to

as MRES for S representing the spectral power, and the one

in this paper developed with frequency as a random vari-

able will be referred to as MREF henceforth.

It was found that MREF is not restricted to the AR

process; with different choices of prior, it can also be

applied to a moving average (MA) or autoregressive and

moving average (ARMA) series (Girardin 2001; Liefheb-

ber and Boekee 1987). Comparing CE to the Burg entropy

(BE), the no prior case for MRES (Feng et al. 2013), it is

shown that CE has higher resolution than BE for estimating

the spectral density of ARMA and MA processes and two

entropy theories are comparable for estimating the AR

process (Nadeu et al. 1981). It was found that monthly

streamflow forecasted by CE had higher reliability and

longer lead time than BE (Cui and Singh 2015, 2016b). On

the contrary, BE appears to be efficient for white noise,

which is a random signal, as suggested by experiments on

speech synthesis (Johnson and Shore 1983; Katsakos-

Mavromichalis et al. 1985). One of the significant differ-

ences between MREF and MRES is the way of computing

parameters. Combining MREF with cepstrum analysis, an

explicit solution for estimating the Lagrange multipliers is

developed (Burr and Lytle 1986; Wu 1983). Finite cep-

strum analysis enables to construct a direct recursive

relationship between the autocorrelation function and the

cepstrum which is simpler than the Levinson algorithm

used for the AR method (Nadeu 1992). However, there is

no simpler way other than the Newton-Raphson method to

solve the N nonlinear equations for computing the param-

eters for MRES. It is noted that cepstrum analysis is an

efficient technique for separation and recovery of time

series, as the homomorphic characteristics of time series

are reminiscent of the cepstrum (Oppenheim and Schafer

2004). Thus, it will be interesting to examine how it works

for forecasting streamflow.

The objective of this paper therefore is to develop the

MREF theory for streamflow forecasting with frequency as

a random variable. The development of the theory contains

four parts: (1) hypothesis on the prior spectral density (2)

determination of the posterior spectral density, (3) esti-

mation of the cepstrum, and (4) extension of the autocor-

relation function. The paper is organized as follows.

Providing a short introduction to the MREF theory in the

first section, the second section introduces the development

of MREF theory. Evaluation of the theory is discussed in

the third section, followed by a discussion on MREF versus

MRES in the fourth section. The paper is concluded in the

fifth section. Two appendices provide additional mathe-

matical details of the study.

2 Development of minimum relative entropy
theory

Let monthly streamflow time series y(t) be denoted as

y1,…, yT, where T is the total time period. Transferring to

the frequency (f) domain, the information on streamflow is

stored in the spectral density q(f). Since the integration of

spectral density over the limit equals 1, q(f) can be treated

as a probability density function of frequency (f) as a

random variable. Thus the development of minimum rel-

ative entropy theory contains the following steps: (1) define

the relative entropy, (2) specify constraints, (3) derive

minimum relative entropy-based spectral density, (4)

compute the Lagrange multipliers, (5) extend the autocor-

relation function, and (6) forecast streamflow. Each of

these steps is now discussed.

2.1 Definition of the relative entropy

Let frequency f be the random variable, and the normalized

spectral density be considered as its probability density

function. The relative entropy, defined as in Kullback

(1959), can be written as

Hðq; pÞ ¼
Z

qðf Þ ln½qðf Þ=pðf Þ�df ð1Þ

where p(f) and q(f) are normalized prior and posterior

spectral density functions. The prior spectral density p(f) is

hypothesized from the observed periodicity of streamflow,

and the least biased posterior spectral density q(f) is esti-

mated by minimizing Eq. (1).

2.2 Specification of constraints

The minimization of the relative entropy needs to be sub-

jected to constraints defined by autocorrelation, which can

be formed in a straightforward manner. Using the Fourier

transform relationship between the autocorrelation and the

spectral density, the constraints can be written as

qr ¼
ZW

�W

qðf Þ expð2pirDtf Þdf ; �N� r�N ð2Þ

where qr is the autocorrelation of lag r, which is estimated

from observed time series, W is the Nyquist frequency,

Dt is the sampling interval taken as 1 month in this paper,

and N is the largest lag where the autocorrelation can be

correctly given from the observed time series data. It is
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noted that N is normally taken from 1/4 up to 1/2 of the

length according to the periodicity of streamflow (Krsta-

novic and Singh 1991).

It is noted that when r = 0, Eq. (2) reduces to

ZW

�W

qðf Þ ¼ 1 ð3Þ

which satisfies the assumption of taking q(f) as a proba-

bility density function of frequency f.

2.3 Estimation of spectral density

The least-biased estimate of the spectral density can be

obtained by minimizing the relative entropy subject to

Eq. (2). Using the method of Lagrange multipliers, the

Lagrangian function can be formulated as

Lðf Þ ¼
ZW

�W

qðf Þ ln½qðf Þ=pðf Þ�df

þ
XN
r¼�N

kr

ZW

�W

qðf Þ expði2pfrDtÞdf � qr

2
4

3
5 ð4Þ

where kr, r = -N, N - 1, …, 0, 1, 2, …, N, are the

Lagrange multipliers. Taking the partial derivative of

Eq. (4) with respect to q(f) and equating the derivative to

zero, one obtains:

oLðf Þ
oqðf Þ ¼ 0

¼
ZW

�W

ln½qðf Þ=pðf Þ�þ 1þ
XN
r¼�N

kr expði2pfrDtÞ
( )

df

ð5Þ

Thus, by rearranging Eq. (5), the posterior distribution

can formulated as

qðf Þ ¼ pðf Þ exp �1�
Xm
r¼�m

kre
i2pfrDt

" #
ð6Þ

Equation (6) is the posterior spectral density obtained by

minimizing the entropy based on prior information and

given constraints. It is determined by solving the Lagrange

multipliers and with the hypothesis on the prior. If the prior

is white noise, the prior spectral density is constantly 1 for

all frequencies, thus, the posterior density becomes

qðf Þ ¼ exp �1�
Xm
r¼�m

kre
i2pfrDt

" #
ð7Þ

which is equivalent to the solution obtained by maximizing

the CE.

