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Abstract Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual,
and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to
decompose LST time series into trend, seasonal, and noise components. The trend component indicates
long-term climate change and land development and is described as a piecewise linear function with iterative
breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a
sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the
long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging
Spectroradiometer (MODIS)/LST time series during 2000–2012 over Beijing yielded an overall root-mean-square
error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual
MODIS/LSTs. LST decreased (~ �0.086 K/yr, p< 0.1) in 53% of the study area, whereas it increased with
breakpoints in 2009 (~0.084K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The
decreasing trend was stronger over croplands than over urban lands (p< 0.05), resulting in an increasing trend
in surface urban heat island intensity (SUHII, 0.022±0.006 K/yr). This was mainly attributed to the trends in
urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily
due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon
structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).

1. Introduction

Land surface temperature (LST) is a key variable in global and regional climate changes, hydrological cycles,
and surface-atmosphere interactions [Voogt and Oke, 2003; Li et al., 2013]. Characterizing changes in LST is
increasingly important for understanding the present environmental conditions and predicting or managing
future changes [Watts and Laffan, 2014]. Changes in LST occur onmultiple timescales, which can be generally
divided into four groups: interannual, seasonal, diurnal, and abrupt changes [Verbesselt et al., 2010; Zhan et al.,
2014a]. Here we mainly focus on the changes with a timescale no shorter than 1 day.

Thermal infrared remote sensing has been widely used to detect changes in LST due to its advantages
of wide coverage, repeatable orbit cycle, and low cost. However, due to clouds, heavy aerosols, systematic
errors, and other disturbances, missing values commonly exist in satellite thermal images [Hu and Brunsell,
2013; Quan et al., 2014a]. To avoid the missing data, many studies have selected a small number of
clear-sky images for intercomparison [Coppin et al., 2004]. However, this image sampling has the
following issues:

1. Large uncertainties may be induced due to various instantaneous influences, subjective selection, and
image representativeness and comparability. This may lead to different or even controversial results for
the same study area.

2. Normalization/summarization of the data needs to be preconducted, or a reference period or a change
trajectory/threshold must be predetermined [Lu et al., 2004].

3. Only one category of change can be detected at one time [Coppin et al., 2004], and the intermediate
change or the change of interest is frequently lost [de Beurs and Henebry, 2005].
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To circumvent the aforementioned shortcomings, time series analysis methods have been proposed to quan-
tify continuous temporal variations in LST. Many of these methods are only designed or tested for vegetation
response, e.g., the normalized difference vegetation index (NDVI), and are considered to be applicable to LST
time series, given their relationship and similar signal composition forms. These methods include the seaso-
nal trend decomposition procedure based on locally weighted regression smoother [Cleveland et al., 1990],
Fourier transform [Menenti et al., 1993; Verhoef et al., 1996; Roerink et al., 2000], asymmetric Gaussian function
[Jönsson and Eklundh, 2002], logistic function [Beck et al., 2006], wavelet transform [Galford et al., 2008], breaks
for additive seasonal and trend [Verbesselt et al., 2010], principal component analysis (PCA)/empirical ortho-
gonal function [Small, 2012], and detecting breakpoints and estimating segments in trend [Jamali et al.,
2015]. Nevertheless, at least one of the following challenges remains: (1) only the seasonal variation is taken
into account, whereas the long-term variation is neglected or the abrupt change cannot be detected, and
vice versa; (2) identification of each dimension/component obtained from the Fourier transform, wavelet
transform, PCA, etc. is challenging because the analysis depends entirely on the thermal image series used
[Verbesselt et al., 2010]; and (3) tests on LST time series have yet to be widely conducted and the model
feasibility can hardly be asserted.

Several other studies have modeled the annual cycle of LST time series by directly fitting a harmonic function
[Thomson, 1995; Eliseev and Mokhov, 2003; Bechtel, 2012;Weng and Fu, 2014; Zhan et al., 2014a]. However, the
LST time series are practically cyclostationary for annual temperature cycle modeling only after the interann-
ual and abrupt changes are excluded [Zhang and Qi, 2005; Halliday et al., 2012]. And these changes cannot be
neglected without prior knowledge [Parey et al., 2013].

This study proposed an LST time series decomposition method to extract trend, seasonal, and noise compo-
nents for simultaneously characterizing the seasonal variation while detecting the long-term (gradual and
abrupt) change. This method is termed the trend and seasonal decomposition model (TSDM) here. We
assessed TSDM by simulated data for a range of land covers and actual Moderate Resolution Imaging
Spectroradiometer (MODIS)/LST time series over Beijing during 2000–2012. Instead of solely focusing on
the newly developed model, we further investigated trends and seasonal patterns of the surface urban heat
island (SUHI) intensity (SUHII) based on the results of the TSDM. This investigation was primarily motivated by
the rare use of LST trend analysis to study SUHI to date.

Furthermore, contributions of several selected biophysical variables to the temporal changes in LST and SUHII
were analyzed for the purpose of better understanding the thermal environmental change and suggesting
potential remediation for urban heat effects. Unlike many previous studies [Lo et al., 1997; Gallo and Owen,
1998; Chen et al., 2006; Jenerette et al., 2007; Yuan and Bauer, 2007; Jin et al., 2011; Peng et al., 2012; Zhou
et al., 2014], we highlight variations of urban-rural differences in driving factor on interannual and seasonal
scales in parallel with the trends and seasonal changes of SUHII, respectively.

2. Method
2.1. Trend and Seasonal Decomposition Model
2.1.1. General Model
We propose a method that decomposes remotely sensed LST time series T(t) (t is the time) into trend, seaso-
nal, and noise components (Tt(t), Ts(t), and Tn(t), respectively). The trend component describes a gradual
change in LST at a timescale longer than 1 year (which may include abrupt changes), indicating climate
change and land development and management [Verbesselt et al., 2010]. The seasonal component is a reg-
ular and periodic change in LST on an annual scale, primarily driven by the annual variation in insolation
[Zhan et al., 2014a, 2014b]. The noise component is a stochastic and irregular variation in LST that is caused
by observation conditions (e.g., view angle and signal-to-noise ratio), atmospheric environments (e.g., clouds
and aerosols), and disturbance events (e.g., fire and flood). The three components are considered to be
additive, so that

T tð Þ ¼ T t tð Þ þ T s tð Þ þ Tn tð Þ: (1)

The additivity may not be true, given that the components may not be independent or noninteracting
[Hylleberg, 1994]. However, this assumption is necessary for achieving the component separability. The trend
component Tt(t) is extracted from the LST time series first, and then the seasonal component Ts(t) is modeled
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using the detrended data. This is because (1) for trend detection, seasonal trend time series resulted in better
performance than deseasonalized time series [Forkel et al., 2013] and (2) for seasonal modeling, detrended
time series are considered stationary and more appropriate than seasonal trend time series [Zhang and Qi,
2005]. The residuals are regarded as the noise component Tn(t).
2.1.2. Trend Component
The trend component is described as a piecewise linear function, as given by equation (2). This is the most
common practice to detect trends in time series analysis of biophysical variables [de Beurs and Henebry,
2005; Verbesselt et al., 2010; Thanasis et al., 2011; Vergni and Todisco, 2011; Halliday et al., 2012] because it
can extract the fundamental features of data and reduce the complexity of fitting curves [Zeileis et al., 2003].

