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Abstract—The state search is an important component of
any object tracking algorithm. Numerous algorithms have been
proposed, but stochastic sampling methods (e.g., particle filters)
are arguably one of the most effective approaches. However,
the discretization of the state space complicates the search
for the precise object location. In this paper, we propose
a novel tracking algorithm that extends the state space of
particle observations from discrete to continuous. The solution
is determined accurately via iterative linear coding between two
convex hulls. The algorithm is modeled by an optimal function,
which can be efficiently solved by either convex sparse coding
or locality constrained linear coding. The algorithm is also
very flexible and can be combined with many generic object
representations. Thus, we first use sparse representation to
achieve an efficient searching mechanism of the algorithm and
demonstrate its accuracy. Next, two other object representation
models, i.e., least soft-threshold squares and adaptive structural
local sparse appearance, are implemented with improved
accuracy to demonstrate the flexibility of our algorithm.
Qualitative and quantitative experimental results demonstrate
that the proposed tracking algorithm performs favorably against
the state-of-the-art methods in dynamic scenes.

Index Terms—State space search, convex sparse coding,
locality-constrained linear coding, visual tracking.

I. INTRODUCTION

ISUAL tracking is a classic problem in computer vision,
Vand numerous algorithms have been developed for a
wide range of visual tracking applications. Broadly speaking,
the main components of a visual tracking method are object
representation, a motion model and a search mechanism.
Object representation refers to the description of the
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Fig. 1. Linear coding for object location. (a) Observed images corresponding
to the drawn particles. (b) Cropped images. (c) Dictionary P formed by
the observations. (d) The target object appearance in the current frame is
sparsely represented by the observations corresponding to the drawn particles.
(e) Coefficients of the proposed linear representation.

appearance of the target; the motion model is used to describe
how the object moves between frames with state prediction;
and the search mechanism is used to determine the object
location. In some approaches, some of these tasks may be
performed implicitly. While most algorithms focus on the
object representation model, in this paper, we mainly focus on
the searching mechanism, which is also of crucial importance
for the accuracy and speed of visual tracking.

State searches for object tracking have been based on
gradient descent [1], [2], stochastic sampling [3]-[5], and
dense sampling [6]-[8], among other methods. Although states
can be estimated by gradient descent methods efficiently,
frequently only local optimal solutions are computed.
To address this problem, stochastic or dense sampling
algorithms have been exploited in recent tracking algorithms.
However, either of these approaches requires drawing
hundreds of samples in the state space to alleviate the local
optimum issue and consequently entails solving numerous
optimization problems [4], [5]. Despite the demonstrated
success of these sampling methods for visual tracking, the
discretized state space makes it difficult to search the object
state precisely due to the omission of the sampling points; in
addition, the use of dense sampled particles may also increase
the computational complexity significantly [4], [5], [9]-[11].

In this paper, we propose a tracking algorithm based on
a novel stochastic sampling algorithm for an effective and
efficient state search. The target appearance of a frame is mod-
eled by a linear combination of the observations corresponding
to particles drawn stochastically in an image (Figure 1). Using
this formulation, we demonstrate that the discretized state
space can be modeled by a continuous space as for the space
of the corresponding observations, which produces greater
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precision than particle filters. In addition, unlike particle filters,
the proposed method does not need to evaluate each particle
individually, which may be time consuming [4], [5], [9]-[11].
We directly find the object state in an iterative fashion,
which can be determined efficiently via iterative linear coding
between two convex hulls including the space of particle obser-
vations and object template. For concreteness, two specific
linear coding methods, i.e., convex sparse coding [12] and
locality-constrained linear coding [13], are exploited for
object tracking. Although the proposed algorithm is mainly
concerned with the search mechanism, it can be incorporated
with many generic object representations [5], [14]. In this
work, we first use sparse representation to illustrate the
algorithm and demonstrate its accuracy. Next, two other object
representation models, i.e., least soft-threshold squares [14]
and adaptive structural local sparse appearance [15], are
implemented with improved accuracy, confirming the flexi-
bility of our algorithm.

Online updating of the object template is an important
component for robust visual tracking. Although straightfor-
ward online update methods can alleviate the tracking drift
problems, we present an adaptive method based on reconstruc-
tion errors between two frames. The templates are updated
only when the object appearance undergoes a significant
change, and then a set of basis of the previous tracked objects
are learned instead of directly using the previous tracked
objects themselves. We demonstrate that this update method
significantly facilitates robust tracking.

The main contributions of this work are summarized
as follows:

« A novel state search algorithm is proposed in which the
target appearance is modeled by a linear sparse combi-
nation of image observations corresponding to particles
drawn by stochastic sampling. Using this formulation, the
state space can be modeled by a continuous space from
which the optimal state can be determined by an effective
and efficient algorithm in a few iterations.

o The proposed convex sparse coding and locality-
constrained linear coding algorithms greatly facilitate
accurate state search than particle filters.

« An adaptive object template update method is proposed
that helps alleviate the tracking drift problem compared
to existing approaches.

II. RELATED WORK

A thorough review of the rich literature is presented
in [16], [17]. In this section, we discuss the methods most
related to this work.