2.4 Computation of Lagrange multipliers

The Lagrange multipliers can be solved for numerically by

inputting Eq. (6) into Eq. (2), which yields

qr ¼
ZW

�W

pðf Þ exp �1�
Xm
r¼�m

kre
i2pfrDt

" #
expð2pirDtf Þdf ;

� N� r�N

ð8Þ

Another way to determine the Lagrange multipliers is

by cepstrum analysis (see Appendix 1 for details). Cep-

strum, by definition, is the inverse Fourier transform of the

logarithm of the estimated spectrum. It is a measure of the

rate of change in the spectrum bands, and an efficient

technique along with spectral analysis. Taking the inverse

Fourier transform of the log-magnitude of Eq. (6), one

obtains

ZW

�W

1þ log½qðf Þ� � log½pðf Þ�f gei2pfnDtdf

¼
ZW

�W

�
XN
n¼�N

kne
i2pfnDt

 !
ei2pfnDtdf ð9Þ

It can be seen from Eq. (9) that there are two terms

relating to the spectral density that turn to the cepstrum of

autocorrelation,which is also called autocepstrum. Let the

prior cepstrum of autocorrelation be denoted as ep(n),

which is defined as

epðnÞ ¼
ZW

�W

log pðf Þei2pfnDtdf ð10aÞ

and let e(n) denote the posterior cepstrum of autocorrela-

tion as

eðnÞ ¼
ZW

�W

log qðf Þei2pfnDtdf ð10bÞ

Then, doing the integration of both sides of Eq. (9), one

gets

dn þ eðnÞ � epðnÞ ¼ �
XN
s¼�N

ksdn�s ð11Þ

where dn is the delta function defined as:

dn ¼
1; n ¼ 0

0; n 6¼ 0

�
ð12Þ

Equation (11) can be expanded as a set of N linear

equations:
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k0 ¼ �1� eð0Þ þ epð0Þ
k1 ¼ �eð1Þ þ epð1Þ

..

.

kk ¼ �eðkÞ þ epðkÞ

ð13Þ

Equation (13) enables to solve for the Lagrange multi-

pliers in a more straight-forward manner than does non-

linear Eq. (8). Thus, the Lagrange multipliers can be

estimated from the summation of two cepstrums, the prior

and posterior cepstrums. The prior cepstrum can be

obtained from the observed periodicity of streamflow.

When no prior is given, the cepstrum ep equals 0 and

diminishes, and the solution of Eq. (13) becomes the ones

derived using the CE. On the other hand, the posterior

cepstrum can be obtained from the given lags of N auto-

correlation as

eðnÞ ¼
ZW

�W

log qðf Þei2pfnDtdf

¼
ZW

�W

log
XN
r¼�N

qre
�i2pirDtf

" #
ei2pfnDtdf ð14Þ

However, for a finite length of data, there is a recursive

relation between the autocorrelation and the cepstrum

developed by Nadeu (1992) to avoid the Fourier and

inverse Fourier transforms. In his derivation, the causal

part of autocorrelation, where 0\n�N, was used instead

of �N� n�N. The details of derivation by Nadeu (1992)

can be found in Appendix 2, which shows that the cepstrum

can be estimated from the autocorrelation using

eðnÞ ¼ 2 qðnÞ �
Xn�1

k¼1

k

n
eðkÞqðn� kÞ

" #
; n[ 0 ð15Þ

It is seen from Eq. (15) that the nth lag of cepstrum

e(n) is dependent on the previous n-1 lag of cepstrum and

n-lag of autocorrelation. Thus, for given N lag autocorre-

lations, the cepstrum of autocorrelation can be computed

up to lag N.

2.5 Extension of autocorrelation

It is shown in Eq. (15) that the autocorrelation and cep-

strum are one to one related. On the contrary, the auto-

correlation function can be estimated from the cepstrum

using the inverse function of Eq. (15) as (Liefhebber and

Boekee 1987; Nadeu 1992; Wu 1983):

qn ¼
eðnÞ
2

þ
Xn�1

j¼1

k

n
eðjÞqðn� jÞ ð16Þ

It is seen from Eq. (16) that the autocorrelation of n-th

lag can be estimated from n cepstrums. Thus, for the

autocorrelation beyond lag N, it can be extended one by

one using Eq. (16), in which manner qNþ1 is extended from

q1, q2, …, qN using N?1 cepstrums and is used to extend

to qNþ2, and so forth. Thus, the autocorrelation of N?k th

lag can estimated from N?k cepstrums as

qNþk ¼
e0ðN þ kÞ

2
þ
Xm
j¼1

k

N þ k
e0ðjÞqðN þ k � jÞ; k[ 0

ð17Þ

where m is the model order and e’(j) represents the pos-

terior cepstrum obtained by MREF satisfying

e0ðjÞ ¼
ZW

�W

log qðf Þei2pfjDtdf

¼
ZW

�W

log pðf Þ exp �1�
Xm
r¼�m

kre
i2pfrDt

" #( )
ei2pfjDtdf

ð18Þ

It is noted from Eq. (18) that the posterior cepstrum is

estimated from the prior and the Lagrange multipliers,

which can be further equal to

e0ðjÞ ¼ epðjÞ � dðjÞ � kðjÞ ð19Þ

For different j values, the posterior cepstrum becomes

e0ðjÞ ¼ epð0Þ � 1� k0; when j ¼ 0 ð20aÞ

e0ðjÞ ¼ epðjÞ � kj; when 1\ j\N ð20bÞ

e0ðjÞ ¼ epðjÞ; when j[N ð20cÞ

since dj ¼ 0 when j=0, and kj does not exist for j[N.

Thus, replacing the cepstrum with Eq. (20), Eq. (17) can

be written as

qNþk ¼
epðN þ kÞ

2
þ
Xm
j¼1

k

N þ k
e0ðjÞqðN þ k � jÞ ð21Þ

where m is the order of model. Equation (20) is the

extension of autocorrelation beyond given lag N using

MREF. It is noted from Eq. (21) that when no prior is

given, the first term diminishes and yields that derived

from CE.