T t tð Þ ¼ ait þ bi; t∈ ti�1; tið Þ; i ¼ 1; 2;…; I (2)

where ti is the position of the breakpoint, I is the total number of the breakpoints, and ai and bi are the slope
and intercept of the linear function during each subperiod (ti�1< t ≤ ti), respectively. The slope reveals the
changemagnitude. The breakpoint indicates an abrupt change in LST that may be caused by abrupt changes
in climate and anthropogenic impact.

The ordinary least squares residuals-based moving sum (OLS-MOSUM) test is used to determine whether
breakpoints occur in the LST time series [Zeileis et al., 2003]. If the OLS-MOSUM test indicates significant struc-
tural changes (p< 0.05), then the number and positions of breakpoints are iteratively estimated by minimiz-
ing the Bayesian information criterion and the sum of the regression residual squares, respectively [Bai and
Perron, 2003]. A linear regression is then conducted during each subperiod. If the OLS-MOSUM test indicates
no structural change, then a single linear regression is implemented throughout the whole period of time
series. Given that the OLS-MOSUM test requires time series with an equal interval without missing values
[Verbesselt et al., 2010], linear interpolation is preperformed to fill the gaps.
2.1.3. Seasonal Component
The seasonal component is represented by a widely used sinusoidal function, as given by equation (3)
[Thomson, 1995; Eliseev and Mokhov, 2003; Bechtel, 2012;Weng and Fu, 2014; Zhan et al., 2014a]. Its theoretical
basis is that the annual temperature cycle at a given latitude is primarily attributed to the annual oscillation of
solar radiation received by the Earth [Laskar et al., 1993; Thomson, 1995; Huang et al., 1996].

T s tð Þ ¼ A sin 2πf t � t0ð Þ þ θð Þ (3)

where A is the seasonal amplitude; t0 is the starting date of the annual temperature cycle, set as the spring
equinox [Weng and Fu, 2014]; f is the frequency, set as a constant (1/365) considering one tropical year period
[Thomson, 1995]; and θ is the phase shift.

The two unknown parameters (A and θ) are related to environmental conditions (e.g., solar luminosity, cli-
mate zone, atmospheric circulation, and water vapor), surface properties (e.g., topography, vegetation cover,
albedo, and soil moisture), and anthropogenic intervention [Thomson, 1995; Eliseev and Mokhov, 2003; Knutti
et al., 2006; Stine et al., 2009]. These two parameters can be determined using an unconstrained Levenberg-
Marquardt minimization with a universal optimization [Göttsche and Olesen, 2001; Quan et al., 2014b] on the
detrended data.

2.2. SUHII and Correlation Analysis

SUHII is the most classical indicator for a SUHI phenomenon [Schwarz et al., 2011; Quan et al., 2014a]. In this
study, the trend/seasonal variation in the SUHII was defined as the difference between the urban and rural
averages of the decomposed trend/seasonal components. The urban areas were determined as the urban
and built-up lands within the sixth ring road in Beijing, while the rural areas were defined as the croplands within
a radius of 40 km from the city center (Figure 2). High elevations (elevation> 100m) and water pixels were
excluded. This urban-rural discrimination was adopted on all of the images for achieving interannual/seasonal
comparability [Imhoff et al., 2010; Peng et al., 2012; Clinton and Gong, 2013; Zhou et al., 2014].

Two land surface descriptors and six climate descriptors, i.e., NDVI, white-sky albedo (WSA), air temperature
(AT), diurnal air temperature range (DATR), total rainfall (RF), relative humidity (RHU), wind speed (WIN), and
sunshine duration (SSD), were selected to examine the possible drivers of the temporal patterns of LST. Their
difference variables between the urban and rural areas (i.e., △NDVI, △WSA, △AT, △DATR, △RF, △RHU, △WIN, and
△SSD) were calculated in parallel with SUHII. WSA is the bihemispherical reflectance, while black-sky albedo is
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the directional hemispherical reflectance, which is linearly correlated with WSA [Zhou et al., 2014; Peng et al.,
2012] and was therefore not included. First, the trend detection was individually applied to the eight (differ-
ence) factor time series, and the detrended data were considered as their seasonal components. Then, the
breakpoints of LST were compared with those of NDVI and WSA, and the seasonal parameters (i.e., seasonal
amplitude and phase shift) were individually correlated with the multiyear averaged NDVI and WSA using
stepwise linear regression. Furthermore, annual composite was obtained from the deseasonalized LST time
series and correlated with the annual composite of the eight factors by stepwise regression over urban, rural,
and mountainous areas, respectively. Finally, stepwise regression was implemented between SUHII and the
eight difference variables on interannual and seasonal scales, respectively. The relationship obtained on an
interannual scale was considered applicable to the trends in LST and SUHII.

Methods in this section are illustrated in Figure 1.

3. Data
3.1. MODIS Data

Daily nighttime LST products from Terra/MODIS with a spatial resolution of 1 km (MOD11A1 in version 5) from
March 2000 to December 2012 over Beijing (39°28′N to 41°05′N, 115°25′E to 117°30′E), China (Figure 2), were
obtained at NASA’s Earth Observing System and Data and Information System (EOSDIS) (https://earthdata.
nasa.gov/). MOD11A1 was retrieved from clear-sky (99% confidence) observations [Zhou et al., 2014] acquired
at ~22:00 local solar time [Quan et al., 2014a] using a generalized split-window algorithm [Wan and Dozier,
1996]. The accuracy is reported to be within 2 K over most homogeneous surfaces [Wan, 2014]. LSTs severely
contaminated by clouds and thick aerosols were mostly removed [Wan, 2014]. This type of product was
chosen because (1) it had the largest number of valid values over the study area among MODIS four-time

Figure 1. Flowchart of the method (a) presenting the procedure of TSDM in section 2.1 and (b) summarizing the process of
SUHII and correlation analysis in section 2.2.
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(i.e., ~11:00, ~13:00, ~22:00, and ~02:00) observations [Quan et al., 2014a]; (2) the correlation between LST
and AT is stronger at night [Voogt and Oke, 2003; Nichol, 2005], which contributes to revealing the climate
change using LST; and (3) the nighttime urban thermal environment is markedly related to the sleep
condition [Mackey et al., 2012], which highly affects residents’ well-being.

We also collected MODIS NDVI (MOD13A3, monthly composite) and white-sky albedo (MCD43B3, 16 day com-
posite) products over Beijing during 2000–2012 at the EOSDIS (https://earthdata.nasa.gov/). Both have a spatial
resolution of 1 km. MOD13A3 is a weighted average value (in the case of cloud free) or a maximum value (in the
case of clouds) of all 16 day NDVI that is calculated from atmospherically corrected red and near-infrared reflec-
tance from Terra/MODIS [Yang and Wang, 2011]. MCD43B3 is generated according to the 16day anisotropy
model provided in the Terra and Aqua combined BRDF/Albedo Model Parameter product, and it indicates an
average of the underlying 500m values [Yang and Wang, 2011]. A more detailed description of the study area
and the aforementioned MODIS products is available in the study by Quan et al. [2014a, 2014b].