Existing tracking methods can be broadly categorized into
generative and discriminative approaches. Generative tracking
methods locate an object position by searching for the image
region corresponding to a state that can be reconstructed by
the current model with minimal error. Typical target objects
are modeled by color histograms [1], covariance matrices [18],
subspace models [4], and sparse representations [5], [9]-[11],
[15], [19], [20]. Mei and Ling [5] use sparse representations
of holistic templates from a foreground object and trivial
background patterns to determine the best target image region
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with minimal reconstruction errors. Because this algorithm
involves solving one ¢; minimization problem for each
particle, the time complexity is significant. Several algorithms
have subsequently been developed to reduce the time
complexity by feature selection [10], compressive sensing
to reduce the dimension [19], and efficient optimization
algorithm [9]. However, these algorithms still require
considerable computational load for real-time applications.
Other popular generative methods include multi-task sparse
learning tracker [20], adaptive structured local sparse
tracker [15], and sparsity-based collaborative tracker [11].

Discriminative approaches pose the tracking problem as
a classification task with a local search based on prior
object location to separate a foreground region from the
background [6]-[8], [21]-[24]. In [21], an optical flow
approach with a support vector machine classifier is proposed
for object tracking. In [22], the most discriminative fea-
tures are selected online to best separate target object pixels
from the background. In [6], an online boosting method
for tracking is developed to select discriminative Haar-like
features for foreground and background separation, in which
the state is determined based on dense local sampling. In [7],
a multiple instance learning method is proposed in which
samples are considered within positive and negative bags,
which can address the ambiguity of samples. Other
popular discriminative methods include tracking-learning-
detection [24], struck tracker [23], and compressive tracker [8].

For visual tracking, online updating of generative
models [4], [5], [18], [25] or discriminative classifiers
[6], [7], [22] are effective for handling object appearance
changes. Generative model updates are mainly based on
adding the most recent tracking result to the models and
discarding the old ones. For example, Ross et al. [4]
use an incremental subspace learning method to represent
the most recent object appearance in the frame without
determining whether the newly observed image is occluded.
Kwon and Lee [25] utilize the sparse principal component
analysis method to update an object model in every
frame. However, frequent updating may adversely cause
tracking drift problems. Discriminative classifiers are
updated based on online learning algorithms. For example,
Grabner and Bischof [6] use the online boosting algorithm
to update the classifier with the most recent features [6].
Babenko er al. [7] developed an online multiple instance
learning algorithm to update the classifier.

III. GENERAL PARTICLE-BASED TRACKING MODEL

Visual tracking can be cast as a Bayesian inference problem
related to the state space and observation space. The state
space describes the parameters of the target object, e.g.
affine state space [4], [5], [9], while the observation space
represents the object’s appearance and is employed to
determine the optimal state of an object. Thus, there exists
a mapping between the state space and observation space in
every frame, as illustrated in Figure 2.

In the tracking process, a particle filter is commonly used
to sample particles, thereby discretizing the state space and,
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Optimal State Mapp,'ng

Fig. 2. Mapping between the state space and observation space in every
frame. The orange and red arrow lines indicate the mapping from the state
space to the observation space, where the red arrow line indicates the optimal
state mapping. (a) The state space constructed by ©. (b) The observation
space constructed by particle observations.

correspondingly, discretizing the observation space as well.
In the observation space, each particle has a corresponding
vectorized gray-scale image observation, p; € R?. These
observations form a dictionary: P = [py,---,pn] € R¥*"
To determine the optimal state of the object in the current
frame, we search for the state in which the corresponding
appearance is most similar to the object template model.
Consequently, it is very important to measure the similarity
between each particle’s observation and the object templates.
The maximum a posteriori probability (MAP) estimation is
then usually used to determine the optimal state of a particle
and to finally determine the object’s location in the current
frame. Therefore, the object tracking process mentioned above
relies on the state space and observation space models.

A. State Space Model

Many state space models can be used in tracking, with
the affine state space typically used in a particle filter. The
affine state describing the parameters of an object is typically
denoted by ®; = (x4, ¥, s, 8¢, Br, 6¢), which comprises the
x and y translations, rotation angle, scale, aspect ratio, and
skew direction at time #, respectively. A Gaussian function
is usually used to model the motion distribution in the state
space, and the affine parameters are assumed to be indepen-
dent, with the result that p(0;|®,—1) = N(O;; B,_1, A),
where A is the variance matrix of these parameters. Particles
in the state space are usually distributed around the state
of the last frame according to the Gaussian function and
are then mapped onto the observation space of the current
frame (Figure 2). Finally, the optimal state is identified as the
state whose corresponding appearance is the most similar to
the object template model in the observation space.

B. Observation Space Model of Particle Filter

Object tracking involves identifying the target in the
observation space that is visually similar to the templates. For
particle filter methods, the particle in the observation space
that is the most similar to the templates is the best choice for
the target. Thus, the object should be represented efficiently
to determine which particle should be selected as the target.
Furthermore, the similarity measurement between each

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

sampled particle and the object template in the observation
space plays a very important role.

