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Abstract—This paper proposes an adaptive fuzzy wavelet 
filter that is based on a fuzzy inference system for enhancing 
speech signals and improving the accuracy of speech 
recognition. In the last two decades, the basic wavelet 
thresholding algorithm has been extensively used for noise 
filtering. In the proposed method, adaptive wavelet 
thresholds are generated and controlled according to the 
fuzzy rules about the presence of speech in contaminated 
signals. In this adaptive fuzzy wavelet filter, the 
relationships between speech and noise are summarized into 
seven fuzzy rules using four linguistic variables, which are 
used to determine the state of a signal. A hybrid filter is 
proposed here, which combines an adaptive fuzzy wavelet 
filter and the spectral subtraction method to filter 
contaminated signals. An amplified voice activity detector in 
the proposed hybrid filter is designed to improve 
performance when the signal-to-noise ratio (SNR) is lower 
than 5 dB. The filtering that is performed using the adaptive 
fuzzy wavelet filter and the spectral subtraction method is 
controlled by support vector machines. Experimental results 
demonstrate that the proposed system effectively increases 
the SNR and the speech recognition rate. 
 
Index Terms—speech enhancement; wavelet thresholding; 
fuzzy; voice activity detection, spectral subtraction, support 
vector machines;     
 

I.  INTRODUCTION 

Speech enhancement is a continuing challenge in the 
field of speech and signal processing, particularly in 
applications such as such as mobile phone systems, 
speech recognition applications, hearing aid systems, and 
speech coding [1, 2, 3]. Although speech enhancement 
algorithms have been studied extensively in the past two 
decades, enhancement algorithms generate distortions of 
original speech signals and residual noise in the form of 
musical tones [4, 5, 6]. 

The main objective of speech enhancement is to 
improve the quality and intelligibility of the signal, as 
perceived by human listeners. The objectives of speech 
enhancement algorithms vary among applications. The 
major goal of an automated speech recognition system is 
to increase the recognition rate whereas that of a 

communication system is to optimize the signal-to-noise 
ratio (SNR) of distorted speech [7, 8]. Proposed methods 
of achieving both goals can be roughly classified as 
digital signal processing and statistical analysis. Digital 
signal processing usually removes an estimate of the 
distortion from contaminated signals such as by spectral 
subtraction, whereas statistical analysis uses statistical 
modeling to predict structures and patterns in the signal 
process [10, 11]. 

existence of noise are ambiguous [16, 17, 18]. Therefo 
A spectral subtractive algorithm is based on obtaining the 
best possible estimates of short term spectra of a speech 
signal from a given contaminated speech signal. This 
approach involves estimating the power spectral density 
of a clean speech signal by subtracting the power spectral 
density of the noise from that of the contaminated signal. 
The main appeal of a spectral subtractive algorithm is its 
simplicity of implementation and its ability to 
accommodate varying subtraction parameters.  

However, spectral subtractive algorithms have various 
shortcomings, such as imprecision of the estimation of 
the signal and noise parameters and mismatched 
probability distribution models of speech and noise. 
Subtractive denoising methods introduce musical residual 
noise, arises owing to nonlinear signal processing, 
leading to a serious deterioration of sound quality. Hence, 
various methods of suppressing musical noise have been 
developed [12, 13, 14].  

Wavelet-based techniques using coefficient 
thresholding approaches are extensively utilized to shrink 
signals and remove noise [15]. Because of its flexible 
time-frequency resolution, the wavelet transform is an 
effective tool for analyzing signals that consist of short 
high-frequency bursts and long quasi-stationary segments. 
Although an adaptive thresholding algorithm improves 
the performance, proposed algorithms for generating the 
adaptive threshold between speech and noise are 
problematic because the model between speech and noise 
remains unclear, and the rules for determining the re, this 
paper proposes an adaptive fuzzy wavelet filter that is 
based on fuzzy rules and improves speech signal 
enhancement and the accuracy of automatic speech 
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recognition. In this system, relationships between speech 
and noise are described by seven fuzzy rules which 
determine adaptive thresholds. Moreover, the design of 
the filter is optimized by particle swarm optimization 
(PSO) to maximize the SNR of its output. Membership 
functions that represent the rules are not required to be 
obtained in advance. 

This paper proposes a novel hybrid filter that is 
composed of an adaptive fuzzy wavelet filter and a 
spectral subtraction method for denoising contaminated 
signals. In this hybrid filter, input signals are classified as 
either speech or non-speech segments using an amplified 
voice activity detector, which performs a full wavelet 
packet transform to decompose the input speech signal 
into critical sub-band signals [19, 20]. In each critical 
sub-band signal, a mask is constructed by smoothing the 
Teager energy operator and the entropy of the 
corresponding wavelet coefficients. A corresponding 
adaptive wavelet threshold is then applied to each sub-
band signal. After the entropy is incorporated with the 
Teager energy operator, the amplified voice activity 
detector enhances the discrimination of signals with an 
SNR that is lower than 5dB.  

The hybrid filter simultaneously filters the 
contaminated signals using the adaptive fuzzy wavelet 
filter and the spectral subtraction method. The filtering 
behavior of the adaptive fuzzy wavelet filter and the 
spectral subtraction method is controlled using support 
vector machines (SVMs) [21]. Both the spectral 
subtraction method and the adaptive fuzzy wavelet filter 
perform excellently performance in signal de-noising. 
However, the spectral subtraction method is ineffective 
when applied to low SNR signals, and the adaptive fuzzy 
wavelet filter is ineffective when applied to high-
frequency signals [22]. The proposed model not only 
preserves the advantages of the adaptive fuzzy wavelet 
filter and the spectral subtraction method but it has none 
of their limitations. 

Establishing critical parameters enhances speech 
detection in noisy environments. In previous studies, 
speech has been distinguished from background noise by 
analyzing parameters such as energy, the zero crossing 
rate, time duration, linear prediction coefficient, linear 
prediction error energy and pitch information. However, 
these parameters are difficult to apply to variable-level 
background noise, even when complex decision strategies 
are used. In this paper, four parameters, used as linguistic 
variables were incorporated into fuzzy inference system 
to detect speech in a noisy environment. The four 
parameters were energy, zero crossing rate, average 
residual, and standard deviation. The excellent speech 
recognition performance of this filter was confirmed by 
testing it on eight types of noise. 

The previous version of this paper has published in 
2010 [23]. In the previous version, the adaptive fuzzy 
wavelet filter is proposed to improve the performance of 
speech enhancement. However, the adaptive wavelet 
thresholding method is ineffective for high-frequency 
signals. For overcoming this shortcoming, spectral 
subtraction method was introduced to establish a hybrid 

filter which filtering behavior is controlled using support 
vector machines. Another hybrid filter has appeared in 
our previous research in which adaptive wavelet filter and 
spectral subtraction method were proposed as the pre-
filter and microphone array is used as the post-filter [24]. 
The filtering behavior was controlled by a feed-forward 
fuzzy neural network. Adaptive wavelet filter and 
spectral subtraction method were cooperated well on 
denoising contaminated signals. For providing better 
performance, in this paper adaptive fuzzy wavelet filter 
was adapted to cooperate with spectral subtraction 
method to establish a novel hybrid filter. Morever, there 
are some improvements on featuer selection and signal 
mixed controller. 