For statistics of the results by land cover, MODIS yearly classification products in type 1 with a spatial resolu-
tion of 500m (MCD12Q1) over Beijing from 2000 to 2012 were obtained at the EOSDIS (https://earthdata.
nasa.gov/). MCD12Q1 has a classification scheme of 17 classes, which were combined into seven classes in
this study for better statistical analysis [Duan et al., 2014]. The combination is shown in Figure 3, where the
snow/ice and barren/sparsely vegetated classes were precluded due to their extremely small sample size
over the study area. The combined MCD12Q1 products were then aggregated to 1 km to match the
MODIS/LST pixels [Duan et al., 2014]. A total of 13 369 pixels (42%) without any land cover change during

the 13 years was used for the statistics by
land cover, where the savanna class was
not included.

3.2. Meteorological Data

Meteorological data sets (i.e., air temperature,
diurnal air temperature range, total rainfall,
relative humidity, wind speed, and sunshine
duration) during 2000–2012 were collected
from 15 Beijing meteorological stations
(Figure 2) through the China Meteorological
Data Sharing Service System (http://cdc.
cma.gov.cn/home.do). To conduct correla-
tions separately, the 15 weather stations

Figure 2. Study area. The land covers were combined from the MODIS yearly classification product in type 1 in 2009
(Figure 3). The red line is the boundary of regions with elevations smaller than 100m in the south and east sides. The
dark blue line is a circle region with a radius of 40 km from the city center.

Figure 3. Combination of land cover types of MODIS yearly classification
product in type 1.
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were classified into three categories according to their underlying surface types, elevations, and locations: urban
(urban and built-up lands, elevation< 100m, within the sixth ring road), rural (croplands, elevation< 100m,
outside of the sixth ring road), and mountainous (forest/shrublands/savannas/grasslands, elevation> 100m,
outside of the sixth ring road).

3.3. Simulated Data

To robustly test TSDM in a controlled environment, we simulated daily LST time series throughout 13 years
(i.e., 2000–2012) with different positions of breakpoints, trend slopes, seasonal amplitudes, phase shifts,
and noise levels for representing a range of land cover types (Table 1). Most of the parameter values were
determined based on the decomposed results of the MODIS/LST time series over Beijing (see Text S1 of
the supporting information for detail). In the random cases, parameters were randomly generated within
their valid ranges, while in the other cases, only one parameter value was changed step by step and the other
parameters were kept the same as the basic data (Table 1). Then, the trend, seasonal, and noise components
were calculated individually according to equations (2) and (3) and a normal function (0, σ) [Cleveland et al.,
1990]. Finally, the simulated LST time series were generated using equation (1). Figure 4 shows an example of
the simulated LST time series.

4. Model Analysis Based on Simulated Data
4.1. With Various Trend, Seasonal, and Noise Parameters

Figure 4 shows great similarity between the simulated and decomposed trend and seasonal components. To
quantitatively assess the model performance, root-mean-square errors (RMSEs) between the decomposed
and simulated trend/seasonal components and absolute differences (ADs) between the derived and
simulated seasonal amplitudes/phase shifts under various simulated cases (Table 1) were calculated, as
shown in Figure 5. Each case has one pair of derived and simulated seasonal amplitudes/phase shifts, and

Table 1. Parameter Values for Various Simulated Cases

Parameters Basic Data Step [Range] Enumeration

Breakpoint number 2 - [-] -
Dates of two breakpoints 1 May 2004 and 31 Aug 2008 - [1 Jan 2002, 31 Dec 2010] 1 May 2004 and

31 Aug 2008; 1 Jan 2002 and 1 Jan 2004; 1
Jan 2006 and 1 Jan 2008; 31 Dec 2008 and
31 Dec 2010; 1 Jan. 2002 and 31 Dec 2010

Trend slopes in three subperiods (K/d) 0.003, �0.003, 0.0 0.001 [�0.003, 0.003] -
Averages of trends in three subperiods (K) 278, 278, 278 - [273, 283] -
Seasonal amplitude (K) 15 5 [5, 30] -
Phase shift (day) 0 10 [�50, 50] -
Noise level (K) 2 0.5 [0, 5] -

Figure 4. An example of the time series simulation and decomposition. (ai, A, θ) in black and red are the (trend slope of
subperiod i, seasonal amplitude, phase shift) of the simulated and decomposed components, respectively.
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the AD rather than the RMSE is an appropriate measure between two values. However, the RMSE is more
desirable than mean AD as a difference measure of two sets of values (i.e., the decomposed and simulated
trend/seasonal components) when the objective is to reveal model performance under various conditions
[Chai and Draxler, 2014].

For the 15 random cases (the first column in Figure 5), the average RMSEs of trend and seasonal components
and ADs of seasonal amplitudes and phase shifts are 1.18 K, 0.36 K, 0.14 K, and 2.0 days, respectively, ranging
from 0.36 to 2.12 K, 0.07 to 0.72 K, 0.05 to 0.26 K, and 0.0 to 4.0 days, respectively. Figure 5 demonstrates that
the breakpoint position, trend slope, phase shift, and noise level have little influence on the estimation of the
trend and seasonal components. The average RMSEs of trend and seasonal components and ADs of seasonal
amplitudes and phase shifts are 1.19 K, 0.38 K, 0.16 K, and 3.0 days, respectively. However, the errors almost
linearly increase with the increasing seasonal amplitude. In particular, the RMSE of trend component is in
the range of 0.21–2.34 K. This result may be because the large seasonal amplitude obscures the trend, making
it difficult to accurately detect the relatively slight trend from the seasonal trend time series. This sensitivity
illustrates that the trend decomposition must be carefully examined when the seasonal amplitude is
rather large (e.g., over a desert area). In this study area, the seasonal amplitude is no more than 18.00 K
(section 5.2), corresponding to RMSEs of 1.55 K and 0.45 K in the trend and seasonal components and ADs
of 0.20 K and 3.0 days in the seasonal amplitude and phase shift.

4.2. With Various Timescales and Distributions of Missing Data

To analyze the impact of temporal resolution, time series with multiple timescales, including 1, 2, 4, 8, 16, 32,
and 365 day and 13 year averaged monthly composite, were simulated, where the 1 day time series were
generated using the basic values in Table 1 and the others were temporally aggregated from the 1 day data
set. Figure 6 (the first column) shows that the largest errors appear in the 365 day composite and 13 year

Figure 5. Decomposition errors of various simulated cases (Table 1). The first and second lines show the root-mean-square
errors (RMSEs) between the decomposed and simulated trend and seasonal components, respectively. The third and fourth
lines show the absolute differences (ADs) between the derived and simulated seasonal amplitudes and phase shifts,
respectively. Phase-Abs denotes the absolute value of the phase shift.

Figure 6. RMSEs between the decomposed and simulated trend and seasonal components at different temporal
resolutions and ratios of missing data on a daily scale. a30 represents the 13 year averaged monthly composite.
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averaged monthly composite. This is because the breakpoint is difficult to accurately detect using the
small-length time series [Thanasis et al., 2011; Forkel et al., 2013] and the trend is neglected in the 13 year
averaged monthly composite. The errors of the 16 day and 32 day composites are the lowest because of
the lower noise levels.