2.6 Forecasting

Streamflow is forecasted in the manner that autocorrelation

function is extended. It can be seen from Eq. (21) that

autocorrelation of lag N?k is extended from previous m

autocorrelations combined with m cepstrums of autocor-

relations. In the same manner, streamflow can be fore-

casted from previous m observations using m cepstrums

using Eq. (21) (Oppenheim and Schafer 1975; Wu 1983).
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Thus, to forecast streamflow, Eq. (21) can be written in

time series, where the input data changes to yt and cep-

strum c(n) is used instead of e(j):

yTþk ¼
cpðT þ kÞ

2
þ
Xm
j¼1

k

T þ k
c0ðjÞyðT þ k � jÞ ð22Þ

where c(j) is the cepstrum of the time series defined by

CðnÞ ¼ 1

2p

Zp

�p

log
X1
n¼�1

yðtÞe�2pnif

�����
�����e2pnif df ð23Þ

It is noted that eðnÞ ¼ 2CðnÞ(see Appendix 1), one can

write Eq. (22) as

ŷTþk ¼
1

4
epðN þ kÞ þ 1

2

Xm
j¼1

k

T þ k
e0ðjÞyðT þ k � jÞ ð24Þ

When a uniform prior is assumed, ep is 0, thus, Eq. (24)

reduces to

ŷTþk ¼
1

2

Xm
j¼1

k

T þ k
eðjÞyðT þ k � jÞ ð25Þ

which is equivalent to streamflow forecasted by Cui and

Singh (2015). The order of forecasting model m is identi-

fied by the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC) (Box and Jenkins

1970; Hipel and McLeod 1994).

3 Evaluation

The same 20 sets of streamflow data from the Mississippi

River watershed, as used in the paper of Cui and Singh

(2016a), were used in this paper. The Mississippi River

covers the drainage area of over 2,981,000 km2, thus, it is

divided as the Upper Mississippi (UM) River and the

Lower Mississippi (LM) River. There are 11 stations

chosen from the UM and 9 from the LM with the drainage

area varying from 466 km2 to 2,915,858 km2. As dis-

cussed in Cui and Singh (2016a), the most significant

periodicity of the Mississippi River is 12 months, as well

as less significant periodicities of 3, 4 and 6 months. The

periodicity of each station was tabulated as shown in

Table 1, which is the basis for choosing the prior spectral

density. It is noted that the periodicity is constant for the

same river reach. The periodicity of small frequencies like

3 months or 4 months is less significant in streamflow for

the downstream reach than for the upstream reach, and

also less significant for the Lower Mississippi than for the

Upper Mississippi. To apply the MREF theory, one needs

to hypothesize a prior based on the streamflow periodicity

first.

3.1 Hypothesis on prior spectral density

The prior hypothesis was formulated for the distribution of

spectral power at each frequency when deriving MRES,

and long records of historical data are needed for a proper

hypothesis. However, in this paper, the periodicity of

streamflow is the only information needed for the

hypothesis on the spectral density. It is noted in Table 1

that streamflow in the Mississippi River watershed has

periodicities of 12, 6, 4, and 3 months with different

degrees of significance. Thus, the prior spectral density was

assumed as background for the six types of prior hypoth-

esis, as stated in Table 2 and plotted in Fig. 1.

Prior 1 is defined by a condition when no prior infor-

mation is given, thus, the spectral density is constantly 1. In

this case, the MREF is equivalent to the CE theory. Priors

2–6 were constructed by combining the background noise

p(f) = 0.01 and the spectral peak at a specific frequency.

Prior 2 is defined by the unique peak condition with

assumed peak p(f) = 1 at f = 1/12, which may be applied

at most of the stations in the Lower Mississippi. Prior 3 has

two significant periodicities at frequencies 1/12 and 1/6,

however, the spectral peak at frequency 1/6 is assumed to

be 0.6 not 1 for lower significance than at frequency 1/12.

Based on observed streamflow periodicity, the suggesting

priors are listed in the last column in Table 1. It is noted

that streamflow observed in the main Mississippi River is

prone to Prior 3. Prior 4 and Prior 5 correspond to adding

small spectral peaks at the frequency of 1/3 or 1/4, which

can be applied in the middle of the Mississippi River

watershed. The last prior spectral density is composed of

four peaks at all possible periodic frequencies, which is

observed for Minnesota River (MN) and upstream Oua-

chita (OUU) River.

3.2 Spectral density

For assumed six priors, the posterior spectral density was

estimated by the MREF theory. The estimated spectral

density was verified with the one obtained from the fast

Fourier transform (FFT) through the Itakura-Saito (I-S)

distortion, which is a divergence measure between two

spectral densities. The smaller value of Itakura-Saito dis-

tortion represents a higher agreement with FFT. It is noted

in Table 3 that choosing Priors 2–6 generally had higher

resolution than Prior 1 except for the OUD and LMD. The

I-S distortion estimated from Prior 1 was 1.1 to 38.9 times

that from Prior 2, especially for White River downstream

(WD) Prior 1 became 180 times of Prior 2. This suggests

that prior information improves the resolution of spectral

estimation.

Comparing the Itakura-Saito distortion of different pri-

ors, the one having the least distortion (Prior*) is tabulated
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in the last column of Table 3. It is interesting to note that

the Prior* with the least I-S distortion is not exactly the

same as that suggested in Table 1 from observations. For

example, the periodicity observed for the Minnesota River

(MN) suggested Prior 6 for four spectral peaks at 1/12th,

1/6th, 1/4th and 1/3rd frequencies in Table 1. However,

after verification, it reduced to Prior 2 with uni-peak for the

upstream reach (MNU) and Prior 5 with three peaks for the

downstream reach (MND). It implies that the small peaks

observed at 3 or 4 months periodicity were not that sig-

nificant for the MN. Besides, Prior 6 was not suggested by

any of the cases, which implies that none of the streamflow

series possessed equally strong periodicity for frequencies

of 1/6, 1/4 and 1/3. On the contrary, for the Des Moines

River upstream (DMU), where the only 12 months peri-

odicity was observed to be significant, the spectral density

estimated with Prior 5 was suggested for additional peaks

at 1/6 and 1/3 frequencies.