We reformulate this mechanism as a new functional energy
minimization problem that is equivalent to the traditional
particle filter (MAP) as follows:

{a,%} = argmin ||x, — Pa|3 + D(x;, T),

o,X;
s.t. X; € {pl; p25 e pn}; Card(a) = 15
Vi, aiz0, > ai=1, M
i

where o is a nonnegative coefficient with respect to the
dictionary; Card(a) = 1 is the cardinality constraint requiring
that only one element of a is nonzero; X; is the object
observation in the current frame; {p1, p2, ..., p»} is the set of
observations associated with particles in the current frame;
T is the object template set, indicating one or more object
templates; and D(- , -) is the metric for measuring the distance
between the observation and object templates, for which the
Euclidean distance is usually used. Figure 3(a) illustrates
Equation 1 geometrically.

In Equation 1, the cost function consists of two terms:
the particle term, which measures the similarity of the target
and the particles, and the template term, which measures the
similarity of the target and the templates. As the constraint,
Card(a) = 1 indicates that the current object, x;, must
be represented by one of the particles; thus, the first term
should be exactly equal to zero in this case. After resolving
Equation 1, target X, should be very similar to some particle
and the templates, in which similarity is measured by a
measurement function. In fact, different metrics lead to differ-
ent results. Therefore, from the particle term, target X, should
actually be represented by Pa, and from the template term,
target X; should be approximately represented by a function
of the templates 7. The function D(x;, 7") of the templates can
be realized by many different representations, e.g., subspace
representation [4] or sparse representation [5], [9], among
others [14]. From this point of view, the particle filter requires
the target to be represented by some particle and the templates.

Equation 1 is equivalent to the traditional MAP-based
particle filter; in fact, it implies a new insight that the target
appearance can be a linear sparse combination of the particle
observations. As shown later, this linear property is very
important in visual tracking and is used to define a new
state search algorithm that is more effective and efficient than
particle filters.

C. Sparse Representation Model of Templates

As mentioned above, the template term D(x;,7) in
Equation 1 implies an object representation model. This model
can be realized by many different representations, including
the subspace representation model [4] and the sparse
representation model [5], [9].

The sparse representation model [5] is effective in
representing object appearance, particularly in environments
with occlusion and noise. Therefore, we first introduce
this model into Equation 1 to illustrate the algorithm.
Next, two other object representation models, i.e., least
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Fig. 3.

Ilustration from particle filter to linear coding for visual tracking. (a) The general particle filter model, in which each particle p; needs to

compute the distance to the template 7. (b) The distance metric between each particle p; and templates’ continuous space Be (light blue color) in the sense
of £1 norm. (c) The distance metric between object’s continuous space Pa (light red color) and templates’ continuous space Be in the sense of {1 norm.
(d) The object’s continuous space Pa in touch with the templates’ continuous space Be in the sense of £ norm.

soft-threshold squares and adaptive structural local sparse
appearance, are implemented with improved accuracy.
Suppose that T = [t;,tp,--- ,t,] € R?*"(d > n) and
I = [ij,i2, --,ig] € R are a set of object templates
and trivial templates, respectively. With the constraint of
non-negativity, the basis can be represented as

B = [T, I, —I] € R¥*(n+2d), )
Thus, the term D(x;, 7) becomes
D(x,T) =% —Bel3+Acli, st.c=0, (3

where B is a dictionary comprising the object templates and
trivial templates and, with €] regularization, ¢ should satisfy
the nonnegative and sparse constraints, ¢l = [B,et,e"] €
Rfer. This representation aims to identify a linear sparse
combination of the basis that best represents the object
observation in the current frame.

Replacing term D(x;, 7) in Equation 1 with Equation 3,
we obtain
(@, %) = argmin [|x, —Pa|3+ || x, — Be |3 +2 [ ¢ |1,

o, Xt
s.t. X, € {p1,P2,---,Pn}, Card(a) =1,
Vi, @i >0, D ai=1, ¢=0. (4
l

The geometric explanation of Equation 4 is illustrated in
Figure 3(b), where 7 in Figure 3(a) is replaced by a special
term, Be. To obtain target X; in this formulation, we must
measure the distance between each particle’s observation p;
and the object template space Be, as shown in Figure 3(b),
which leads to high computational overhead if each calculation
entails solving an ¢ optimization problem [5].

Moreover, in Equation 4, the representation of target X;
in the particle term is still discretized as pi,p2,--- ,Pn-
As shown in the next section, this discretization can be relaxed
to become continuous through the sparse linear representation
of P. The solution can then be determined efficiently via
iterative linear coding between two convex hulls Pa and Be,
instead of solving each individual ¢.

IV. VISUAL TRACKING BY SPARSE
AND LOCAL LINEAR CODING

Intuitively, representation of an object in continuous space
should be more precise than in discrete space. In Equation 4,
target x, belongs to one of the particle’s observations p; due

to the constraint Card(a) = 1. However, this constraint is
too strict. The constraint would be more flexible if target x;
can be represented by the linear combination of P. We argue
that this characteristic is very important for visual tracking and
produces a novel tracking algorithm based on iterative linear
coding. Specifically, two linear codings are proposed in the
next sub-sections: convex sparse coding (CSC) and locality-
constrained linear coding (LLC).