Furthermore, to explore the impact of missing data on a daily scale, we randomly removed 5% to 80% (with a
step of 5%) of the daily values and then averaged the rest of the daily values to form the monthly data set.
The errors before and after monthly aggregation are shown in Figure 6 (the second and third columns). It
further reveals that the monthly composite is rather stable in coping with the missing data on a daily scale
compared to the 1 day time series.

Considering that actual remotely sensed LSTs are sometimes missing due to clouds, heavy aerosols, system
errors, etc. over a whole month or even season [Zhou et al., 2011], we further simulated cases with missing data
on a monthly scale by two approaches: (1) randomly removing 5 to 80 (i.e., 3.2% to 51.3%) monthly values at a
step of 5 and (2) removing seasonally concentrated values in randomly selected 1 to 13 years (with a step of 2).

In the random cases (the first column in Figure 7), the RMSEs of trend and seasonal components generally
increase with the number of missing monthly data. The summer and winter cases (the third and fifth columns
in Figure 7) exhibit more significant growing patterns of errors. This is because the loss of peaks/valleys in the
LST time series leads to an underestimation/overestimation of the trend and an underestimation of the
seasonal amplitude to achieve the smallest fitting errors. And this impact intensifies with increasing missing
peaks/valleys. Moreover, breakpoints were falsely detected in some random (55, 60, 75, and 80), summer
(11), andwinter (9, 11, and 13) cases. In the random cases, the detected breakpoints are at the positions of num-
bers of concentrated missing data. Those in the summer/winter cases correspond to the valid summer/winter
seasons whose forward or backward summer/winter seasons continuously have missing values. This method,
however, is highly robust against the missing data in spring and autumn, with stable errors.

5. Application to MODIS/LST Time Series

Monthly averages were obtained from the daily Terra/Night MODIS/LSTs and then decomposed using TSDM,
considering the lower noise level and smaller influence of the missing data according to the previous model
analysis. We calculated RMSEs between the combination of the decomposed trend and seasonal compo-
nents and the actual MODIS/LST time series to assess the fitting errors. Statistics of the RMSEs according to
the land cover type and the number of missing monthly data are shown in Figure 8.

Figure 8a shows that the average RMSE over the study area is 1.62 K, with a standard deviation of 0.17 K,
illustrating a good approximation of the original time series. The water bodies yield the highest errors
(2.31 ± 0.32 K), while the croplands and the built-up lands have the lowest ones (1.45 ± 0.09 K and 1.48
± 0.08 K, respectively). An increase in the RMSE with the number of missing monthly data was also observed
in Figure 8b, which explained the order of error among the six land cover types: the water bodies had the
largest number of missing data on a monthly scale (up to 18, i.e., 12%), mainly caused by the false alarm of
the MODIS cloud mask due to snow [Wang et al., 2008], while the croplands and the built-up lands had the
smallest numbers (up to 4, i.e., 3%). In the following sections, statistics of the decomposed trend and seasonal
components were determined based on land cover type for an indirect evaluation, where the water bodies
were not included due to their large fitting errors.

Figure 7. RMSEs between the decomposed and simulated trend and seasonal components under different numbers of
missing data on a monthly/seasonal scale.
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5.1. Trend Component

Zero, one, and two breakpoints were detected over 30432 (95.0%), 1505 (4.7%), and 103 (0.3%) pixels, respec-
tively. The breakpoints were determined using the OLS-MOSUM test on structural changes (p< 0.05) (section
2.1.2). Therefore, their trends were considered statistically significant. Yet, a significance test on the LST trend
without a breakpoint was conducted using the method proposed by Santer et al. [2000] (see Text S2 for detail).
Only those pixels with p< 0.1 (i.e., 53% of the study area, see Table S1) were then statistically analyzed by land
cover (Table 2). A further significance test of trend differences among land covers [Santer et al., 2000] (Text S3 and
Table S2) indicated that forest, shrublands, and croplands had insignificant trend differences (p> 0.1). Therefore,
they were combined for statistics of trend slope and average (Table 2). Their trends were different (p< 0.1) from
the trends over grasslands and built-up lands, which were meanwhile different from each other (p< 0.1).

Table 2 shows that the mean trend slope over 53% of the study area without a breakpoint (p< 0.1) was
�0.086 K/yr with a standard deviation of 0.025 K/yr. This indicates a gradual decreasing trend during
2000–2012 of approximately �1.12K (namely, the nighttime LST was becoming colder). Among the five
land cover types (Table 2), the urban and built-up lands exhibited the smallest rate of change (�0.051
±0.056K/yr). This might be attributed to the urban anthropogenic heat flux [Yang et al., 2014] that elevated
LST [Hu et al., 2012] and thus decelerated the decrease of nighttime LST. The forest, shrublands, and croplands
had a medium-level trend slope of �0.073±0.025K/yr, while the grasslands showed the strongest change
(�0.101±0.019K/yr).

Table 2 also reveals that the urban and built-up lands had the highest average value of trend components.
Urban canyon geometry, building materials, vegetation, and anthropogenic heat have been documented
to be the primary factors in the urban energy balance [Oke, 1982, 1988; Oke et al., 1991]. Canyon geometry
reduces the effective albedo and sky view factor, increasing the multiple reflection of short-wave radiation
between surfaces and decreasing long-wave radiation loss to the sky. This results in great heat storage within
the canyon structure [Oke, 1982; Goward, 1981; Rizwan et al., 2008]. Typical building materials and reduction
in evaporating surfaces in urban areas also contribute to increasing sensible heat flux and reducing latent
heat flux [Carlson et al., 1981; Oke, 1988; Rizwan et al., 2008]. Anthropogenic heat release mainly from trans-
portation, building, and residential sectors is another primary heat source [Grimmond, 1992; Sailor and Lu,
2004; Christen and Vogt, 2004]. These factors all together lead to quantities of heat emittance at night
[Carlson et al., 1981; Tiangco et al., 2008], yielding higher urban temperatures.

Figure 8. Statistics of the RMSEs between the combination of the decomposed trend and seasonal components and the
actual MODIS/LST time series according to (a) the land cover type and (b) the number of missing monthly data.

Table 2. Statistics of the Slope and Average of the Trend Component by Land Cover Over Pixels Without a Breakpointa

Slope (K/yr) Average (K)

Min Max Mean SD Min Max Mean SD

Total �0.314 0.140 �0.086 0.025 269.08 284.48 278.04 2.12
FSC �0.246 �0.104 �0.073 0.025 273.21 282.42 279.25 1.14
Grass �0.224 0.108 �0.101 0.019 269.78 281.45 275.13 1.53
Built-up �0.162 0.140 �0.051 0.056 272.61 284.48 280.48 1.77

aAll of the trends and trend differences among land covers are significant at the 0.1 level or better. FSC: combination
of forest, shrublands, and croplands.
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The spatial pattern of the timing of the
detected breakpoints is displayed in
Figure 9. It shows that 33.4% of the
breakpoints occurred in 2009, mostly
located between the fifth and sixth ring
roads, particularly in the northeast area.
Their mean trend slopes were 0.084K/yr
during 2000–2009 and 0.245 K/yr during
2009–2012, demonstrating an accelerated
increase after 2009. Meanwhile, 62.8% of
the breakpoints were in 2006, mostly
located in the grasslands and croplands
outside of the Beijing city boundary (i.e., in
Hebei province). Their mean trend slopes
were �0.105K/yr during 2000–2006 and
�0.387K/yr during 2006–2012.