The remainder of this paper is organized as follows. In 
Section 2 we review the basic concept of wavelet packet 
transform and decomposition, particle swarm 
optimization, spectral subtraction method and support 
vector machines. In Section 3 the adaptive fuzzy wavelet 
filter is introduced. In Sections 4 we introduce the hybrid 
wavelet-spectral filter for speech enhancement. In Section 
5 a performance evaluation of the proposed system is 
presented and comparisons with other protocols are made. 
Our conclusions are made in Section 6. 

II.  BASIC CONCEEPTS 

A.  Wavelet Packet Transform and Decomposition 
Wavelet transform is intensively used in various fileds 

of signal processing because processing signals in the 
frequency domain is often easier to implement [19, 20]. It 
has the advantage of using variable size time-windows 
for different frequency bands. This results in a high 
frequency-resolution in low bands and low frequency-
resolution in high bands. The continuous wavelet 
transform (CWT) of a signal x(t) is given as follows: 

( ) ( ) dt
a

ttx
a

aX CWT ∫
∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −= τψτ 1,        (1) 

where τ and a represent the time shift and scale 
variables, respectively, and )(⋅ψ  is the mother wavelet 
chosen for the transform. 

In the discrete version, the wavelet decomposes the 
signal with variable frames to perform multi-resolution 
analysis in a dyadic form known as discrete wavelet 
transform (DWT). In DWT the scale and translation 
parameters of the discrete wavelet family are given by 

ma 2=  and mn2=τ . 
The main advantage of wavelet is that they have a 

varying window size, wide for slow frequencies and 
narrow for fast, thus leading to an optimal time-frequency 
resolution in all the frequency ranges. However, slow 
varying components can only be identified over long time 
intervals while fast varying components can be identified 
over short time intervals. A further generalization of the 
DWT is the wavelet packet transform (WPT) that offers a 
richer range of possibilities in signal analysis. In WPT the 
decomposing process is iterated on both high and low 
frequency components rather than continuing only on low 
frequency terms as with a standard DWT.  

2502 JOURNAL OF COMPUTERS, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



 

The principle of wavelet packet transform is that, given 
a signal, a pair of low pass and high pass filters is used to 
yield two sequences to capture different frequency sub-
band features of the original signal. The depth of the 
wavelet packet tree shown in Fig. 1 can be varied over 
the available frequency range, resulting in configurable 
decomposition. The two wavelet orthogonal bases are 
defined as 

∑
∞

−∞=
+ −=

n

jp
j

p
j nknhk )2(][)(2

1 ψψ            (2) 

∑
∞
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1 ψψ           (3) 

where h[n] and g[n] denote the low-pass and high-pass 
filters, respectively. )(nψ  is the wavelet function and 
parameters j and p are the number of decomposition 
levels and nodes, respectively. 

B.  Spectral Subtraction Algorithm 
Spectral subtraction is a signal processing method in 

frequency domain that is applied widely [14, 25]. The 
noisy speech y(k) is assumed to consist of the clean 
speech x(k) additively degraded by uncorrelated random 
noise n(k), as follows:  

Time domain: )()()( knkxky +=           
Frequency domain: )()()( kkk NXY ωωω +=     (4) 

or       knkxky j
k

j
k

j
k eNeXeY ,,, φφφ +=                                   

where )( kY ω , )( kX ω , and )( kN ω  are discrete Fourier 
transforms (DFT’s), with amplitudes kY , kX , and kN , 
and phases 

ky ,φ , 
kx,φ , and 

kn,φ , respectively, at 
frequency or frequency channel . 

The short-time power spectrum of the noisy speech can 
be approximated by  

222
,,, knkxky j

k
j

k
j

k eNeXeY φφφ +≈         (5) 

The term 2
,knj

k eN φ  can not be obtained directly and is 

approximated as 
⎭⎬
⎫
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⎧ 2
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keNE φ , where {}⋅E  denotes the 

expectation operator. Typically, 
⎭⎬
⎫

⎩⎨
⎧ 2

,knj
keNE φ  is 

estimated during non-speech activity, and is denoted by 
2

,~ knj
k eN φ . Thus, the estimate of the clean speech power 

spectrum, denoted as 2
,~ kxj

k eX φ , can be obtained by 
222
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k

j
k

j
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Berouti et al. proposed an important variation of 
spectral subtraction for reduction of residual musical 
noise [13]. An overestimate of the noise power spectrum 
is subtracted and the resulted spectrum is limited from 
going below a preset minimum level. The proposed 
algorithm could be expressed as 
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where α  is the subtraction factor and β  is the spectral 
parameter. 

The enhanced speech spectrum is obtained using the 
magnitude estimate α

α,
~

kX  of the enhanced speech and the 
noisy phase 

ky ,φ : 
kykxkx jj

k
j

k eeXeX ,,, ~~ φφφ =               (8) 

To reduce the speech distortion caused by large values 
of α , its value is adapted from frame to frame. The basic 
idea is to take into account that the subtraction process 
must depend on the segmental noisy signal to noise ratio 
(NSNR) of the frame, in order to apply less subtraction 
with high NSNRs and vice versa. 

The segmental noisy signal-to-noise ratio NSNR is 
calculated for every frame is obtained as 
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The over-subtraction factor α  can be calculated as 

⎪
⎩

⎪
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=
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where 40 =α  is the desired value at 0 dB NSNR. 

C.  Particle Swarm Optimization 
In 1995, Kennedy and Eberhart introduced the particle 

swarm optimization algorithm (PSO) into the field of 
social and cognitive behavior [26]. Traditionally the main 
problem in designing a neural fuzzy system is training the 
parameters. Backpropagation training is commonly 
adopted to solve this problem. However the steepest 
descent approach, commonly used in backpropagation 
training to minimize the error function, may reach the 
local minima very quickly and never find the global 
solution. Accordingly, a new optimization algorithm, 
called particle swarm optimization (PSO), appears to 
provide better performance than the backpropagation 
algorithm. 