A. CSC-Based Visual Tracking

Equation 4 is equal to the original ¢ tracker [5], in which
the particles’ state space is in a discrete space. We will
demonstrate how this discrete state space can be extended to a
continuous space and how the calculation is greatly accelerated
by this extension.

We relax the constraint Card(a) in Equation 4 by placing
an {1-norm regularization on o, which indicates that the
coefficient of a can contain a small number of nonzero
elements rather than only one, as follows:

RPN . 2 2
{a,¢, %X} = argmin | x; —Pa [|3 + || x, —Be |3
a,C,X;

+ullal+Alel,
st Vi, a; >0, Za,-:l, c>0, (5)

1

where || - |1 denotes the £ norm that guarantees the sparsity
of a and c. This equation indicates that the object in the
current frame is not only sparsely represented by its ambient
particle observations but can also be expected to be sparsely
represented by the object templates and trivial templates. More
specifically, this type of representation is in a continuous space
when a is relaxed to a positive real number. Therefore, the
efficiency of the resolving process is also a key problem.

In Equation 5, the first and second terms can be considered
the two edges of a triangle. The third edge of the triangle
is || Pa — Be ||%. Therefore, the minimum of Equation 5 is
reached when || x, — Pa |5 + || x, — Bc |3 = || Pa — Be |3,
in which case, Equation 5 can be formulated as

{@,¢) = argmin | Pa —Be |3 +u [l a i +4 [ ¢,

a,c

st.¥i, a;=0, D ai=1 ¢>0. (6)
i

Equation 6 can be considered as the Euclidean distance
between two convex hulls Pa and Be; see Proposition 1 in
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the Appendix. The geometrical explanation of Equation 6 is
illustrated in Figure 3(c-d).

From Figure 3, we can observe that the strategy of the
particle filter is that all of the particles (vertices of the
space Pa) must calculate the distance to the continuous space
Bc (light blue color). With our method, particles are placed
into a continuous and convex space Pa (light red color in
Figures 3(c-d)); hence, the solution can be searched more
efficiently by iteratively updating the result between the two
convex hulls Pa and Be until the minimum distance is attained,
as illustrated in 3(c). Note that, in theory, the spaces Pa and Be
may be in contact (Figure 3(d)), with the result that Pa = Be.

Although the formulation is only slightly revised in
Equations 4 to 6, the tracking problem has changed
considerably and requires a different solution strategy. In fact,
in the particle filter, the mean square error (MSE) estimation
is also adopted to represent the target in the current frame
by a combination of all the particles. However, in MSE, each
particle’s observation p; must be compared with the template
space Be, which still must be computed for each particle,
leading to high computational load.

Equation 6 can be solved efficiently by alternately updating
o and c. Initially, we let Pa = Xil? initializing the iterations
with the previous target. The following standard ¢; problem
is then solved to obtain ¢:

¢ = argmin || x;_;, — Be II% +2 0 el. 7
C

Various methods have been developed to solve this ¢1 problem,
e.g., Lasso [12]. Given ¢, we then fix §y = B¢ to solve the CSC
problem of Equation 6:

a=argmin | § —Pa |3 +u [l a || (8)
(23

These two procedures are executed alternately to update
a and ¢ and form an iterative process that gradually
approximates the minima of Equation 6. In our experiments,
this process typically converges in only a few iterations,
demonstrating that only a few sparse coding procedures are
involved. Consequently, the time complexity is much lower
than that of the particle filter-based tracker.

The solved coefficient vector a actually measures the
correlation of each particle with the tracked object. To obtain
the optimal state of the object in the current frame, a is used
as the weights to combine the states (affine parameters) related
to the elements of P, and the resulting optimal state is then
used to locate the object in the target frame by transforming
the tracking window from the source frame; Finally, the object
target X; is cropped out.

B. LLC-Based Visual Tracking

In practice, the CSC method generally performs well
in many cases, but the solution of CSC cannot guarantee
the locality of the selected particles [13], [26]; as shown
in Figure 4(a), p3 and p, (purple color) may be selected
to represent the object in the current frame, but intuitively,
pn—1 and p, (Figure 4(b) purple color) are more suitable
for object tracking because these two selected particles are
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Fig. 4. Illustration of convex sparse coding and locality-constrained linear
coding for object tracking. (a) Convex sparse coding, in which particles
p3 and p, (purple color) are selected for object tracking. (b) Locality-
constrained linear coding, in which particles p,,_1 and p, (purple color) are
selected for object tracking.

closer to the object template space Be. Recently, Yu et al. [26]
proposed Local Coordinate Coding (LCC), a modification of
CSC that explicitly encourages local coding because theoret-
ically, under certain assumptions, locality is more essential
than sparsity. They presented the novel LLC coding [13],
which can be viewed as a rapid implementation of LCC.
Using LLC, the solution encourages the found particles to be
not only sparse but also local to the object template for object
representation, as in Figure 4(b). The relaxation of Equation 4
used in LLC can be written as

PP . 2 2
{a,¢,x} = argmin || x; —Pa |5 + || x;, —Be |5
a,C¢,X;

+ullwoald+illel
s.t. Vi, a; >0, za,:l, c>0, 9)

1

where © denotes the element-wise multiplication and w indi-
cates whether the particle p; is close to the template space Be
(can be computed by K-NN); if close, then its correspondence
coefficient of w is 1 and is O otherwise. w guarantees « is not
sparse in the £1 norm sense but in the sense that the solution
has only a few significant values (p,—; and p,, in Figure 4(b)).
LLC can be computed efficiently using analytical means [13],
which can enable real-time object tracking.