Though the prior selected from the observed periodicity

may not possess the least I-S distortion, the difference

between the values of I-S distortion for different priors was

not significant. The variation of the I-S distortion was

between 0.0005 and 0.10 from Prior 2 to Prior 6. Besides,

the difference in the value of I-S distortion between Prior 2

and Prior* was not significant and varied from 0.01 to 0.36

as shown in Fig. 2. Especially for the Lower Mississippi,

Prior 2 led to the least I-S distortion. It can also be seen

from Fig. 3 where the estimated spectral density with Prior

1, Prior 2 and Prior* are plotted against the one from the

FFT. For all the priors, the 1/12th peak was clearly

detected, though it is about 23 % overestimated by Prior 2

and 11.7 % overestimated by Prior*. The shape of the

spectral peak by Prior 2 and Prior* were closer to the one

from FFT than that by Prior 1, as the peak by Prior 1 was

wider than observed. For example, the area under the

1/12th peak of spectral density estimated for MND was 2

Table 1 Periodicity of

streamflow at each station and

suggested prior

Name Location Station Periodicity Suggesting prior

UMU Upper Mississippi upstream 05227500 12, 6, (4, 3) Prior 3

MNU Minnesota upstream 05301000 12, 6, 4, 3 Prior 6

MND Minnesota downstream 05330000 12, 6, 4, 3 Prior 6

UMC Upper Mississippi center 05420500 12, 6 Prior 3

IU Iowa upstream 05449500 12, 6, (4, 3) Prior 3

ID Iowa downstream 05465500 12, (6, 4) Prior 2

DMU Des Moines upstream 05476000 12, (6, 4, 3) Prior 2

DMD Des Moines downstream 05490500 12, 6 Prior 3

ILU Illinois upstream 05543500 12, 6, 3 Prior 4

ILD Illinois downstream 05568500 12, 6, 3 Prior 4

UMD Upper Mississippi downstream 07010000 12, (6) Prior 2

MS Missouri 06934500 12, 6 Prior 3

OH Ohio 03611500 12 Prior 2

WU White upstream 07077000 12 Prior 2

WD White downstream 07289000 12, 6 Prior 3

BB Big Black 07290000 12, 6, 4 Prior 5

BU Buffalo 07295000 12 Prior 2

OUU Ouachita upstream 07359002 12, 6, 4, 3 Prior 6

OUD Ouachita downstream 07367005 12 Prior 2

LMD Lower Mississippi downstream 07374000 12 Prior 2

Table 2 Hypothesis on the

prior spectral density
No. of prior Prior spectral density

Prior 1 (CE) p(f) = 1

Prior 2 p(f) = 0.01, p(1/12) = 1

Prior 3 p(f) = 0.01, p(1/12) = 1, p(1/6) = 0.6

Prior 4 p(f) = 0.01, p(1/12) = 1, p(1/6) = 0.2, p(1/4) = 0.2

Prior 5 p(f) = 0.01, p(1/12) = 1, p(1/6) = 0.2, p(1/3) = 0.2

Prior 6 p(f) = 0.01, p(1/12) = 1, p(1/6) = 0.2, p(1/4) = 0.2, p(1/3) = 0.2
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times the one estimated by FFT or other priors. Further-

more, it can be seen from the figure that the location of

spectral peak of the posterior spectral density was consis-

tent with the one assumed from the prior. For the Upper

Mississippi River (UMU, UMC, and UMD), spectral peak

at frequencies 1/12 and 1/6 were estimated with Prior 3,

which were the hypothesized peaks by Prior 3. For MND or

MS, the additional peaks occurred at frequencies 1/3 or 1/4,

where Prior 5 or Prior 4 was assumed. However, the esti-

mated peaks at small frequencies sometimes were too large

as compared with the one from FFT, and the use of Prior*

was doubtful. As shown in the figure, the spectral peak

estimated was 2.8 times the observed peak at the 1/6th

frequency for UMD, more than 10 times the observed peak

at the 1/4th frequency for MS. Nevertheless, the Prior* had

estimated a slightly smaller I-S distortion, the estimation

with Prior 2 provided for a satisfactory resolution. Fur-

thermore, when forecasting streamflow with the lack of

periodicity information, Prior 2 can be a proper choice as

monthly streamflow possesses a strong 12 months

periodicity.

3.3 Forecasting results

With the selected prior, streamflow was forecasted, as

plotted in Fig. 4, while the goodness of fit was evaluated by

the root mean square error (RMSE), the coefficient of

determination (r2), and the Nash-Sutcliffe efficiency coef-

ficient (NSE) as tabulated in Table 4. It is noted that the

MREF theory was capable of forecasting streamflow with

r2 of 0.876; in particular it is 0.932 for the Upper Missis-

sippi (UM) and 0.806 for the Lower Mississippi (LM). The
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Fig. 1 Six types of prior hypotheses
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higher accuracy obtained for forecasting streamflow in the

UM than that in the LM is related to the more regular and

repeatable streamflow hydrograph, timing and amplitude of

the peaks in the UM than in the LM. For example, it can be

seen from the streamflow of White River located in the LM

in Fig. 4 that the hygrograph, timing of the peak and peak

volume are changing from year to year in a somewhat

normal fashion. For this case, the MREF was only able to

provide the forecast with r2 of 0.631 and NSE of 0.569 for a

2 years lead time.

Streamflow forecasted with Prior 1, Prior 2, and Prior*

are also plotted in Fig. 4. Without any prior information,

streamflow forecasted with Prior 1 is smoother than with

other priors, and the shape of hydrograph kept the same

from year to year. Thus, when observed streamflow is

regular, repeatable, streamflow forecasted with Prior 1 was

as good as with other priors (see UMC, UMD and MS).

However, streamflow forecasting with Prior 1 is weak for

an irregular change in hydrograph or a multi-peak flow. It

can be seen from streamflow forecasted for LMD that Prior

1 forecasted streamflow monotonically rising from October

to May and then decreasing, while observed streamflow

had fluctuating peaks. For UMU and MND Rivers,

streamflow did not drop directly after the peak in March,

however, there was another small rise in May, which was

not forecasted using Prior 1. For the above cases, the other

prior information is recommended. It can be seen that Prior

2 was capable of forecasting multi-peaks that fluctuated

during the peak season of LMD and WU, and to forecast

the small rise for UMU and MND. Furthermore, stream-

flow forecasted during the low flow period was more

reliable for choosing a prior other than Prior 1. It can be

seen from the figure that streamflow forecasted with Prior 1

during September to February was 2.7 m3/s to 20.8 m3/s

higher than the observation, while for other prior the dif-

ference was less than 5.4 m3/s. Besides, the peak flow

forecasted with Prior 1 dropped by 5.6–13.5 % year by

year. Due to the drop in the forecasted peak of Illinois

upstream (ILU), the forecasted NSE of the second lead year

Table 3 Computed Itakura-

Saito distortion for each prior
Name Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 Choosing