Like other population-based optimization approaches 
PSO is initialized with a swarm of random solutions, each 
swarm consists of many particles. Each particle is 
characterized by its current position ],,,[ 21 D

iiii xxxx =  
and current velocity ],,,[ 21 D

iiii vvvv = , where D stands 
for the dimensions of the solution space. In the PSO the 
trajectory of each particle in the search space is adjusted 
by dynamically altering the velocity of each particle. 
Then the particles rapidly search the solution space using 
the moving velocity of each particle. Each of these 
particle positions is scored to obtain a fitness value based 
on how to define the solution of the problem. During the 
evolutionary process the velocity and position of particle 
i are updated as 

( )
( )ii

iiii

xGBestrand
xNBestrandvv

−××+
−××+×=

)(
)(

22

11

ϕ
ϕω       (11) 

iii vxx +=                           (12) 
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where ω is the inertia weight, 1ϕ  and 2ϕ  are the 
acceleration coefficients, respectively. The second term 
in Eq. (11), called the cognitive component, reflects the 
experience of a particle since it is dependent on the best 
position of the respective particle. The third term is 
referred to as the social component and contains the 
information of a social group due to the dependence on 
the neighborhood best position. The random numbers 
rand1() and rand2 are chosen from the interval U(0,1). In 
Eq. (11), GBest is the position with the best fitness found 
so far for the ith particle, and NBest is the best position in 
the neighborhood. The term iv  is limited to the range 

maxv± . If the velocity violates this limit, then it is set to 
the actual limit. Changing the velocity enables each 
particle to search around its individual best position and 
global best position. After initialization of the positions 
and velocities of the particles update equations are 
applied to every particle in each iteration until a stopping 
criterion is fulfilled. 

D.  Support Vector Machines 
Consider the training samples ( ){ }N

iii dx 1, =
, where xi is 

the input pattern for the ith sample and di is the 
corresponding desired response; m

i Rx ∈  and 
{ }1,1−∈id . The objective is to define a separating 

hyperplane which divide the set of examples such that all 
the points with the same class are on the same sides of the 
hyperplane. 

Let wo and bo denote the optimum values of the weight 
vector and bias, respectively. Correspondingly, the 
optimal separating hyperplane, representing a 
multidimensional linear decision surface in the input 
space, is given by 

0=+ o
T
o bxw                     (13) 

The set of vectors is said to be optimally separated by 
the hyperplane if it is separated without error and the 
margin of separation is maximal. Then, the separating 
hyperplane 0=+ bxwT  must satisfy the following 
constraints: 

Nibxwd i
T

i ,,2,1,1)( =≥+        (14) 
Extending to the non-separable case requires a slack 

variable iξ , to be introduced, to measure the deviation of 
a data point from an ideal value which would yield 
pattern separability. Hence the constraint of Eq. (14) is 
modified to,  

0
,,2,1,1)(

≥
=−≥+

i

ii
T

i Nibxwd
ξ

ξ    (15) 

According to Eq. (14), the optimal separating hyperplane 
is the maximal margin hyperplane with the geometric 
margin 

w
2 . Hence the optimal separating hyperplane 

is the one that satisfies Eq. (15) and minimizes the cost 
function, 

∑
=

+=Φ
N

i
i

T Cwww
12

1)( ξ             (16) 

Since the cost function is a convex function, a Lagrange 
function can be used to minimize the constrained 
optimization problem and the optimal weight vector is 
given by, 

∑
=

=
N

i
iiio xdw

1
α                    (17) 

Classical Lagrangian duality enables the primal problem 
to be transformed to its dual problem. The dual problem 
of Eq. (16) is reformulated as 
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with constraints, 
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III.  ADAPTIVE FUZZY WAVELET FILTER 

This section proposes an adaptive fuzzy wavelet filter 
based on a fuzzy inference system. In the filter, the 
adaptive threshold for each sub-band signal was 
generated using the fuzzy inference system, and the noisy 
components were removed by thresholding the wavelet 
coefficients. 

Let s(t) be clean speech with a finite length and n(t) be 
noise. Contaminated speech y(t) can then be expressed as 

)()()( tntsty +=                     (20) 
If W denotes the wavelet transform matrix, then Eq. (20) 
can be written in the wavelet domain as 

)()()( tNtStY +=                    (21) 
where )()( tyWtY ⋅= , )()( tsWtS ⋅= , and 

)()( tnWtN ⋅= . The estimated speech signal )(ˆ tS  can be 
obtained by using the thresholding function 

),()(ˆ TYFtS T=                     (22) 
where ),( TYFT  denotes the thresholding function and T 
is the threshold. The standard thresholding function 
includes the soft thresholding function, which is defined 
as 

⎩
⎨
⎧

<
≥−

=
TY
TYTYYsign

TYF
ST ,0

),)((
),(    (23) 

In the past two decades, many studies have applied the 
thresholding function for speech enhancement. Because 
of the difficulty of modeling speech signals, heuristic 
algorithms and learning machines, such as neural network 
models and support vector machines, are often used to 
determine the threshold [27]. Therefore, ambiguities arise 
in which the behavior and function of the learning 
machine are difficult to distinguish. To overcome this 
problem, this study proposes an adaptive threshold 
decision module based on a fuzzy inference system.  

The adaptive threshold decision module based on a 
fuzzy inference system produces the adaptive threshold 

)1( +kT  at the (k+1)th frame as follows: 
)1()1()())1(1()1( +++×+−=+ kTHSkkTkkT αα  (24) 

In Eq. (24), THS(k+1) is the threshold used in the (k+1)th 
frame and is generated from fuzzy wavelet filter. Besides, 

2504 JOURNAL OF COMPUTERS, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



 

α(k+1) is the step length for the threshold variation. In 
most case, dramatic change is seldom appeared in voice 
signal. Hence, α(k+1) denotes the membership function 
indicating to what extent a dramatic change is considered 
to be happened at (k+1)th frame. Since it is difficult to 
judge whether a dramatic change is happened or not, α
(k+1) should take a continuous value from 0 to 1 to cope 
with ambiguous cases. 

A.  Linguistic Variable for Fuzzy System 
In the fuzzy inference system, four linguistic variables 

are used to detect signal state. They are: energy, the zero 
crossing rate, standard deviation of formants and average 
residual. The reasons for adopting those four linguistic 
variables are listed as follows. 

-Energy: 
Energy is an effective factor on measuring the degree 

of noise when the SNR is bigger than 0dB. The short time 
energy of speech signals reflects the amplitude variation 
and is defined as 

( )∑
∞

−∞=

−⋅=
m

mnhmSEn )(2           (25) 

In order for nE to reflect the amplitude variations in 
time (for this a short window is necessary), and 
considering the need for a low pass filter to provide 
smoothing, h(n) was chosen to be a hamming window 
powered by 2. 

Studies have shown that energy provides excellent 
performance on voice activity detection. However, rapid 
variation of energy in the speech model causes 
implementation difficulties. 

-Zero crossing rate: 
The zero crossing rate (ZCR) is the number of zero 

crossing of a waveform within a given frame [28]. The 
ZCR of both unvoiced sounds and environment noise 
generally exceed that of voiced sounds. A Zero Crossing 
Rate can be calculated by the mathematical formula:  

( )[ ] ( )[ ]∑
−

=

−−=
1

1
1

2
1 N

n
nSSgnnSSgnZCR   (26) 

where ( )[ ] 1=nSSgn  if ( ) 0≥nS ; otherwise 
( )[ ] 1−=nSSgn . 