Similar to Equation 5, Equation 9 can be formulated
further as
(@,¢) = argmin || Pa —Be |3+ | wOa 7 +2 | ¢ |1,

a,c
s.t. Vi,o; > O,Zai =1, ¢>0.

1

(10)

Equation 10 is considered as the metric distance between the
two spaces Pa and Bc in the sense of LLC, as illustrated in
Figure 4(b). From Figure 4(b), we can observe that with LLC,
the particles identified for object representation are all close
to the space Bc, i.e., LLC is more suitable for object tracking.

Similar to Equation 6, Equation 10 can also be solved by
alternately updating a and c. Updating ¢ is the standard ¢
problem. Next, given ¢, we can fix § = B¢, and thus to
update a, we can solve the following equation:

Y

G =argmin ||y —Pa |5 4+u | wOa |3.
(23

This equation can be solved efficiently [13]. More details about
our tracking method are provided in Algorithm 1.
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Algorithm 1 Linear Coding for Visual Tracking

Input: Location in the first frame

Output: Location in every frame

1: For each frame t = 1 : T, T is the total number of frames.

2: Sample the particles around the previous object location in the
current frame.

3: Every particle crops out a warp image, normalized to the standard
template, and then all of the warped images are used to construct
a dictionary P.

4: Use Equation 6 or 10 to solve linear coding for object localization.

5 The nonzero of the coefficients of particles are used to locate
the object in the current frame.

6: Update the object template model.

7: end for.

C. Object Template Updating

The appearance of an object typically changes dynamically
for a variety of reasons, such as motion, occlusion, back-
ground, and illumination change. Constant object templates T
obviously cannot address these cases effectively. A particle
filter typically uses a heuristic strategy to update the object
templates and thus is not able to deal effectively with the
drifting problem. Consequently, online updating of the object
template model is also very difficult, with a fundamental
problem being when and how to update the template model.

An updating opportunity must be carefully selected and
can be naturally related to changes in the object observation.
The faster an object observation changes, the more frequently
the templates must be updated. Therefore, a proper metric
for measuring change is essential. Recall that in section IV,
the tracked object without an occlusion part y, is represented
as T,[;’; hence, if the object observation is not changed much,
then y, must be close to x;_,, or else they may differ greatly.
Therefore, variation of the object can be measured by the
difference between y, and x;_;.

error =| % —x*_| |13 . (12)

Our strategy to control the updating dynamically is to
update the object template model only if the error is greater
than a threshold 7, indicating that the object observation has
undergone significant change.

To update the object template model, we can -either
use the previous tracked object directly as the new tem-
plate model or use some learning-based methods instead
of only the previous frame, such as principal component
analysis (PCA) [4] and dictionary learning (DL). With the
development of sparse representation, DL is powerful for
representing objects [27], [28]. Thus, in this paper, we adopt
the dictionary learning strategy for learning the basis and
then use it to update the object templates. The initialization
of the template set T is created by manually selecting the
first template and then creating the rest of the templates by
perturbing one pixel in four possible directions at the corner
points of the first.

V. OTHER OBJECT REPRESENTATION MODELS

We have stated our searching mechanism in a continuous
space for visual object tracking, which is very flexible and
can be applied to many other object representation models.
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In this section, we introduce two more object representation
models combined with our LLC searching mechanism, which
can further improve the accuracy of the algorithm. Specifi-
cally, a least soft-threshold squares (LSS) object representation
model [14] and an adaptive structural local sparse appear-
ance (ASLA) model [15] are adopted.

A. Least Soft-Threshold Squares Model

As shown in [14], the object representation of the LSS
model assumes that the tracked object is generated by a PCA
subspace with i.i.d Gaussian-Laplacian noise, such that the
object is represented by

x; =Uz+n+s, (13)

where U represents the basis vectors of PCA, z indicates
the coefficients of basis vectors, n is the Gaussian noise
component, and s is the Laplacian noise component. Thus,
the term D(x;, 7)) can be represented as

D, T) =] x —Uz—s 3+ | 's |1, (14)

Combined with our LLC searching mechanism, the whole

tracking model can be illustrated as
{6,2,8) = argmin | Pa—Uz—s|3+u|wOal3

,Z,8

+Alls

st.Yi, 0 =0, D ai=1 (15)
i
Similar to Equation 10, Equation 15 can also be considered as
the metric distance between two spaces Pa and Uz in the sense
of LLC. Equation 15 can be solved by alternately updating
coefficients o and z,s. z and s can be solved by least soft-
threshold squares; we refer readers to [14] for more details.