prior

UMU 6.155 2.340 2.157 2.169 2.268 2.261 Prior 3

MNU 41.527 1.894 2.458 2.107 2.095 2.119 Prior 2

MND 3.688 1.409 1.288 1.171 1.091 1.194 Prior 5

UMC 6.243 1.276 0.916 0.918 0.930 0.977 Prior 3

IU 1.513 0.064 0.076 0.054 0.062 0.062 Prior 4

ID 5.504 1.997 2.275 2.039 2.150 2.180 Prior 2

DMU 19.464 2.218 2.060 1.911 1.856 1.908 Prior 5

DMD 8.956 2.454 2.632 2.247 2.468 2.350 Prior 4

ILU 26.459 0.692 1.018 0.945 0.925 1.080 Prior 2

ILD 27.722 1.065 1.368 1.302 1.295 1.450 Prior 2

UMD 16.128 2.862 2.801 2.825 2.928 2.946 Prior 3

MS 2.010 1.875 1.905 1.825 1.860 1.962 Prior 4

OH 2.799 0.274 0.614 0.520 0.534 0.665 Prior 2

WU 1.962 1.144 1.634 1.445 1.489 1.641 Prior 2

WD 158.595 0.881 1.165 1.041 1.025 1.225 Prior 2

BB 4.820 0.446 0.675 0.601 0.593 0.758 Prior 2

BU 26.210 1.481 1.659 1.569 1.559 1.705 Prior 2

OUU 39.996 1.612 2.396 2.135 2.150 2.419 Prior 2

OUD 1.793 1.839 2.505 2.261 2.311 2.525 Prior 1

LMD 0.896 1.439 1.615 1.559 1.569 1.687 Prior 1
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Fig. 2 Comparison of the Itakura-Saito distortions for Prior 2 and

Prior*
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decreased from 0.769 of the first lead year to 0.547, when

the forecasted peak from Prior 2 was within 4.3 %

variation.

Thus, it can be noted that additional prior information

improved forecasting, while which prior to be chosen is not

that significant. Again, as shown in Fig. 4, streamflows

forecasted by Prior 2 and Prior* were close to each other,

and the average values of NSE for the two priors were 0.77

and 0.78, respectively. It can be seen from Fig. 5, where

the values of NSE estimated with Prior 2 and Prior* are

plotted, that the difference between the two priors is min-

imal. It is interesting to note that the I-S distortion for

MNU was smaller for Prior* than for Prior 2, but NSE was

higher for Prior 2. This suggests that the minimal advan-

tage of choosing Prior* over Prior 2 in spectral estimation

does not carry over to streamflow forecasting. Besides, for

Lower Mississippi, Prior 2 is the only choice for fore-

casting. Thus, the main periodicity of 12 moth is reiterated

and Prior 2 is a proper assumption for estimating the

spectral density and forecasting streamflow of the Missis-

sippi River.

4 Discussion

The estimated spectral density and forecasted streamflow

showed that adding prior information generally yielded

higher resolution and accuracy. It was shown by Cui and

Singh (2016a) that the MRES theory had higher resolution

in estimating the spectral density and forecasted with more
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Fig. 3 Estimated spectral densities with different priors
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accuracy with longer lead time than the BE theory. It can

be summarized that no matter which variable is defined as a

random variable, the prior information improves the MRE

theory over the maximum entropy (ME) theory. Then

comes the question of which way of defining entropy is

better, spectral power as a random variable or frequency as

a random variable.

When the random variable is defined by the spectral

power, both the MRES and BE theories yield the spectral

density in the form of inverse polynomials, where the roots

are the forecasting coefficients. In this case, the coefficients

are solved from N nonlinear equations, and streamflow is

forecasted by linear prediction. On the other hand, when

the random variable is defined by frequency, the spectral

density is in the form of exponential function for MREF

and CE. Taking the inverse Fourier transform of the log-

arithm of spectral density, which is the cepstrum of the

autocorrelation, the Lagrange multipliers can be directly

solved from the cepstrum. The extension of autocorrelation

and forecasting of streamflow, in this case, are processed

from the recursive function associated with the cepstrum.

Furthermore, the prior is hypothesized for the distribution

of spectral power for MRES while for the spectral density

for MREF. Let us now compare how much difference the

two entropy definitions make.

4.1 Without prior information

Without considering the impact of prior information, we

first compare BE and CE. It is found from the I-S distortion

tabulated in Table 5 that the I-S distortion is higher for BE

than CE, which suggests that the resolution in estimating

the spectral density was higher by CE than by BE. It can be

seen from Fig. 6 that the spectral density estimated from

BE had multiple peaks but the order of significance was

disordered. The main periodicity of the Mississippi River is

1/12, thus, the most significant peak should be found at

frequency 1/12, which was estimated correctly by CE.

Table 4 Forecasted result of MREF

Name RMSE (m2/s) r2 NSE

UMU 5.719 0.968 0.862

MNU 2.113 0.880 0.741

MND 15.816 0.973 0.835

UMC 46.866 0.934 0.932

IU 1.116 0.844 0.704

ID 13.316 0.891 0.838

DMU 1.531 0.971 0.837

DMD 16.215 0.978 0.850

ILU 10.488 0.946 0.867

ILD 16.236 0.891 0.805

UMD 209.338 0.986 0.884

MS 30.595 0.998 0.960

OH 860.748 0.660 0.618

WU 605.073 0.631 0.569

WD 1809.441 0.739 0.533

BB 22.956 0.855 0.809

BU 0.309 0.895 0.834

OUU 5.120 0.782 0.774

OUD 55.651 0.749 0.611

LMD 1179.229 0.950 0.811

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Prior 2 Prior*

Fig. 5 Comparison of NSE for Prior 2 and Prior*

Table 5 Computed Itakura-Saito distortion for different methods

Name MREF MRES CE BE

UMU 2.157 2.919 6.155 13.296

MNU 1.894 1.187 41.527 34.180

MND 1.091 1.606 3.688 9.475

UMC 0.916 0.942 6.243 13.356

IU 0.054 0.071 1.513 5.323

ID 1.997 2.510 5.504 10.754

DMU 1.856 1.995 19.464 25.579

DMD 2.247 2.904 8.956 8.570

ILU 0.692 0.505 26.459 20.933

ILD 1.065 1.356 27.722 33.325

UMD 2.801 1.917 16.128 49.393

MS 1.825 1.981 2.010 2.644

OH 0.274 0.235 2.799 2.783

WU 1.144 0.429 1.962 2.062

WD 0.881 0.631 158.595 563.501

BB 0.446 0.472 4.820 4.056

BU 1.481 1.250 26.210 33.181

OUU 1.612 0.651 39.996 16.724

OUD 1.839 0.873 1.793 1.958

LMD 1.439 0.922 0.896 1.547
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However, using BE, the largest peak shifted, for example,

the spectral peak estimated for UMC, UMD, and MS in

Fig. 6, shifted to frequency 1/6 but was not at frequency

1/12. Besides, for the spectral density estimated for ILU,

and ILD, though the largest peak was estimated at fre-

quency 1/12 for BE the same as for CE, the second largest

peak estimated at frequency 1/6 by BE was 2.3 and 4.7

times larger than the one from FFT, respectively. However,

CE ignored small peaks to make sure the largest peak was

correctly estimated, thus, the spectral density obtained by

CE was uni-peak with periodicity at frequency 1/12.