To explore the reasons for the abrupt
changes in LST time series, a number of

high-resolution images during 2000–2012 were collected from Google Earth (copyright at Google Company).
Figure 10 shows an example of areas with breakpoints. A large-scale house demolition was conducted during
2009–2010, and vegetation was later planted over the demolished area. The land cover change from the
built-up surface to the bare soil surface during 2009–2010 corresponded to the LST breakpoints in October
2009. Five other examplesmarked in Figure 9 are shown in Text S4 and Figures S1–S5. These examples illustrate

Figure 9. Spatial pattern of the timing of the detected breakpoints.
Black circles mark the examples of areas with considerable land
cover change during the time when breakpoints appeared.

Figure 10. True color images (3.2 × 2.5 km2) obtained from Google Earth at example 1 (Figure 9): near High School
Attached to Northeast Normal University, Chaoyang District, Beijing.
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that the breakpoints detected by TSDM appeared with considerable interannual land cover changes (e.g., vege-
tation↔buildings↔bare soil). However, due to the low frequency of the Google Earth images, it is difficult to
match them precisely in time.

5.2. Seasonal Component

Pearson’s r between the seasonal component and the detrended LST time series was 0.99, showing a good
approximation of the seasonal fluctuation. Table 3 shows the statistics of the seasonal amplitude and phase shift
by land cover. Independent-samples t test and F test (Text S5) showed that the seasonal amplitudes/phase
shifts were different (p< 0.001) among land covers in both mean and variance perspectives, except that the
forest and shrublands had insignificant differences in the average of seasonal amplitude.

The average seasonal amplitude was 15.51 K, with a standard deviation of 0.73 K (Table 3). The forest and
shrublands showed smaller seasonal amplitudes (14.65 ± 0.59 K and 14.62 ± 0.45 K, respectively) than the
croplands (16.02 ± 0.37 K). This indicated that the croplands intensified the seasonal temperature oscillation
around trend, which was probably related to the crop phenology (section 6.3). The average phase shift was
�26.8 days, with a standard deviation of 1.4 days (Table 3), indicating that the lowest and highest LSTs
appeared around 16 January and 16 July. The forest had the largest absolute value of phase shift, while
the urban and built-up lands showed the smallest one. It illustrates that the forest had a large thermal lag
(i.e., high heat capacity and low conductivity) to delay temperature increase, while the urban and built-up
lands quickly responded to the heating up [Weng and Fu, 2014]. Furthermore, the largest standard deviations
of the seasonal amplitudes and phase shifts were both found in forest (Table 3). It was attributed to the varied
vegetation species, abundance, growing status [Weng and Fu, 2014], and elevations.

Compared with the seasonal parameters retrieved from other satellite data, e.g., the Landsat Thematic
Mapper (TM)/LSTs used byWeng and Fu [2014], our results exhibited smaller differences among land covers.
Besides the regional differences, the lower spatial resolution (1 km) and the utilization of nighttime LSTs
could be the probable causes.

6. SUHII and Correlation Analysis
6.1. Trend and Seasonal Patterns of SUHII

A significance test of trend differences (Table S2) between urban (i.e., built-up lands) and rural (i.e., croplands)
temperatures revealed that the rural areas had a decreasing trend slope stronger (p< 0.05) than the urban
areas (Table 2). This resulted in an increasing trend in SUHII from 1.87 to 2.16 K during 2000–2012 (0.022
± 0.006 K/yr, p< 0.05). Furthermore, SUHII presented a concave seasonal curve at night with the minimum
in summer and the maximum in winter.

6.2. Correlation Analysis of the LST and SUHII Trends

First, we compared the breakpoints of LST with the breakpoints of NDVI and white-sky albedo (WSA) to
supplement the visual analysis in section 5.1. We found that the NDVI and WSA breakpoints matched
175 and 149 of the LST breakpoints (13% and 11%), respectively, and 304 LST breakpoints (22%), together,
which were mostly located between the fifth and sixth ring roads (Figure 9). It not only reveals that the
abrupt change in land surface properties could cause the breaks in the LST trend but also implies that
other factors should also be taken into account. Therefore, we further investigated the co-occurrence of

Table 3. Statistics of the Seasonal Amplitude and the Phase Shift by Land Covera

Seasonal Amplitude (K) Phase Shift (day)

Min Max Mean SD Min Max Mean SD

Total 12.53 17.53 15.51 0.73 �42.5 �21.4 �26.8 1.4
Forest 12.80 16.23 14.65 0.59 �39.1 �24.6 �27.9 1.2
Shrub 13.51 15.82 14.62 0.45 �28.0 �25.1 �26.8 0.6
Grass 13.45 17.05 15.83 0.43 �31.7 �24.2 �27.4 1.0
Crop 13.94 17.00 16.02 0.37 �31.5 �23.3 �26.0 1.1
Built-up 14.35 16.98 15.74 0.40 �31.1 �23.7 �25.7 0.8

aDifferences in mean/standard deviation among land covers are significant at the 0.001 level, except for the means of
seasonal amplitude between the forest and shrublands.
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LST breakpoints with the breakpoints of the meteorological variables. The results indicated no match with
air temperature (AT), diurnal air temperature range (DATR), total rainfall (RF), relative humidity (RHU), wind
speed (WIN), and sunshine duration (SSD). However, due to the lack of wide coverage of meteorological
data, this analysis is hardly conclusive. The abrupt change in human activity or anthropogenic heat is
another probable contributor and should be included in future studies. One may consider that the occur-
rence of large fire on vegetated areas could cause the breaks in the LST time series due to the
permanent/long-term change from vegetation to bare land. However, such correspondence was not
observed because the burned area of fire events did not exceed 1 km2 over this study area since 2000
according to the records by the National Forest Fire Prevention Headquarters Office (http://www.slfh.gov.
cn/slfhw/default.aspx).

Second, Table 4 shows that different factors were responsible for the LST trends in different areas. For the
urban area, WSA, AT, and NDVI made primary contributions of 14%, 10%, and 8%, respectively. The correla-
tions of WSA and NDVI were both negative, which is reasonable considering the heat reduction effects of
vegetation and high reflectance surfaces [Mackey et al., 2012; Quan et al., 2014a]. Although previous studies
have demonstrated that NDVI is little related to the nighttime temperatures due to the absence of evapora-
tive cooling [Arnfield, 2003; Peng et al., 2012], they focused on the spatial correlation. Our study paid attention
to the long-term LST variation, and the growing vegetation cover could gradually reduce the nighttime LST
due to the reduced amount of stored heat energy during the day [Tiangco et al., 2008].