B. Adaptive Structural Local Sparse Appearance Model

As demonstrated in the benchmark proposed by [29], the
local sparse representation is important for tracking regarding
performance improvement compared with the holistic sparse
representation (e.g., LSS model). In addition, ASLA also
achieves high ranks in the benchmark. Therefore, we com-
bined our LLC searching mechanism with the ASLA object
representation model to further demonstrate the advantage of
our algorithm.

The ASLA model involves the following steps: first a
particle is evaluated by computing its local sparse coefficients;
next, these coefficients are obtained by a new alignment-
pooling technology; finally, the maximal sum of the gathered
coefficients of the particle is chosen as the tracked object.
Suppose that v; is the i-th local patch coefficient of a particle
and V is the square matrix in which each column comprises v;;
the pooled feature f of each particle is then defined as

f =diag(V). (16)
The score of each particle is defined as
N
s =Dt (17)
k=1
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Fig. 6. The OPE evaluation of the proposed ASLA-LSS method compared with state-of-the-art methods.

where N is the dimension of feature vector f. We refer readers
to [15] for more details about this process.

As shown above, this process actually captures nonlinear
mapping between an object and templates. Consequently, it
is difficult to directly write the analysis function between
the object x; and templates T; thus, we use a symbol ¢ as
the nonlinear mapping function for this processing, defined
as s = @(x;). Therefore, the term D(x;,7) can be simply
defined as

D(x;,T) = —p(x;). (18)

Our strategy of combining ASLA and LLC is that when
computing the nonlinear function ¢, its reconstructed object
¥ = ¢ !(s) is only part of the object. For example, if
the dimensions of object x; is 32 x 32, then the dimensions
of reconstructed object § may be only 24 x 24; thus, it is
more effective than using a holistic object when capturing an
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Fig. 7. Position error by using different updating frequencies.

occlusion because local parches are used. The local patch can
be chosen for reconstructing object y by vector f; if the patch
of x, can be represented by its corresponding templates T’
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patches well, then the value of its corresponding location of f
is high, and vice versa. Thus, using this property, we can obtain
only part of the object with a high score of f instead of a
holistic object for more effective object tracking.

VI. EXPERIMENTS

To examine the effectiveness of the proposed tracking
method, we tested it on an online benchmark [29], which
includes 51 challenge sequences, and compared it with
29 other state-of-the-art algorithms proposed by [29]. For
conciseness, we use the following abbreviations: our proposed
sparse representation-based CSC model as SR-CSC, the sparse
representation-based LLC model as SR-LLC, the LSS-based
LLC model as LSS-LLC, and the ASLA-based LLC model
as ASLA-LLC. Similarly, the following abbreviations are
used: the origin sparse representation-based particle filter (PF)
model as SR-PF, LSS-based PF model as LSS-PF, and
ASLA-based PF model as ASLA-PF. We implement SR-PF,
SR-CSC and SR-LLC in C++4+ and LSS-PF, LSS-LLC,
ASLA-PF, ASLA-LLC in Matlab, where the CSC code uses
a SPAMS package! [28], and LLC in [13]. All algorithms are
executed on a personal computer with an Intel i5 3.2 GHz
CPU and 8 GB of RAM.

The parameters are set as follows: for the SR-CSC and SR-
LLC models, A is set to {5,5,0.0005,0.02,0.002, 0.0005},
the regularization constants x and A in Equation 6 are set
to 0.06, ¢ and 4 in Equation 10 are set to 0.0001 and 0.06,
respectively, 7 is set to 0.5, and the number of object templates
is set to 10; for the LSS-LLC model and ASLA-LLC model,
the parameters are the same as in the original LSS model [14]
and ASLA model [15].

A. Performance Analysis

In our method, for the SR-CSC and SR-LLC trackers,
600 particles are sampled for each frame, and the cropped
image of each particle is resized to 20 x 20 pixels; hence, the
matrix P is 400 x 600. We only require three to five passes of
the linear coding iterations for each target, whereas the SR-PF
tracker requires 600 sparse representation processes. Our test
achieves a frame rate of 30-40 fps with our unoptimized code
for both SR-CSC and SR-LLC trackers, whereas the PF tracker
can achieve only approximately 4.1 fps with all the same
parameters setting; therefore, our method is approximately
10 times faster than the PF tracker. For the accuracy test,
we set the same parameters for the SR-PF, SR-CSC and
SR-LLC methods, and as shown in Figure 5(a), they can
reach accuracies of 0.348, 0.344, and 0.341, respectively, in
the success plot and 0.452, 0.451, 0.431, respectively, in the
precision plot. Thus, our SR-LLC tracker is not only faster
but also more accurate than the SR-PF tracker, and our
SR-CSC tracker is much faster than the SR-PF tracker,
although somewhat less accurate.