The advantage of estimating the location of spectral

peaks by CE continued in streamflow forecasting. It can be

seen from Fig. 7 that graphs streamflow forecasted for the

two ME methods. Due to the shift in the estimation of

spectral density for UMC, UMD and MS, the peak flow

forecasted by BE did not match the observations. The peak

flow forecasted by BE was 1 month late for the third lead

year for UMC and 1 month early for UMD and MS. CE

can capture the peak flow correctly repeated every

12 months, as CE strongly emphasized the 12 months

periodicity for spectral estimation. Besides, the forecasting

lead time for UMU and UMC is longer for CE than BE. As

shown in Fig. 7, the peak flow was forecasted with error

less than 0.1 by CE for two year lead time, but the error by

BE was larger than 0.3 for the forecasted peak second lead

year. It can be seen from Fig. 8, where the forecasted errors

were plotted against lead time, that forecasted error by BE

was earlier to exceed 0.2 than by CE. However, both BE

and CE were weak at forecasting streamflow during low

flow season, which were from September to February. For

example, during the 2nd lead year of UMU, the average

streamflow forecasted by BE was 21.1 % higher than the

observation, while that of CE was 19.3 % higher than the

observation. It is noted from Fig. 8 that the absolute values

of errors by BE were larger than 0.3 during the low flow

season compared to those of around 0.2 by CE. As listed in

Table 6, CE uses orders of 1–2 more for streamflow fore-

casting than BE, especially for the Lower Mississippi,

where BE failed to provide reliable forecasting with a

model order of 2. CE was generally applicable to forecast

streamflow for the whole watershed with NSE of 0.604

compared to that of 0.525 for BE as shown in Table 7.

4.2 With prior information

The difference in the spectral estimation between MRES

and MREF was similar to that between BE and CE. It can

be seen from Fig. 9 that the spectral density estimated by

MRES is more likely to be multi-peak spectra compared to

MREF, though the location of small peaks may not exactly

be consistent with the ones from FFT. As shown in the

figure, the spectral density estimated by MRES had addi-

tional peaks at frequencies 1/4 and 1/3 for UMU, at fre-

quency 1/3 for UMD, and at frequency 1/4 for ILD. On the

contrary, the spectral density estimated by MREF had

peaks at the specified frequency from the prior and seldom

had peaks additional to the one from FFT. Like the

MS
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maximum entropy case, MREF was more likely to have the

largest peak at the correct location. However, the capability

of detecting multi-peaks of MRES did not guarantee a

smaller I-S distortion. As shown in Table 7, the values of

I-S distortion of the two methods were similar, where the

average value of I-S distortion was 1.386 for MRES and

1.268 and MREF. The number of counts that the I-S

distortion was smaller for MREF vs. MRES was 10:10, as

plotted in Fig. 10. It was smaller than that by CE vs. BE of

14:6, which suggests that the advantage of estimating the

spectral density using frequency as a random variable is

more significant for applying ME than MRE.

The model orders used for streamflow forecasting by the

two entropy methods were similar, as shown in Table 6,
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Fig. 8 Forecasted errors by BE and CE
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which suggests that the capability of possessing the past

information is similar for the two methods. Thus, the dif-

ference is how the two methods deal with that information

to forecast streamflow. It is seen from the forecasted result

that the NSE shown in Table 7 obtained by MREF was

0.784, slightly higher than 0.728 of MRES. Based on the

computed NSE, the preference for choosing MREF over

MRES rose to 15:5. This suggests that though there were 5

stations that had higher resolution spectral densities using

MRES, streamflow forecasted by MREF was more reliable.

It was noticed that for these cases the difference between

the values of NSE for MRES and MREF was less than

0.04. However, streamflows forecasted by the two MRE

theories were difficult to distinguish from Fig. 11, where

both theories fitted observations satisfactorily. It can be

noted from forecasted errors in Fig. 12 that two methods

had similar accuracy and forecasting lead time for fore-

casting streamflow. But for UMU, MRES was slightly

better than MREF for forecasting low flow. It is found that

low flow forecasted by MRES was 11.7 m3/s higher than

observed flow, while that by MREF was 1.1 m3/s higher

than the observation. Though the forecasted errors plotted

were close and the differences in errors were less than 0.05

for almost all cases, the difference in forecasted low flow

of UMU was larger than 0.1.

4.3 Spectral power or frequency

No matter which entropy theory is used, both MRE theories

captured the largest peak at the 1/12 frequency and

emphasized the yearly periodicity. Now we return to the

question of which way of defining entropy is better.

With the spectral power as a random variable, the

spectral density derived from MRES is in the form of

polynomial, while the other one, with frequency as a ran-

dom variable, obtains spectral density in the form of

exponential. With the exponential formula, the spectral

density estimated by MREF is no longer restricted to the

AR process, but can also be applied to the ARMA and MA

(Liefhebber and Boekee 1987) processes. However, MRES

was more likely to capture small peaks, while MREF

ignored small peaks and only focused on the peaks through

the hypothesized prior. The peak of the spectral power

estimated by MREF is more impacted by the prior

assumption.

Another difference is in the hypothesis on the prior.

MRES assumes a prior for the distribution of the spectral

power, while MREF assumes one on the spectral density.