ZCR is often used in conjunction with volume for end-
point detection. It is hard to distinguish unvoiced sounds 
from environment noise by using ZCR alone since they 
have similar ZCR values. 

-Standard deviation of formants: 
Standard deviation is a measure of how wide any given 

numbers are spread. It is useful in comparing sets of data, 
which may have the same mean but different range. In a 
given frame standard deviation of formants is helpful to 
distinguish the signal's mode. The standard deviation of 
formants of a stable noise is different to voice sound. The 
observation of standard deviation of formants is useful in 
the threshold decision level. 

-Average residual: 
The statistical property of average residual is similar to 

standard deviation. In this paper standard deviation is 
used to detect the variation within a frame but average 

residual is used to compare the difference between frames. 
The formula for Energy is 

∑
−

=

−=
1

0
)(

N

n
SnSAr              （27） 

where S  is the mean value. 
By calculating the average residual across several 

frames the signal's mode can be distinguished, whether 
the variation is temporal or not, in a very short time 
interval. In this study the average residual is calculated 
based on the standard deviations of previous frame, 
current frame and next frame. 
α(k) and THS(k) are decided by the four parameters. 

The threshold range is first determined according to 
energy and the zero crossing rate. Previous studies have 
indicated that energy is an accurate measure of noise 
exceeding 0 dB. However, a threshold based only on 
energy obtains irrational results when energy rapidly 
varies. Additionally, because most mechanisms use an 8 
k sample rate to record the speech signal, energy is an 
ineffective measure when the frequency of the noise 
exceeds the sample rate. Overcoming the zero crossing 
rate problem requires measuring energy when 
determining the threshold. 

As noted previously, the ZCR of unvoiced sounds and 
environmental noise exceed those of voiced sounds. 
Many studies have used a zero crossing rate to detect 
voice activity because it easily distinguishes signal modes. 
For high-frequency noise and low-frequency speech, the 
zero crossing rate can be considered as an auxiliary 
parameter for determining the threshold. When the 
frequency of noise is low, the threshold depends mainly 
on energy. As the frequency of noise increases, the zero 
crossing rate must be considered. In short, the importance 
of the zero crossing rate to the threshold decision is 
proportional to the frequency of noise. 

Here, the standard deviation of formants and average 
residual are introduced to control threshold variation. The 
variation in the model of signals between two adjacent 
frames is reflected in the standard deviation of formants. 
As the standard deviation of formants increases, the 
threshold variation increases. However, the correlation 
differs when speech is contaminated by an instantaneous 
impulse signal, which, in a given frame, usually increases 
the standard deviation of formants and violently vibrates 
the threshold. To avoid this problem, the average residual 
of any adjacent three frames is calculated to smooth the 
threshold variation. The average residual is calculated 
according to the standard deviations of formants between 
three adjacent frames and can effectively reduce the 
impact of instantaneous impulse signals. An increase in 
the value of the average residual is a strong indication 
that it is neither temporal nor instantaneous. 

B.  Fuzzy Inference Rules 
Let Y(k) denotes the input speech signal, where k is the 

frame index and 1≦k≦N.  En(k), ZCR(k), Sd_f(k), Ar(k) 
denote the speech features that the input signal Y(k) is 
processed by the energy function, zero crossing rate 
function, standard deviation of formants and average 
residual function, respectively.  
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The threshold can be set by the local characteristics of 
the input signals but, as noted previously, constructing 
the noise model based on the contaminated signal is 
difficult in ambiguous cases. The proposed speech 
enhancement system involves adopting a fuzzy inference 
system to address these problems and generates an 
adaptive threshold to suppress noise. The following 
discussion summarizes the various models of noise and 
the relationships between noise and speech signals. The 
fuzzy sets of linguistic variables and their corresponding 
linguistic terms are then defined according to the analysis. 
Table 1 shows the relationships between linguistic 
variables and their fuzzy sets.  

After eliminating cases in which noise is 
indistinguishable from speech signals, seven fuzzy rules 
are proposed, listed as follows. 
Rule 1: If En(k) is High and ZCR(k) is Low, then THS(k) 

is Medium. 
Energy is an effective measure of noise when SNR 

exceeds 0dB. In most cases, speech signals have 
higher energy compared to noise. To retain speech 
while suppressing noise, the threshold can be set lower 
than the speech signal. This rule is applicable in places 
like airports or streets with heavy traffic. In this model 
the zero crossing rate is classified to low when the 
frequency is between 50Hz and 5 KHz. 

 
Rule 2: If En(k) is High and ZCR(k) is High, then THS(k) 

is High. 
As the zero crossing rate increases, the probability 

of noise increases. Since the probability of noise is 
higher under rule 2 than under rule 1, the threshold can 
be set higher under rule 2. This rule is applicable when 
the energy is large and the frequency is high such as 
noise generated by high frequency electric products or 
machines. In this model the zero crossing rate is 
classified to high when the frequency is bigger than 
5K Hz. 

 
Rule 3: If En(k) is Low and ZCR(k) is Low, then THS(k) is 

Low. 
A low zero crossing rate usually indicates that the 

probability of noise is not high. In most cases, the 
energy of the speech signal is higher than the energy 
of noise. Therefore, a low threshold is set when the 
energy of a contaminated speech signal is low. This 
type of noise is generated by, for example, low-
frequency electric products (e.g., indoor fans). 

 
Rule 4: If En(k) is Low and ZCR(k) is High, then THS(k) 

is Medium. 
On the basis of rule 4, high zero crossing rate 

denotes a high probability of noise. The threshold 
should be bigger than in rule 3 but not exceed the 
energy of speech signal. This rule is applicable on the 
environments such as the electromagnetic wave.  

 
Rule 5: If Sd_f(k) is Low and Ar(k) is Low, then )(kα  is 

Low. 

This rule is applicable when the noise model is 
stable, whether within a short interval or within a long 
interval. This noise is characterized by a small 
standard deviation of formants and a small average 
residual. The average residual is calculated based on 
the standard deviation of formants of the previous 
frame, current frame, and next frame. Because the 
standard deviation of formants is small, the threshold 
must be low. The waveform in this situation is shown 
in Fig. 2, in which the vertical axis represents 
amplitude, and the horizontal axis represents time. In 
addition, each frame in Fig. 2 is bounded by a 
rectangle. The standard deviation of formants is small 
because the waveform within each frame is stable. The 
average residual of the standard deviation of formants 
is also small because standard deviations of formants 
in each frame are all small. 