For the LSS-LLC tracker and the ASLA-LLC tracker,
600 particles are also sampled for each frame, and each
particle is resized to 32 x 32 pixels, as is the case for the
original LSS-PF and ASLA-PF trackers. As shown in Figure 5,

1 http://www.di.ens.fr/willow/SPAMS/downloads.html
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the accuracies of LSS-LLC and ASLA-LLC are both higher
than those of the LSS-PF and ASLA-PF trackers. For example,
LSS-LLC and LSS-PF can reach accuracies of 0.394 and
0.358, respectively, in the success plot and 0.504 and 0.477,
respectively, in the precision plot. In addition, ASLA-LLC
and ASLA-PF can reach accuracies of 0.453 and 0.434,
respectively, in the success plot and 0.546 and 0.513, respec-
tively, in the precision plot. Thus, with a more complex
object representation model, our LLC algorithm can be greatly
improved to be more effective than the PF algorithm, further
demonstrating that our proposed method can be combined
with many generic object representation models. Regarding
speed, the object representations in the original LSS-PF and
ASLA-PF do not cost much time; thus, our LLC algorithm in
these two tests do not significantly improve speed performance
because it is only approximately 2-3 fps faster than the original
trackers.

The dynamic object template update strategy improves the
SR-based tracking performance. We examine the algorithm
on the sequence of David. When David’s appearance changes
rapidly, our adaptive strategy should update every 1-2 frames.
As shown in Figure 7, the adaptive updating strategy
(in red color) performs much better than the case of never
updating (in green color), updating in every frame (in purple
color), and updating every 10 frames. All other strategies may
cause drift of the tracking results.

B. Evaluation on Benchmark

The benchmark proposed by [29] contains 51 annotated
sequences, which represents an up-to-date tracking evaluation
criteria. These sequences are tagged with 11 attributes that
evaluate different challenges of the sequences, e.g., illumi-
nation variation, occlusion, deformation, etc. In addition, the
benchmark also provides the results of 29 trackers. Thus,
we use the online available tracking results that contain all
29 trackers and the tool provided by [29] to compute the eval-
vation plots. We use our ASLA-LLC tracker for comparison
because it has the highest score of our proposed methods.

In [29], the evaluation is based on two different metrics:
the precision plot and the success plot. The precision plot
evaluates the center location error, which is defined as the
average Euclidean distance between the center locations of
the tracked targets and the manually labeled ground truths,
with the distance accepted by a given threshold of the ground
truth (20 pixels in the paper). Another evaluation metric is
the bounding box overlap, which is defined as score =

area(ROITNROI;G)
area(ROITUROIg)’

and ROIg is the ground truth bounding box. To further
evaluate the precision, in the success plot, the ranking is based
on the Area Under the Curve (AUC) instead of using a specific
threshold. For more details about the benchmark, we refer
readers to the original paper [29].

For comparison, we run the One-Pass Evaluation (OPE) [29]
on the benchmark. As shown in Figure 6, the proposed
ASLA-LLC method is among the three top-performing track-
ers using the measurement of success plot. Although the
proposed ASLA-LLC method is not the top tracker, we believe

where RO It is the tracking bounding box
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Fig. 9. Some tracking results for target appearance change on sequences of David, Dudek, Mhyang and Walking.

that with a more complex object representation model, we can
achieve a higher tracking score because our proposed method
can be combined with many generic object representations.
Regarding the performance of the ASLA-LLC method, our
ASLA-LLC is more robust to deformation, scale variation,
occlusion etc., as shown in Figure 8.

We also present the results of qualitative comparisons
with popular and top-ranked trackers, such as incremental
visual tracking (IVT) [4], online AdaBoost (OAB) [6],
multiple instance learning (MIL) [7], visual tracking
decomposition (VTD) [25], tracking-learning-detection
tracker (TLD) [24], real-time L1 tracker (L1APG) [9], multi-
task sparse learning tracker (MTT) [20], structured output
tracker (Struck) [23], real-time compressive tracker (CT) [8],
adaptive structured local sparse tracker (ASLA) [15] and
sparsity-based collaborative tracker (SCM) [11]. The tracking
results are presented in Figure 9 and Figure 13-16. Figure 9
presents some tracking results in the sequences with target

appearance change on the sequences of David, Dudek,
Mhyang and Walking. Figure 13 demonstrates how our
proposed method performs when the target undergoes
different types of illumination and scale variation on the
sequences of Car4, Fish and Singerl. Figure 14 demonstrates
how the proposed method performs when the target undergoes
heavy occlusion or partial occlusion for the sequences of
Faceoccl, Faceocc2, Girl and Walking2. Figure 15 presents
the tracking results for the sequences with in-plane and
out-of-plane rotation on the sequences of David2, Dogl and
Sylvester. Figure 16 also presents the tracking results for the
sequences with abrupt motion or background clutter for the
sequences of Coke and MountainBike.

C. Discussion

As shown in Figure 5, compared with the PF method, the
object representation models combined with our LLC method
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result in higher tracking accuracy. This result indicates that
the proposed LLC method is superior to the PF method
regarding the accuracy of the tracker; in addition, the
proposed method can be combined with many generic object
representation models, such as SR, LSS, and ASLA. Based
on the experiments, we also believe that by combing a more
complex object representation model combined with our
LLC method in the future, we can achieve much higher
accuracy of the tracking result.