The way of imposing prior by MREF is more straight-

forward than MRES. To apply the MRES, one needs to

have long historical data to obtain the past spectral power

Table 6 Model orders for different methods

Name MREF CE MRES Burg AR

UMU 13 13 13 13 8

MNU 13 13 12 12 8

MND 13 12 12 13 6

UMC 14 13 12 12 8

IU 13 12 13 13 13

ID 13 14 14 14 13

DMU 14 14 13 14 14

DMD 14 14 14 13 13

ILU 15 14 14 12 5

ILD 16 16 15 14 3

UMD 16 15 15 14 11

MS 16 15 15 15 10

OH 16 16 16 15 13

WU 18 18 18 6 1

WD 10 9 8 9 2

BB 16 15 16 16 8

BU 16 16 15 15 4

OUU 14 13 15 2 2

OUD 10 11 8 2 2

LMD 12 12 11 11 2

Average 14.1 13.75 13.45 11.75 7.3

Table 7 Computed NSE for different methods

Name MREF MRES CE BE AR

Prior 2 Prior*

UMU 0.841 0.862 0.724 0.725 0.697 0.556

MNU 0.741 0.741 0.702 0.492 0.484 0.381

MND 0.774 0.835 0.671 0.585 0.554 -0.062

UMC 0.857 0.932 0.816 0.785 0.737 0.598

IU 0.800 0.804 0.608 0.498 0.475 0.416

ID 0.888 0.888 0.829 0.548 0.544 0.377

DMU 0.780 0.837 0.674 0.501 0.476 0.609

DMD 0.877 0.850 0.764 0.653 0.700 0.741

ILU 0.867 0.867 0.788 0.658 0.658 0.097

ILD 0.905 0.905 0.783 0.755 0.709 0.016

UMD 0.841 0.884 0.814 0.787 0.752 0.622

MS 0.929 0.960 0.920 0.790 0.783 0.745

OH 0.618 0.618 0.645 0.540 0.539 0.476

WU 0.569 0.569 0.545 0.432 0.179 0.030

WD 0.533 0.533 0.544 0.498 0.274 0.088

BB 0.809 0.809 0.624 0.481 0.543 0.334

BU 0.834 0.834 0.869 0.670 0.623 0.329

OUU 0.774 0.774 0.748 0.427 0.004 0.004

OUD 0.611 0.611 0.621 0.503 0.071 0.069

LMD 0.811 0.811 0.874 0.746 0.708 0.060
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series and to analyze the distribution of spectral powers at

each frequency, or at least the periodicity of streamflow

needs to be known, but MREF does not. To apply MREF,

one needs to add peak spectra at the significant period of

the streamflow analyzed in addition to the background

noise. In such a way MREF can even be applied to data

without periodicity information, since the 12 months

periodicity is common for monthly streamflow. Thus, the

Prior 2 assumption is generally applicable for any monthly

streamflow series. This suggests that to maintain the same

resolution MRES needs more information to be collected a

priori than MREF.

The way of solving for the Lagrange multipliers and the

forecasting coefficients is more straightforward for MREF

than for MRES. MRES estimates parameters by solving the

N nonlinear equations (Alsaka et al. 1988), while MREF uses

cepstrum analysis to estimate the Lagrange multipliers. From

the given N autocorrelations, cepstrum can be obtained

through the recursive function up to lagN. On the contrary, the

autocorrelation is extended from theN posterior cepstrum and

the prior cepstrum beyond the lag N. Furthermore, the MREF

theory forecasts streamflow based on cepstrum analysis or

specifically, say, the hypothesized prior cepstrum. It may be

seen in the way that using the MREF method in Eq. (24), the

prior cepstrum is imposed as the background of streamflow

fluctuation to maintain the periodicity assumed in the prior

spectral density. Figure 13 plots the prior cepstrum corre-

sponding to the six priors used for MREF, which shows how
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spectral analysis impacts the streamflow time series. Cep-

strum is inverse Fourier transform from spectral density,

which represents the effect of different periodicities on the

time series. As stated in Eq. (24), the cepstrum is not only

used for estimating the prediction coefficients, but it directly

influences the future prediction. It is seen from the figure that

the cepstrum fluctuated over time and the fluctuating fre-

quency is different for each prior depending on which peri-

odicity is assumed in the prior spectral density. It may be the

reason why MREF has the capability to forecast small peaks

of streamflow, and the hydrograph is less smooth but closer

to the observation thanMRES.When no prior information is
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given, the prior cepstrum constantly equals 0 and has no

impact on streamflow forecasting.

The above comparison of different methods is summa-

rized in Table 8. In general, MRE theories, both MRES

and MREF, require more information as the prior than

maximum entropy (ME) theories, including BE and CE,

while MRES needs longer historical data to assume the

prior hypothesis than does MREF. The entropy theories,

MREF, MRES and CE, need a larger model order than BE,

and all entropy theories have larger order than has AR. The

spectral density estimation has a higher resolution for the

MRE theories than the ME theories, and within two ME

theories CE yields lower I-S distortion than BE. The

forecasted errors are smaller for MRE than ME, and using

frequency as a random variable (MREF or CE) is smaller

than that using spectral power (MRES or BE). The fore-

casting lead time is obtained longer using MRE than ME,

and longer using CE than BE. To sum up, the reliability of

streamflow forecasting from high to low is for MREF,

MRES, CE, BE and then AR.
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Fig. 13 Prior cepstrum computed from six prior spectral densities

Table 8 Comparison for different methods

Statistics Order

Model order AR\BE\MRES, CE, MREF

Itakaru-Saito distance BE[CE[MRES, MREF

RMS AR[BE[CE[MRES[MREF

NSE AR\BE\CE\MRES\MREF

Lead time AR\BE\CE\MRES, MREF

Information needed BE, CE\MREF\MRES
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5 Concluding remarks

The minimum relative entropy theory is developed by

considering frequency as a random variable in this paper.

The MREF theory forecasts monthly streamflow from 20

stations in the Mississippi River watershed with a high

value of NSE of 0.784. Similar to the MRES theory,

streamflow forecasted for the Upper Mississippi River has

a higher NSE than for the Lower Mississippi, but the dif-

ference is less than 0.1.

No matter which prior is chosen, the MREF theory does

not miss estimating the largest peak at frequency of 1/12,

the main periodicity of the Mississippi River. However,

with additional information as prior, the spectral density

has higher resolution than that of the CE theory. The dif-

ference in the estimation of spectral density with different

priors is minimal, and Prior 2 is applicable for monthly

streamflow of any stations on Mississippi River, as spectral

peaks at other frequencies are not as significant as the one

at frequency 1/12. Besides, forecasted streamflow with

prior is more reliable than that from the CE theory, espe-

cially for multi-peak flow condition and low flows. Fur-

thermore, the lead time by MREF is also longer than for

CE. Thus, it can be summarized that the MRE theories are

generally better than the ME theories for both higher res-

olution in the spectral estimation and higher reliability in

streamflow forecasting.