 
Rule 6: If Sd_f(k) is High and Ar(k) is Low, then )(kα  is 

Medium. 
This rule is applicable when noise is stable varies 

within a very short time interval. This noise is 
characterized by a high standard deviation of formants, 
but the average residual is small. Compare to the 
standard deviation of formants under rule 5, a high 
standard deviation of formants under rule 6 indicates 
the amplitudes of noise are changed rapidly. Hence, 
the variation of threshold should be set higher than that 
in rule 5. In cases of multiple sources of noise, this 
rule can bring the function into full play. The 
waveform under this situation is shown in Fig. 3. In 
Fig. 3, a large variation in the waveform within the 
middle frame causes a large standard deviation. The 
average residual of the standard deviation of formants 
is small since the standard deviations of formants are 
large. 

 
Rule 7: If Sd_f(k) is High and Ar(k) is High, then )(kα  

is High. 
This rule is applicable when noise is unstable, no 

matter in a very short time interval or in a long time 
interval. In rule 7, the standard deviation of formants 
for the current frame is high and is higher than that of 
neighboring frames, so that the average residual 
calculated from the standard deviation of formants for 
the current and neighboring frame is high. The 
waveform under this situation is shown in Fig. 4. 

 
After the fuzzy If-Then inference rules are applied, the 

fuzzy wavelet filter should be defuzzified. One of the 
commonly used defuzzification method is the centroid 
defuzzification method: 

( )
( )∑

∑
=

i
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i
iiA

y

yy
O

μ

μ
                   (28) 

where ( )iA yμ  is the membership function. 

C.  Setting the Membership Function 
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The next step is to design this function THS(k) and 
)(kα  for the energy, zero crossing rate, standard 

deviation and average residual. In most fuzzy systems, 
the membership function is obtained by using fuzzy 
approximate reasoning and the membership function of 
the Low and the High of energy, zero crossing rate, 
standard deviation of formants, average residual, and its 
relationship to THS(k) and )(kα . In this study, the 
Gaussian type (Eq. 29) and sigmoid function (Eq. 30) 
were used to approximate the membership function and 
achieve the benefit of efficient calculation. 

( )
2

2

2)( c
x

exf
μ−−

=                   (29) 

xe
xf α−+

=
1

1)(                  (30) 

In supervised learning, the output is as close to the 
desired signal as possible; thus some optimization is 
required in designing this filter. The PSO algorithm is 
applied to optimize the parameters in these nonlinear 
functions. Based on research, the PSO algorithm provides 
higher performance in determining the global solution 
while optimizing the overall structure. In the training 
phase an iterative training algorithm proposed by this 
paper includes the following six steps: 

Step 1: Initially set k=1. 
Step 2: For each input speech signal Y(k), calculating 

En(k)、ZCR(k)、Sd_f(k) with Ar(k). 
Step 3: Using rules 1-4 to generate THS(k) and rules 

5-7 to generate )(kα . 
Step 4: Calculating adaptive threshold T(k+1) by 

using Eq. (24). 
Step 5: Let O(k) be the output of adaptive wavelet 

filter at the kth frame. Using Eq. (28) to get 
the value of O(k), where ( )iA yμ  is the 
mathematical form of Eq. (29) or Eq. (30). 

Step 6: Setting ∑
=

−
N

k
kOkS

1

2)()(min  be the cost 

function. Using PSO algorithm the find the 
optimal solution and adjusting the parameters 
of membership functions. Repeat step 2 to 
step 6 until optimal solution is reached. 

IV.  HYBRID WAVELET-SPECTRAL FILTER 

This section proposes a new framework for speech 
enhancement called the“hybrid wavelet-spectral filter”. 
Figure 5 shows the schematic diagram of the hybrid 
wavelet-spectral filter. The structure of a hybrid wavelet-
spectral filter comprises an adaptive fuzzy wavelet filter, 
a spectral subtractive module, a voice activity detection 
module, an SVM controller, and a feature selection 
module. 

In the hybrid wavelet-spectral filter, an amplified voice 
activity detection module determines the presence or 
absence of speech. The amplified voice activity detection 
module outperforms existing methods regarding low SNR. 
Signals are then simultaneously filtered by the adaptive 
fuzzy wavelet filter and spectral subtraction filter. The 
filtering behavior between the adaptive fuzzy wavelet 

filter and the spectral subtraction method is controlled 
using SVMs. 

A.  Definition of Hybrid Wavelet-Spectral Filter 
Additive noise can be classified as stationary or non-

stationary. The spectral subtraction method and wavelet 
filter are known to perform effectively for stationary 
noise and non-stationary noise, respectively. However, 
the spectral subtraction method is ineffective for low 
SNR signals and may produce residual noises. The 
adaptive wavelet thresholding method is ineffective for 
high-frequency signals because it can cause distortion. In 
proposed filters, contaminated signals are simultaneously 
filtered by both the adaptive fuzzy wavelet filter and 
spectral subtractive method. Ideally, the filtering 
algorithm should vary systematically by frame according 
to local information. However, setting the conditions 
under which a certain filter should be selected is 
extremely difficult, if not impossible, because the local 
conditions can be evaluated only vaguely in some 
portions of contaminated signals. An SVM trained with a 
set of input signals and desired signals can function as a 
desired classifier. 
Definition 1: The output of the Hybrid Wavelet-Spectral 
Filter is defined by 

)(
2

1)(
2

1)( nynyny SWH
μμ −++=           (31) 

where n is the frame index. )(nyH , )(nyW  and )(nyS  
are the output signal of Hybrid Wavelet-Spectral filter, 
spectral subtraction filter and adaptive fuzzy wavelet 
filter, respectively.  
In Eq. (31), the parameter μ  is generated by the support 
vector machine, { }1,1−∈μ . If 1−=μ , the input signal is 
considered to be filtered by spectral subtractive filter. If 

1=μ , then the input signal is considered to be filtered by 
adaptive fuzzy wavelet filter. 

B.  Amplified Voice Activity Detection 
Voice activity detection (VAD) is used to distinguish 

speech from contaminated speech signals and is required 
in various speech communication systems [16]. To 
distinguish noise from speech, previous studies have 
adopted a Teager energy operator (TEO), which has been 
proven to provide excellent performance in both additive 
noisy and real noisy environments [29]. The discrete 
form of the TEO is given by 

)1()1()()]([ 2 −+−= nynynynyT         (32) 
where T[y(n)] is called the TEO coefficient of y(n). 
However, a TEO is insensitive when the SNR is low. For 
example, when the SNR is lower than 0 dB, the 
difference between noisy energy and speech energy is not 
obvious, and the performance of the TEO is not 
satisfactory. Figure 6 shows an example of using TEO to 
distinguish speech from noise signals contaminated by -5 
dB of Gaussian white noise. To overcome this problem, 
in our proposed module, the TEO is combined with 
entropy to improve the ability of distinction [30]. The 
formula of entropy is shown as follows: 
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Entropy represents the degree of variation. When the 
noise model is stationary or slightly non-stationary, the 
corresponding entropy is kept stable or is slightly 
changed. Figure 6 illustrates the difference between the 
output of TEO VAD and entropy VAD. In Fig. 6 entropy 
VAD provide better solution in time slot 310, 420, and 
720. In these time slots speech signals are detected when 
the threshold of entropy is set to 1000. However, the state 
of TEO VAD shows there are only noise signals. In Fig. 
6, the VAS (voice activity shape) operator is applied to 
each TEO signals to discriminate the speech and non 
speech regions. Figure 7 shows the comparison of using 
the TEO and entropy on VAD to distinguish signals 
contaminated by -5 dB of Gaussian white noise. 
Obviously, in Fig. 7 entropy VAD provides more precise 
voice/unvoice segment than TEO VAD, such as in time 
slot 3000, 5300, 7500 and the interval between 8000 and 
8200. Although the energy of speech signals is reduced 
gradually and is closed to the energy of noise signals in 
these time slots, the entropy VAD can distinguish the 
speech and non speech regions precisely. 