For the rural area, AT, DATR, and RF were the main contributors (34%, 19%, and 19%, respectively), while for
the mountainous area, DATR, AT, and WIN had the prevailing impacts (39%, 26%, and 21%, respectively). AT
showed a considerably positive contribution over all of the three areas because of the close surface-air inter-
action at night [Nichol, 2005]. RF played a significant role (negative) over the rural area rather than over the
urban area. It may be attributed to their greatly different responses to rainfall: rural surfaces tend to absorb
and store rain to increase soil water content and to use it for evapotranspiration, while the rainfall is mostly
resisted by urban impervious surfaces and piped out by a city drainage system. The total explanatory power
over the urban, rural, and mountainous areas was 37%, 72%, and 86%, respectively. It implies that the land
surface and climate change are generally sufficient to explain the trends over rural and mountainous areas,
while other factors (e.g., anthropogenic heat flux) are also responsible for the urban LST trend.

Finally, △RF and △WSA were found to be the primary driving factors of the SUHII trend: 39% (positive) and
36% (negative), respectively (Table 4). As mentioned above, RF was the prevailing contributor (negative) of
the LST trend in the rural area but not in the urban area, which indirectly caused the urban-rural difference
of LST. WSA is a negative indicator for solar heat absorption [Peng et al., 2012]. Therefore, the decreasing
trend in △WSA (negative value), i.e., the increasing urban-rural difference of WSA, intensified the urban-rural
differences in heat absorption and storage during the day. This in turn increased the SUHII at night [Zhou
et al., 2014]. Although the contribution of △RF is larger, increasing urban albedo with respect to the rural
albedo is a more practical way of reducing SUHII.

Among many mitigation strategies, the albedo and vegetation strategies (e.g., reflective roofs, green roofs,
street trees, and parks) have gained the most acceptance and been practically implemented in some cities
[Rizwan et al., 2008; Mackey et al., 2012]. This correlation indicates that the albedo strategy produces larger
cooling than the vegetation strategy from the long-term perspective on a city scale [Mackey et al., 2012;

Table 4. Stepwise Linear Regression-Derived Explanation (%) of Each Factor on the LST and SUHII Trends
During 2000–2012a

(△) (△) (△) (△) (△) (△) (△) (△)

TotalNDVI WSA AT DATR RF RHU WIN SSD

Mountainous 0 0 +26 �39 0 0 �21 0 86
Rural 0 0 +34 +19 0 +19 0 0 72
Urban �8 �14 +10 +5 0 0 0 0 37
SUHII +36 0 0 0 +39 0 0 0 75

aAll of the correlations are significant at the 0.05 level, and the sign indicates positive or negative correlation. NDVI:
normalized difference vegetation index; WSA: white-sky albedo; AT: air temperature; DATR: diurnal air temperature
range; RF: total rainfall; RHU: relative humidity; WIN: wind speed; SSD: sunshine duration.
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Zhaoet al., 2014]. This, however, does not suggest that the albedo strategy is more appropriate. The reasons
are twofold.

1. Increasing urban albedo would induce urban cooling in both summer and winter [Zhou et al., 2014], which
would deteriorate residential comfort and aggravate the energy consumption by heating facilities in
winter. Vegetation has a significant cooling effect only in summer but not in winter due to phenology
[Quan et al., 2014a]. This is conducive to reducing SUHII in summer while maintaining the higher urban
temperatures during winter nighttime.

2. Vegetation possesses great ecosystem service values [Bolund and Hunhammar, 1999] that reflective roofs
cannot match. However, to generate a widespread cooling effect, the vegetation must be dense enough
[Mackey et al., 2012]. It requires sufficient amounts of installation and maintenance support, particularly
water support, which would be a challenge in cities with a water shortage issue [Mcdonald et al., 2011],
e.g., in Beijing.

6.3. Correlation Analysis of the Seasonal Amplitude, Phase Shift, and Seasonal SUHII Pattern

First, as presented in Table 5, white-sky albedo (WSA) is the primary factor (54%, positive) affecting the
seasonal amplitude spatially, which explains the relativities of seasonal amplitudes among land covers shown
in Table 3. However, larger albedo, assuming albedo is annually unchanged, would correspond to a smaller
seasonal amplitude of solar heat absorption, which is often considered to produce a smaller seasonal
amplitude of LST during nighttime. This is in contrast to the positive correlation found in Table 5. There
may be two aspects.

1. The thermal properties are the primary determinant underlying WSA. Generally, a larger WSA coexists
with a smaller thermal capacity and inertia [Wang et al., 2005] and sensitively responds to the seasonal
heating up and cooling down, consequently causing a larger seasonal amplitude.

2. The seasonal variation of albedo [Wang et al., 2005] was ignored. The summer-winter difference of WSA
was positive over forest but negative over croplands. Compared to the heat absorption with the averaged
WSA, the summer-winter difference of heat absorption over forest was weakened, while that over crop-
lands was enlarged, which further affected their seasonal amplitudes. Therefore, the seasonal variations
of the driving factors should be considered in future studies of seasonal parameters.

Regarding the phase shift, NDVI and WSA, in total, only explained 9% (1% and 8%, respectively) of its spatial
variation. This implies that a more complex pattern in the phase shift exists than that in the seasonal ampli-
tude. Including other biophysical variables, e.g., normalized difference water index (NDWI), may not notably
increase the explanatory power over NDVI and WSA because the multiyear averaged NDWI and NDVI are
linearly correlated [Jackson et al., 2004].

Second, due to the crop phenology, the urban-rural difference in NDVI was larger in summer and smaller in
winter, forming a concave seasonal curve of △NDVI (negative) and consequently a positive correlation (24%)
with the seasonal pattern of the nighttime SUHII (Table 5). This correlation actually reflects a contribution by
temperature cooling rate. The thermal inertia of the urban interface was generally larger than that of the rural
interface primarily due to the urban canyon structure [Goward, 1981; Kusaka and Kimura, 2004]. However, in
July and August when crops were luxuriant and irrigation was adequate, the proportion of latent heat flux
grew [Peng et al., 2012] due to strong evapotranspiration [Wang et al., 2006]. This indicated that the rural tem-
perature cooling rate was smaller than the urban one in July and August. Even so, the urban LSTs were higher
than the rural LSTs at night because the daytime solar heating of croplands wasmuch smaller considering the
evapotranspiration [Carlson et al., 1981]. In the other months, the rural temperature cooling was faster than

Table 5. Stepwise Linear Regression-Derived Explanations (%) of 13 Year Averaged NDVI and WSA on the Seasonal
Amplitude and Phase Shift of LST as Well as Those of the Difference Variables on the Seasonal SUHII During 2000–2012a

(△) (△)

△AT △DATR △RF △RHU △WIN △SSD TotalNDVI WSA

Amplitude �2 +54 56
Phase �1 +8 9
SUHII +24 0 0 0 0 +9 +9 0 42

aAll of the correlations are significant at the 0.05 level, and the sign indicates positive or negative correlation.
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the urban one, and their difference was gradually enlarged with dry winter coming. Consequently, the urban-
rural difference of LST at night was reduced in July and August but enhanced in winter.

A similar explanation also applies to the daytime SUHII. The rural temperature heating rate is smaller than the
urban one in July and August, enlarging SUHII, whereas the rural heating is faster than the urban heating in
the other months, narrowing SUHII. Therefore, a convex seasonal variation is formed in SUHII during the day
[Tran et al., 2006; Wang et al., 2007; Imhoff et al., 2010]. One special case is that urban cool island appears in
the day if rural heating rate is remarkably larger than the urban one [Goward, 1981]. Yet, other factors (e.g.,
aerosols) also contribute to urban cool island formation [Wang et al., 2007].