The spectral density estimated by the MREF or CE

theory has higher resolution than the MRES or BE theory

based on the I-S distortion. However, the advantage of

choosing frequency as a random variable over spectral

power is more significant for ME than MRE, since BE

shifts the peaks for multi-peak condition. Comparing to

MRES and BE, MREF and CE emphasize the main peri-

odicity of streamflow more, and sacrifice small peaks to

maintain the largest peak at the correct location.

Streamflow forecasted by MREF or CE is more reliable

than by MRES or BE. The advantage of using CE over BE

is significant for streamflow forecasting. Though more

model orders are required to apply CE, streamflow fore-

casted by CE is more consistent with periodicity and has a

longer lead time. The difference between MREF and

MRES is not as significant as that between BE and CE.

Both MRE theories use a similar order of model and the

goodness fit has less difference. However, NSE for MREF

is higher than for MRES by about 0.56 for streamflow in

the Mississippi River watershed. The main advantage of

using MREF over MRES is in the straightforward prior

assumption and in the parameter estimation with cepstrum

analysis. The prior is needed to be assumed on the dis-

tribution of spectral power, thus more prior information is

needed to construct the prior hypothesis for MRES than

for MREF. Though both MRE and MRES are capable of

forecasting streamflow with limited streamflow informa-

tion, MRES needs historical data to test the prior

hypothesis, while MREF is even available for stations

with lack of periodicity information with the Prior 2

option.

The MRE theory provides a foundation for streamflow

forecasting using entropy theory. The total number of four

entropy approaches are discussed in the paper, which are

MRES, BE, MREF and CE. Though the proposed method

is designed for monthly streamflow forecasting, it is not

restricted to monthly time scale, as it may also be applied

to other time scales, for example hourly, daily, weekly or

annual time series. Furthermore, the entropy theory can be

derived for multivariate condition by defining entropy in

the form of vector so that streamflow can be forecasted

linking to other climate indicators. It would be potentially

useful for hydroclimate analysis.

Appendix 1: Cepstrum analysis

Cepstrum is defined as the inverse Fourier transform of the

log-magnitude of Fourier spectrum. For a given streamflow

time series y(t), the cepstrum can be computed using the

following steps.

First, taking the Fourier transform of the original series

y(t), one obtains

Yðf Þ ¼
X1
n¼�1

yðtÞe�2pnif ð26Þ

where Y(f) is the Fourier transform of y(t). Taking the

inverse Fourier transform of the log-magnitude of Eq. (26)

one obtains the cepstrum of the Fourier transform as

CðnÞ ¼ 1

2p

Zp

�p

log Yðf Þj je2pnif df ð27Þ

It is known that the Fourier transform of autocorrelation

leads to the spectral density, which is

qðf Þ ¼
X1
n¼�1

qðnÞe�2pnif ð28Þ

Thus, similar to Eq. (26), the cepstrum of autocorrela-

tion can be defined by the inverse Fourier transform of the

log-magnitude of P(f), which yields

eðnÞ ¼ 1

2p

Zp

�p

log qðf Þj je2pnif df ð29Þ

However, it is known that the spectral density by defi-

nition can also be written as
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qðf Þ ¼ fFT ½yðtÞ�g2 ð30Þ

Thus, the following relationship between the cepstrum

and the cepstrum of the autocorrelation can be obtained:

eðnÞ ¼ 1

2p

Zp

�p

log FT ½yðtÞ�j j2e2pnif df

¼ 1

2p

Zp

�p

2 log Yðf Þj je2pnif df ¼ 2CðnÞ ð31Þ

Appendix 2: Cepstrum of data of finite length

Consider only the positive part of the autocorrelation

function qðnÞ, for n[ 0 and let e(n) be the cepstrum

estimated from qðnÞ, n[ 0, which is

eðnÞ ¼ 1

2p

Zp

�p

log p � ðf Þj je2pnif df ð32Þ

where the spectral density p * (f) is obtained by Fourier

transform from the positive half of qðnÞ, for n[ 0. It is

noted that p * (f) is analytical. Using only the positive part

of q(n) ensures that q(n) is the minimum-phase function

and for a minimum phase system the input and output are

uniquely determined. This means e(n) can be uniquely

determined from q(n). Let us define a two-sided output in

the way that

q̂ðnÞ ¼
2eðnÞ;
eð0Þ;

2eð�nÞ;

8<
:

n [ 0

n ¼ 0

n\ 0

ð33Þ

In such a way, q̂ðnÞ can also be uniquely determined by

qðnÞ and vice versa.

Since p*(f) is analytical, log p � ðf Þ can also be consid-

ered as analytical. In such a case, following Oppenheim

and Schafer (1975), there is the following relationship

between the derivatives of z transformed q̂ðnÞ and q(n):

q̂0ðzÞ ¼ q0ðzÞ
qðzÞ ð34Þ

which is equivalent to

zq̂0ðzÞ ¼
X

½�nq̂ðnÞ�z�nþ1 ¼ zq0ðzÞ
qðzÞ ð35Þ

The following difference equation can be obtained from

Eq. (35):

zq0ðzÞ ¼ zq̂0ðzÞqðzÞ ð36Þ

Taking the inverse z transform of Eq. (36), one obtains

nqðnÞ ¼
X1
k¼1

kq̂ðnÞqðn� kÞ ð37Þ

Dividing Eq. (37) by n, the relationship between input

and output becomes

qðnÞ ¼
X1
k¼�1

ðk
n
Þq̂ðnÞqðn� kÞ ð38Þ

Transforming Eq. (38) with the use of Eq. (33), the

autocorrelation function can be obtained from the follow-

ing recursive formula (Oppenheim and Schafer 1975):

qðnÞ ¼

qð0Þ
2

eðnÞ þ
Xn�1

k¼1

k

n
eðkÞqðn� kÞ�;

exp eðnÞ;
qð�nÞ;

8>>><
>>>:

n [ 0

n ¼ 0

n\ 0

ð39Þ

On the other hand, the cepstrum e(n) can be obtained

from the reverse relation of Eq. (39) as:

eðnÞ ¼

2

qð0Þ ½qðnÞ �
Xn�1

k¼1

k

n
eðkÞqðn� kÞ�;

log qðnÞ;
0;

8>>><
>>>:

n [ 0

n ¼ 0

n\ 0

ð40Þ
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