The proposed VAD algorithm computes signals 
)( im xw  that have been produced by the wavelet package 

transform on each input frame to produce 2J sub-band 
wavelet packets, where J is the number of levels for the 
wavelet packet decomposition tree and Jm 21 ≤≤ . A set 
of )]([ im xwT  can then be derived from Eq. (32). The 
scheme of the voice activity detection is designed as 
follows: 

⎪⎩
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where ς  is user-defined and ( )JJJ Nlog2σλ = , as 
proposed by Johnston and Silverman [31], and )var(⋅  
denotes the variance. In our experiments, ς  is set to be 
0.458. 

C.  Feature Selection and Support Vector Machine 
In the hybrid wavelet-spectral filter, the filtering 

behavior between the adaptive fuzzy wavelet filter and 
the spectral subtraction filter is controlled using an SVM. 
SVMs have been shown to provide higher performance 
than traditional learning machines. The advantage of 
SVMs involves minimizing the risk of misclassifying not 
only examples in the training set, but also the unseen 
examples of the test set. Based on research, choosing 
critical features plays a vital role in the performance of 
classification. In this part, energy, the zero crossing rate, 
entropy, and Mel frequency cepstral coefficients were 
adopted to analyze the presence of speech in noisy 
environments. Mel frequency cepstral coefficients are 
described as follows: 

 Mel Frequency Cepstral Coefficient 
Mel-frequency cepstral coefficients (MFCCs) are 

derived from a type of cepstral representation of the audio 
clip. The difference between the cepstrum and the mel-

frequency cepstrum is that in the MFC, the frequency 
bands are equally spaced on the mel scale, which 
approximates the human auditory system's response more 
closely than the linearly-spaced frequency bands used in 
the normal cepstrum. Energy value of each band was 
calculated by 

})(|)(|log{)(
1

1

2∑
+

−=

=
m

m

f

fk
m kBkXmY            (35) 

where )(kBm  was the triangular bandpass filter of m th 
band. Taking the discrete cosine transform on the derived 
energy value from Eq. (35), a Mel frequency cepstral 
coefficient was then obtained, which can be expressed as 
follows: 
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     (36) 

where M was the number of bands. 
In training the SVM, supervised class labels of training 

patterns were decided according to the performance of 
the adaptive fuzzy wavelet filter and spectral subtraction 
filter. In the supervised mode, the performance of these 
two filters can be easily determined by comparing the 
filtering signal with the desired signal. The class labels 
were decided systematically by frame. Let di = 1 if the 
SNR of the adaptive fuzzy wavelet filter is larger than 
that of the spectral subtraction filter. Otherwise, di = -1. 
By training the SVM with a set of input signals and 
desired signals, it acquires the function of a desired 
classifier. 

Let Y(k) denotes the input speech signal, where k is the 
frame index and 1≦k≦N.  The training pattern for the 
support vector machines is defined as { }N

kkdkx 1)(),(( =
, 

where [ ),(),(),(),()( 1 kMCFFkEykZCRkEnkx =  
]Tn kMCFFkMCFF )(,),(2 and { }1,1)( −∈kd . In the 

definition of x(k), En(k), ZCR(k), Ey(k) represents the 
energy, the zero crossing rate, entropy, respectively. 
Moreover, MCFFi(k) represents the ith Mel Frequency 
Cepstral Coefficient on the kth frame. In the training 
phase an iterative training algorithm proposed by this 
paper includes the following four steps:  

Step 1: Initially set k=1. 
Step 2: Calculating each training pattern 

{ }N
kkdkx 1))(),(( =

 for each frame. d(k) = 1 if 
the SNR of output of adaptive fuzzy wavelet 
filter is higher than the output of spectral 
subtraction filter. Otherwise, d(k) = -1. 

Step 3: Using smooth support vector machines [32] 
to transfer the constrained cost function Eqs. 
(15), (16) into unconstrained cost function 
and spplying conjugate gradient algorithm to 
modify the parameters. Repeat step 2 to step 
4 until the optimal solution is reached. 

V.  EXPERIMENTAL RESULTS 

This section demonstrates the effectiveness of our 
proposed system. The experimental results that pertain to 
the proposed speech enhancement system were compared 
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to those obtained by the method based on spectral 
subtraction and the signal subspace approach. 

The proposed system is tested to determine its 
effectiveness in the enhancement and recognition of noisy 
speech using the Aurora 2 database, which is one of the 
currently standard databases that is used in the 
enhancement and recognition of noisy speech [33]. The 
speech files in the database include recordings of the ten 
English digits and the 26 English letters, as spoken by 
males and females. The Aurora 2 database not only 
includes 4004 uncontaminated spoken sentences; it also 
includes 48048 spoken sentences that are contaminated 
with eight types of noise (Subway, Babble, Car, 
Exhibition, Restaurant, Street, Airport and Station) at -5, 
0, 5, 10, 15 and 20dB. In this experiment, the Daubechies 
wavelet filter with a length of four is adopted [34]. 

First, 640 test speech signals, the probabilities of 
detection Pd and the false-alarm Pf are used to evaluate 
the performance of the proposed VAD algorithm. Pd is 
calculated as the percentage of test cases in which the 
hand-marked speech regions are correctly detected by the 
VAD algorithm while Pf is the percentage of test cases in 
which hand-marked noise regions are erroneously 
identified as speech. For a variety of noise sources and 
SNRs, the Pd and Pf of the proposed algorithm are 
compared with those of Robust VAD and ARM VAD [28, 
35]. Table 2 presents the experimental results, which 
reveal that the proposed VAD algorithm performs well in 
terms of a low SNR. 

Second, to make consistent comparisons, the HTK 
speech recognition system is adopted as a classifier [36]. 
The HTK speech recognition system was developed by 
the Speech Vision and Robotics Group of Cambridge 
University. This system can be used to establish an HMM 
model, a language model, and a training model. In the 
experiment, HTK has been applied on the data of an 
Aurora 2 database. 