A negative correlation (�45%) was found using univariate linear regression between the seasonal variations
of △DATR (diurnal air temperature range) and nighttime SUHII. It is reasonable given the thermal inertia and
the positive correlation between diurnal surface and air temperature ranges [Peng et al., 2012]. However, the
stepwise regression analysis (Table 5) showed 0% of explanation by △DATR. It might be because △NDVI
already included this underlying mechanism.

Third, △RHU (relative humidity) and △WIN (wind speed) were the other two contributors (Table 5). In Beijing,
△RHUwas positive in winter [Lee, 1991] because of urban continuous evapotranspiration, anthropogenic heat
emission (e.g., transportation), or/and rural dewfall [Holmer and Eliasson, 1999]. However, it was negative in
summer mainly due to the large evapotranspiration in the rural area [Unkašević et al., 2001; Liu et al., 2009].
△RHU generated a positive correlation (9%) because an increasing urban-rural difference in RHU corre-
sponded to a larger difference in the power of preventing the surface heat dissipation [Zhao et al., 2014].
In contrast, some studies illustrate a negative correlation, regarding the proportion between the latent and
sensible heat flux [Kim and Baik, 2002; Zhou et al., 2011]. Nevertheless, these studies did not include the
urban-rural difference, the temporal variation of △RHU [Holmer and Eliasson, 1999], and, most importantly,
the weak nighttime latent flux.

Previously, WIN was documented to be negatively related to urban heat island because the advection and
turbulent activity are enhanced as the wind speed increases [Holmer and Eliasson, 1999; Kim and Baik,
2002]. However, the previous studies did not include the urban-rural difference in wind speed, which, in
Beijing, generally showed a concave seasonal variation with a valley in summer and a peak in
winter/spring. This variation of △WIN exhibited a positive correlation with the nighttime SUHII (9%). This is
because the larger urban-rural difference in wind speed enhanced the heat transfer between the urban
and rural areas and finally decreased SUHII to some extent. However, △RHU and △WIN did not play crucial
roles in the seasonal variation of SUHII.

Fourth, some studies suggest that the larger nighttime SUHII in winter is probably caused by the pronounced
urban-rural difference in albedo [Zhou et al., 2014]. However, it does not necessarily indicate a larger urban-
rural difference in heat storage because solar radiation decreases in winter. Moreover, the summertime and
wintertime △WSAwere both negative in Beijing primarily due to urban canyon geometry [Oke, 1982], and the
summer-winter difference of △WSA was also negative (namely, summer |△WSA|>winter |△WSA|). This
revealed that the seasonal variation of △WSA had little direct correlation with the seasonal pattern of SUHII
(0% in Table 5). Nevertheless, △WSA-induced urban-rural difference in the seasonal amplitude (combining
Tables 3 and 5) could account for the concave seasonal pattern of SUHII.

Finally, considering that anthropogenic heat flux composes a large portion of the total energy release at night
[Arnfield, 2003; Peng et al., 2012], several studies suggest that large amounts of urban anthropogenic heat
release during wintertime may indirectly strengthen the nighttime SUHII [Zhou et al., 2014]. It may increase
the total contribution in Table 5 (42%). However, this conjecture must be studied quantitatively in the future
by including the urban-rural difference of anthropogenic heat flux and its seasonal variation [Rizwan et al.,
2008] while including other variables.

7. Uncertainty Analysis
7.1. Systematic Errors

One may be concerned that the trend may be caused by systematic errors, particularly the aging thermal
sensor and the drift in the overpass time over years. First, the change in MODIS response for thermal bands
can be taken into account by scheduled on-orbit calibration using an onboard blackbody [Xiong et al., 2014],
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whose temperature has exhibited excellent long-term stability since 2000: the drift was less than 0.04 K over
14 years [Xiong et al., 2014].

Second, a linear trend with a slope of �0.7min/yr and a standard deviation of 0.2min/yr was found in the
overpass time of Terra/MODIS in this study (p< 0.05), indicating an advance of overpass time about 9min
at night (~22:00) during 2000–2012. Thus, a gradual increase in LST was expected: a maximum of 0.15 K
(0.012 K/yr) according to the diurnal temperature cycles of different surface components [Quan et al.,
2014b]. Consequently, the estimated trend in section 5.1 should be further strengthened from �0.086 K/yr
up to �0.098 K/yr after excluding the deviation caused by this drift.

7.2. LST Retrieval Errors

MODIS/LST accuracy has been reported over most homogeneous surfaces [Wan, 2014]. Yet, the accuracy over
heterogeneous surfaces remains unclear to date [Liu et al., 2006; Li et al., 2013]. This is because surface hetero-
geneity causes a complex mixture of components with varied temperatures and emissivity in one pixel and
leads to a strong variation of LST in space, time, and angle [Prata et al., 1995; Pinheiro et al., 2006].
Consequently, the ground-based validation of satellite-derived LST over heterogeneous surfaces suffers from
great challenges [Quan et al., 2014b]. Even though upscalingmethods have been proposed to generate pixel-
scale temperatures from in situ measured surface temperatures [Guillevic et al., 2012, 2013; Ermida et al.,
2014], accurate emissivity and fractions of the main surface covers are required and yet difficult to estimate.
Moreover, the uncertainty during the upscaling and georegistration obscures the validation [Wan, 1999;
Quan et al., 2014b].

Therefore, we, here, theoretically estimated uncertainties during LST retrieval. Emissivity, atmospheric condi-
tion, and angular effects are reported as the main factors [Mitraka et al., 2012], where the impacts of the latter
two are rather small at night [Wan and Li, 2008] and, thus, were not discussed in this study. It is reported that
an uncertainty in emissivity of 1% may cause an LST error of about 0.3–3.0 K with different atmospheric
conditions, view angles, land covers, retrieval algorithms, etc. [Becker, 1987; Wan and Dozier, 1996; Ottle
and Stoll, 1993; Jiménez-Muñoz and Sobrino, 2003;Wan and Li, 2008; Li et al., 2013]. To achieve a 1 K accuracy
of LST, uncertainty of emissivity under 0.01 is essential.

MOD11A1 in version 5 is retrieved from a generalized split-window algorithm with classification-based emis-
sivity estimation [Wan and Dozier, 1996; Snyder et al., 1998]. This estimation obtains a sufficient accuracy
(~0.01) of emissivity over 70% of natural land surfaces, thus satisfying the goal of 1 K LST accuracy.
However, soil moisture, vegetation phenology, snow, and ice, aside from classification errors, can degrade
the emissivity accuracy [Gillespie et al., 1996; Snyder et al., 1998; Li et al., 2013]. Moreover, emissivity estimation
over urban surfaces can be largely biased due to the significant intraclass variation [Stathopoulou et al., 2007],
component mixing [Mitraka et al., 2012], and anisotropy [Ren et al., 2011].