In the experiments, tenfold cross-validation is 
performed on the data of an Aurora 2 database to evaluate 
how well each algorithm generalizes to future data [37]. 
The method of tenfold cross-validation involves 
extracting a certain proportion, typically 10%, of the 
training set as the tuning set, which is a surrogate of the 
testing set. All parameters in the proposed algorithm are 
set to optimize the performance when applied to the 
tuning set. 

The proposed system is evaluated in two steps. First, 
the segmental SNRs before and after signal enhancement 
are evaluated. Next, the HTK classifier is applied to the 
enhanced speech signals to compare the recognition rates 
of the adaptive fuzzy wavelet filter, the hybrid wavelet-
spectral filter, and other methods. The experimental 
results are as follows. 

Figure 8 plots the waveform before and after signal 
denoising by the adaptive fuzzy wavelet filter. The signal 
was mixed with 10 dB of car noise. Figure 9 shows the 
corresponding time-frequency diagrams. 

Comparisons of segmental SNRs confirm the 
effectiveness of the proposed system. Tables 3, 4 and 5 
show the segmental SNRs before and after signal 

denoising using the adaptive fuzzy wavelet filter and the 
hybrid wavelet-spectral filter. The experimental results 
show that the proposed system effectively removes noise. 

Finally, Tables 6, 7, and 8 compare the signal 
recognition rates after denoising by adaptive fuzzy 
wavelet filter, hybrid wavelet-spectral filter, the signal 
subspace approach, spectral subtraction method, Avci’s 
and Ghanbari’s wavelet method [20, 38, 39, 40]. Again, 
the experimental results confirm that the proposed 
method outperforms other methods. 

VI.  DISCUSSION 

The proposed novel wavelet filter controlled by fuzzy 
rules removes additive noises in contaminated speech 
signals. The rules for setting system parameters in this 
adaptive fuzzy wavelet filter are based on the local 
characteristics of the signals. The system was designed to 
be optimized using the PSO algorithm to minimize the 
mean square error of the system outputs. The system uses 
four linguistic variables and seven fuzzy rules to 
determine the adaptive threshold. Different forms of 
noises can be effectively represented and distinguished 
using the four linguistic variables, and an adaptive 
threshold is determined for each type of noise.  

A hybrid wavelet-spectral filter for denoising 
contaminated signals is proposed. The hybrid wavelet-
spectral filter preserves the advantages of the adaptive 
fuzzy wavelet filter and the spectral subtraction filter but 
with none of their limitations. The experimental results 
herein confirm that the proposed method outperforms 
other de-noising methods. 

Further research should seek additional critical 
parameters to help to identify the type of noise and to 
determine more rules to add to this system. Although 
some studies have demonstrated algorithms that can 
automatically generate inference rules, the inference time 
of these algorithms increases with the number of fuzzy 
rules. The balance between the precision and time 
complexity of such algorithms remains to be determined. 
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Figure 1: The decomposition of full wavelet packet transform, with the 
left and right branches at each node representing a matched pair of low-

pass and high-pass wavelet filters followed by downsampling. 
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TABLE 1: 
LINGUISTIC VARIABLES - FUZZY SET RELATIONAL TABLE. 

Linguistic Variable Fuzzy Sets 
Energy Low High  

Zero crossing rate Low High  
Standard deviation of 

formants 
Low High  

Average residual Low High  
Threshold Low Median High 
Step length Low Median High 

 
Figure 2: The property of the noise is low standard deviation of 

formants and low average residual. 
 

 
Figure 3: The property of the noise is high standard deviation of 

formants and low average residual. 

 

 
Figure 4: The property of the noise is high standard deviation of 

formants and high average residual. 
 
 
 

 
Figure 5: The schematic diagram of hybrid wavelet-spectral filter. 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2.  
PROBABILITY OF DETECTION PD OF THE PROPOSED VAD WITH OTHER 

METHODS FOR VARIOUS NOISE CONDITIONS 
Environment Noise Method 

SNR
(dB)

Proposed 
VAD 

Robust VAD AMR VAD

Pd % Pf % Pd % Pf % Pd % Pf %
Station 15 96.3 9.8 96.5 9.6 96.1 19.3

10 96.1 10.2 96.1 9.9 95.4 28.2
5 94.5 10.9 94.5 10.5 93.8 37.5
0 92.8 11.1 92.3 11.3 90.2 43.4
-5 89.0 13.6 86.2 15.2 85.3 51.5

Street 15 96.5 9.7 96.8 9.1 95.8 25.1
10 95.8 9.9 96.1 9.3 95.1 29.6
5 95.1 10.2 95.1 9.8 94.6 38.5
0 93.7 10.2 93.1 10.2 94.1 45.5
-5 88.8 13.0 85.8 14.5 90.0 50.3

Car 15 96.5 8.5 96.5 8.2 96.1 21.6
10 95.2 8.8 95.7 8.9 96.0 29.9
5 93.0 9.3 93.1 9.6 95.2 40.3
0 88.2 10.1 86.5 10.8 94.8 47.5
-5 85.5 13.4 80.5 15.1 91.2 55.6

 
 
 

 
Figure 6: The property of Gaussian white noise with -5dB. 

 
 
 

 
Figure 7: The comparison of VAD based on TEO and entropy with -

5dB Gaussian white noise. 
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(a) Contaminated signal 

 
(b) Enhancement signal 

Figure 8 (a) Speech signal contaminated by 10dB car noise. (b) 
Enhancement signals denoised by adaptive fuzzy wavelet filter. 

 
 
 

TABLE 3.  
THE SEGMENTAL SNR OF THE SIGNALS IN AURORA 2 DATABASE.   

SNR (without enhancing) 
 Sub.  Bab. Car Exh. Res. Street Air. Sta. AVE

20dB 18.5 18.3 18.4 18.6 18.38 18.32 18.45 18.38 18.41
15dB 13.5 13.6 13.4 13.6 13.45 14.07 14.28 13.55 12.37
10dB 8.85 8.9 8.95 8.92 9.31 9.07 9.28 8.93 7.42 
5dB 4.95 4.9 4.98 4.96 4.97 4.95 4.92 4.94 4.94 
0dB 0.84 0.62 0.08 0.12 0.11 0.3 0.26 0.09 0.30 

-5dB -4.81 -4.26 -4.33 -
4.13 -5.01 -4.86 -4.97 -5.06 -4.67

 
 
 

TABLE 4. THE SEGMENTAL SNR OF THE SIGNALS AFTER ENHANCING 
BY ADAPTIVE FUZZY WAVELET FILTER.  

SNR (after enhancing) 
 Sub. Bab. Car Exh. Res. Street Air. Sta. AVE.

20dB 20.1 18.9 20.3 19.7 18.8 19.2 19.4 18.7 19.38
15dB 15.5 14.8 13.4 14.9 13.9 14.98 15.04 14.4 14.33
10dB 11.4 10.3 11.6 11.3 11.88 11.4 11.67 10.94 10.64
5dB 7.4 6.1 8.1 6.6 5.7 6.7 6.4 6.5 6.68
0dB 4.45 3.68 5.3 4.3 3.16 3.77 3.63 3.53 3.97

-5dB 1.33 -
1.78 1.64 1.21 0.88 1.16 0.86 1.18 0.81

 
(a) 

 
(b) 

Figure 9 (a) The spectrogram of speech signal contaminated by 10dB 
car noise. (b) The spectrogram of enhancement signals denoised by 

adaptive fuzzy wavelet filter. 
 
 
 
 

TABLE 5.  
THE SEGMENTAL SNR OF THE SIGNALS AFTER ENHANCING BY HYBRID 

WAVELET-SPECTRAL FILTER.  
SNR (after enhancing) 

 Sub. Bab. Car Exh. Res. Street Air. Sta. AVE.
20dB 23.4 20.83 21.83 21.73 21.56 23.49 21.01 22.58 22.05
15dB 19.8 17.74 17.4 16.41 16.84 18.51 17.66 18.26 17.83
10dB 16.16 12.97 13.64 15.63 14.78 13.92 14.49 14.12 14.46
5dB 9.95 7.88 9.78 9.67 8.39 10.62 8.43 9.01 9.21
0dB 4.53 3.68 6.66 6.28 5.04 4.98 5.03 3.53 4.97
-5dB 2.03 1.1 1.76 2.24 2.05 2.13 2.02 1.18 1.81

 
 
 

TABLE 6.  
THE COMPARISON OF SIGNAL SUBSPACE WITH ADAPTIVE FUZZY 

WAVELET FILTER AND HYBRID WAVELET-SPECTRAL FILTER 
Recognition rate % 

 method Sub. Bab. Car Exh. Res. Street Air. Sta. AVE.

20dB
subspace 99.3 97.4 98.1 97.8 98.0 97.7 97.6 97.6 97.8
adaptive 98.1 98.0 98.6 97.6 98.6 97.9 98.3 98.8 98.2
Hybrid 98.9 98.4 98.7 97.9 98.8 98.7 98.5 99.0 98.6

15dB
subspace 95.5 92.8 96.7 94.5 94.3 93.2 94.2 94.2 94.4
adaptive 95.7 94.2 96.1 95.4 95.2 94.9 95.6 95.9 95.4
Hybrid 96.5 95.1 96.7 95.8 95.9 95.6 96.1 96.5 96.0

10dB
subspace 87.7 81.9 90.3 85.3 84.1 83.9 84.5 84.5 85.3
adaptive 87.9 83.6 82.9 87.8 88.3 85.0 84.9 86.7 85.9
Hybrid 88.9 84.7 84.7 88.4 88.5 85.6 85.2 87.8 86.7

5dB
subspace 74.7 64.1 74.6 62.9 65.2 67.0 67.5 67.5 67.9
adaptive 71.2 65.4 72.3 67.1 66.8 64.3 69.8 63.9 67.6
Hybrid 73.2 66.0 73.8 69.8 68.7 67.3 70.2 67.2 69.5

0dB
subspace 52.2 39.8 45.5 38.3 41.2 39.0 43.7 43.7 42.9
adaptive 53.3 40.2 44.3 39.1 42.3 41.4 45.1 43.9 43.7
Hybrid 53.5 40.2 45.8 42.8 43.7 42.8 46.1 43.9 44.9

-5dB
subspace 28.3 21.5 20.3 16.1 17.9 16.8 21.5 21.5 20.5
adaptive 30.2 24.6 22.3 16.9 18.3 17.8 20.6 19.6 21.3
Hybrid 30.5 27.9 22.4 17.3 18.8 18.2 21.4 19.6 22.0

 
 
 

TABLE 7.  
THE COMPARISON OF SPECTRAL SUBTRACTION WITH HYBRID 

WAVELET-SPECTRAL FILTER  
Recognition rate % 

 method Sub. Bab. Car Exh. Res. Street Air. Sta. AVE.

20dB
spectral 84.8 90.0 89.5 80.6 91.2 91.8 91.4 97.6 93.2
Hybrid 98.9 98.4 98.7 97.9 98.8 98.7 98.5 99.0 98.6

15dB
spectral 77.2 79.1 81.8 67.8 79.3 86.0 84.8 94.2 90.6
Hybrid 96.5 95.1 96.7 95.8 95.9 95.6 96.1 96.51 96.0

10dB
spectral 65.7 55.0 66.9 47.6 57.0 67.8 64.9 84.5 77.9
Hybrid 88.9 84.7 84.7 88.4 88.5 85.6 85.2 87.8 86.7

5dB
spectral 45.5 27.3 38.7 25.1 29.5 43.5 36.1 67.5 47.5
Hybrid 73.2 66.0 73.8 69.8 68.7 67.3 70.2 67.2 69.5
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TABLE 8.  
THE COMPARISON OF HYBRID WAVELET-SPECTRAL FILTER WITH 

OTHER WAVELET DENOISING METHODS 
Recognition rate % 

 method Sub. Bab. Car Exh. Res. Street Air. Sta. AVE.

15dB
Avci’s 96.3 95.0 95.2 95.0 95.8 95.5 94.9 95.0 95.4

Ghanbari’s 94.0 92.8 94.0 94.6 93.0 94.1 94.4 94.9 94.
Hybrid 96.5 95.1 96.7 95.8 95.9 95.6 96.1 96.5 96.0

10dB
Avci’s 88.9 83.8 82.2 88.0 86.0 84.0 83.9 84.3 85.1

Ghanbari’s 84.2 81.8 82.6 85.3 84.9 83.7 82.9 85.7 83.9
Hybrid 88.9 84.7 84.7 88.4 88.5 85.6 85.2 87.8 86.7

5dB 
Avci’s 71.8 66.1 74.5 71.0 69.5 66.1 68.4 65.9 69.2

Ghanbari’s 68.5 60.3 65.8 66.1 62.5 61.1 64.5 64.1 64.1
Hybrid 73.2 66.0 73.8 69.8 68.7 67.3 70.2 67.2 69.5

0dB 
Avci’s 51.3 38.6 40.4 41.6 41.8 38.9 41.0 41.8 41.9

Ghanbari’s 46.9 37.9 40.0 40.8 39.5 39.1 41.2 38.1 40.4
Hybrid 53.5 40.2 45.8 42.8 43.7 42.8 46.1 44.0 44.9

-5dB 
Avci’s 29.9 28.0 21.3 17.1 17.3 18.6 20.7 19.0 21.5

Ghanbari’s 28.0 27.5 20.8 18.0 16.7 16.4 19.3 18.9 20.7
Hybrid 30.5 27.9 22.4 17.3 18.8 18.2 21.4 19.6 22.0
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