According to Stathopoulou et al. [2004], an emissivity error of 0.01/0.02, corresponding to vegetation (emis-
sivity: 0.98–0.99)/bare surface (emissivity: 0.96–0.98), yielded an LST error of about 0.5/1.0 K using the
split-window algorithm under normal conditions. Consequently, the error of instantaneous SUHII caused
by emissivity deviation can reach up to 1.5/2.0 K in summer/winter. Nonetheless, the model analysis (section
4.1) showed great robustness of TSDM against noise levels (0.0–5.0 K). This suggests that an LST error under
5.0 K hardly affects the decomposed trend and seasonal components of LST time series and further the
temporal patterns of SUHII, which outperforms the intercomparison of sample images [Coppin et al., 2004].

Daily minimum near-surface air temperatures during 2000–2012 were collected from 15 Beijing weather
stations (http://cdc.cma.gov.cn/home.do). Fifty percent of them showed decreasing trends (p< 0.1): an aver-
age of�0.105 K/yr with a standard deviation of 0.087 K/yr. It further supports that the decreasing trend of LST
is a statistically significant biophysical phenomenon instead of an artifact of the observational conditions.

8. Future Issues

First, a long period of time series accounts for a more statistically significant temporal variation, and the
prediction of future temperatures is more justified. However, larger uncertainties would be included, and
breakpoints of the seasonal component may need to be considered. On the other hand, a small period of
time series is often not useful for trend detection, and the summarization of temporal pattern can hardly
be extended to show the future variation. The statistical probability is also problematic with the small number
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of the data sets [Forkel et al., 2013]. In addition, the length of the period is related to the temporal resolution,
the number of missing values, the site-specific climate change, the trend magnitude, the land cover change,
etc., which should be further discussed.

Second, abrupt changes in thermal sensor or considerable drift in the overpass time can alter the detected
trend component (including breakpoints) since TSDM has yet incorporated approaches for correcting these
effects. Therefore, more caution is needed when data with these effects are used, e.g., advanced very high
resolution radiometer/LSTs [Price, 1991]. Various approaches have been proposed to reduce these influences
[Gutman, 1999; Gleason et al., 2002; Pinheiro et al., 2004; Sobrino et al., 2008; Julien and Sobrino, 2012] and only
the corrected LST time series can then be adopted in TSDM.

Third, because solar radiation enhances the instability of the atmospheric boundary, the probability for
clouds to form during the day is higher than during nighttime, particularly over urban areas in summer
and winter due to significant sensible heat flux, air turbulence, convergence, precipitation, and heavy aero-
sols [Wang et al., 2008; Zhou et al., 2011; Hu and Brunsell, 2013; Quan et al., 2014a]. For LSTs with lower tem-
poral resolutions (e.g., Landsat TM/LST with a temporal resolution of 16 days), the probability of obtaining
missing values on amonthly scale is further increased. Therefore, the satellite-derived daytime LST time series
may suffer from vast numbers of missing monthly values, which could increase uncertainties in time series
analysis [Clinton and Gong, 2013]. This highlights the necessity of improving the current model under a situa-
tion of concentrated missing data.

Fourth, the decomposed components vary with the acquisition time due to the diurnal temperature varia-
tion. However, temporal patterns, relative orders of parameter values among land cover types, and correla-
tions with the driving factors presented in this study remain applicable at other nighttimes, considering
thermal stability at night [Zhou et al., 2013]. The daytime LSTs, in contrast, may have different or even con-
verse patterns from the nighttime ones. For example, the urban seasonal amplitude is probably larger than
the rural one over Beijing during the day, forming a convex seasonal variation of SUHII during the day (section
6.3). Application of TSDM to four-time MODIS/LSTs per day is able to determine the changes at different
times. Furthermore, hourly application to a long-term geostationary data set may be able to explore the
diurnal patterns of the trend and seasonal parameters and further to construct long-term full time series.

Finally, surface energy and radiation budget is essential for the formation of thermal environment [Quattrochi
and Luvall, 2009; Luvall et al., 2015; Lo et al., 1997]. The partitioning of net radiation (and the possible anthropo-
genic heat flux) into sensible, latent, and soil heat flux controls temperature heating and cooling and finally
forms distinct patterns and dynamics of temperature. This thermal response can be characterized by thermal
response number (TRN), the ratio of total net radiation to temperature change for a short term [Luvall and
Holbo, 1989; Quattrochi and Luvall, 1999]. TRN is physically based, distinguishable among various surface types,
and computable by remote sensing data and in situ radiationmeasurements [Quattrochi and Luvall, 2009; Luvall
et al., 2015]. In the case of obtainable LST observations with a short time interval (~30min) and a MODIS-like
spatial scale (1 km) during several years, TRN can be calculated to quantify the thermal responses of different
land covers and thus help better understand the trends and seasonal variations in LSTs and SUHIIs.

9. Conclusions

TSDM proposed in this study is a method to decompose remotely sensed LST time series into trend, seasonal,
and noise components for simultaneously characterizing the long-term (including gradual and abrupt) and
seasonal variations of LST. The trend component indicates long-term climate change and land development
andmanagement and is described as a piecewise linear function with iterative breakpoint detection. The sea-
sonal component illustrates the annual change of insolation and is therefore modeled by a sinusoidal func-
tion on the detrended data.

Simulation analysis revealed that TSDM is robust against breakpoint, trend slope, phase shift, noise level, and
missing daily data but is sensitive to the seasonal amplitude and missing data on a monthly scale. It suggests
that this method may be less appropriate for areas with a large seasonal amplitude (e.g., over a desert area)
and for daytime LST time series over urban areas. TSDM was further applied to Terra/Night MODIS/LST time
series during 2000–2012 over Beijing. Results indicated an overall RMSE of 1.62 K between the combination of
the decomposed trend and seasonal components and the actual MODIS/LST time series.
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Generally, a decreasing trend of LST (~ �0.086 K/yr, p< 0.1) was detected over 53% of the study area, while
an increasing trend with breakpoints in 2009 (~0.084 K/yr and~ 0.245 K/yr before and after 2009, respec-
tively) was found between the fifth and sixth ring roads. The breakpoints of NDVI and white-sky albedo
(WSA) matched 22% of the LST breakpoints, while the breaks induced by other factors (e.g., anthropogenic
heat) may attribute to the rest of LST breakpoints. The LST trends over urban, rural, and mountainous areas
were primarily driven by different factors, i.e., WSA, AT (air temperature), and NDVI over urban areas; AT, DATR
(diurnal air temperature range), and RF (rainfall) over rural areas; and DATR, AT, and WIN (wind speed) over
mountainous areas. The decreasing trend was stronger over croplands than over urban and built-up lands
(p< 0.05), resulting in an increasing trend in SUHII at night (0.022 ± 0.006 K/yr), which was mainly related
to the trend of △RF and △WSA (39% and �36%, respectively).

Furthermore, the seasonal amplitude of LST was dominated by WSA (54%), which was controlled primarily by
thermal properties and seasonal variation in albedo. The phase shift had a more complicated pattern. The
nighttime SUHII exhibited a concave seasonal curve (minimum in summer and maximum in winter). This is
primarily attributed to the seasonal variations of urban-rural differences in temperature cooling rate (related
to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and
wind). Regarding the anthropogenic heat flux, the temporal variation in its urban-rural difference should
be combined in future correlation analysis with SUHII.

TSDM can be extended to (1) long-term time series reconstruction of LST and LST-related surface or meteor-
ological variables and (2) many other temperature-related fields, e.g., long-term climate change due to land
cover change.
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