To understand the high performance of the proposed
methods, we compared the coefficients generated by the
PF, CSC, and LLC methods (Figure 10). PF measures the
similarity of particles and templates and then uses an
exponential function (e.g., e —.D? ) in which the coefficients
actually become very sparse to generate weights for the
particles to improve accuracy (Figure 10(b)), i.e., only very
sparse particles are suitable for representing the target.
Figure 10(a) shows the coefficients generated by the PF before
exponential mapping; because these coefficients are very
dense, they cannot be used for tracking. Our CSC and LLC
methods use a sparse structure of the particle coefficients
(Figures 10(c-d)) directly, which matches this tracking
approach very well. However, PF must enumerate the distance
between each particle and the object templates (Figure 3(a-b))
and therefore does not fully explore the continuity property of
the state space.

We also compared the CSC and the LLC approaches; as
shown in Figure 4(a), the coefficients generated by CSC are
not locally sparse; Thus, CSC may lead to greater errors in
object representation and is therefore not optimal for object
tracking. As shown in Figure 4(b), LLC enforces local sparsity
on the coefficients, and thus particles selected by LLC are
much more suitable to represent the object. In Figure 10, we
can also observe that the nonzero coefficients of o generated
by LLC are also nonzero in the PF, which demonstrates that
both LLC and PF facilitate the selection of particles that are
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Fig. 11. Demonstration of the improvement of the tracking accuracy of the
LLC tracker (red) compared to the CSC tracker (blue).
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result corresponding to (c).

Pamcle Index Numbers

similar to the object template. By contrast, CSC does not
facilitate the selection of such particles because the resolution
procedure for sparse coding cannot ensure it; that is, the
selected particles are not guaranteed to be similar to the
object template. The experiments also demonstrated that LLC
is more accurate than CSC. As shown in Figure 11, the output
bounding boxes of the target from the two trackers are similar
for many sequences, whereas the LLC tracker is more accurate
for some challenging sequences.

Finally, we examine whether the object observation in the
current frame must be sparsely represented by its ambient
particles. Typically, we place the ¢, norm on the a term of
Equation 6 for the video of David. The solution of a with
the €2 norm, which is shown in Figure 12(a), is very dense,
indicating that most of the particles are used to represent the
target. Because many particles actually differ from the target,
the tracking result can easily drift, as shown in Figure 12(b).
By contrast, the solution of a with the sparse constraint, which
is shown in Figure 12(c), is very sparse and, consequently, only
a few particles are selected to represent the target; Thus, the
result is very stable, as shown in Figure 12(d).

We note that template-based representations with the
{1-norm sparsity were recently demonstrated to not neces-
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Some tracking results for illumination and scale variation on sequences of Car4, Fish and Singerl.
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Fig. 14. Some tracking results for heavy occlusion or partial occlusion on sequences of Faceoccl, Faceocc2, Girl and Walking2.

sarily improve image classification [30], [31] or visual track-
ing [32]. However, the sparsity term in this work, as shown
in Equation 1, is enforced on particles rather than templates.
As discussed in Section III-B, in the particle term, the object
observation in the current frame must be sparsely represented
by its ambient particles. However, this property does not
necessarily hold in the template term. Thus, either sparsity
or non-sparsity can be used in the template term. We also
note that numerous methods on the distance measurement
between two spaces have been proposed for other clustering
problems [33], [34]. However, these metrics are less effective
for visual tracking without the sparsity term on the particles.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel search mechanism for
visual tracking based on sparse and local linear coding. In the
particle filter, the state space of the target is discretized by

the distributed particles, resulting in discretization of the cor-
responding observation space of the target as well. Of course,
representing and searching the target in a continuous space is
more robust and efficient. We used a new representation model
to code an object’s appearance by linear combination of the
particles, which becomes a continuous space, i.e., a convex
hull. With the intrinsic sparsity constraints of the CSC and
LLC representation models, this reconstruction of the appear-
ance space results in an elegant and efficient tracking method
that successfully uses only a few linear coding iterations.
To cope with this appearance change, an adaptive updating
strategy of the object template was also proposed.
Additionally, we demonstrated that PF actually uses an
exponential function to ensure the weights of the particles
are sparse. The two proposed representation models,
CSC and LLC, are naturally sparse. Experiments demonstrated
that the proposed methods operate more accurately and
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Some tracking results for in plane and out of plane rotation on sequences of David2, Dogl and Sylvester.
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Fig. 16. Some tracking results for abrupt motion or background clutter on sequences of Coke, MountainBike.

effectively than a PF-based tracker. Moreover, LLC has much
better locality than CSC, which leads to a more precise
representation of the target appearance. Experiments also
demonstrated that LLC is much more precise than CSC.

The proposed algorithm is formulated as an optimiza-
tion problem of a function that consists of two terms,
which correspond to the representation of the target on
the space of both particle observations and object template.
Therefore, our algorithm can be incorporated with many
generic object representations. While sparse representation of
CSC and LLC involves searching for the target in a contin-
uous space efficiently, various object representation models,
i.e., least soft-threshold squares and adaptive structural local
sparse appearance, are alternative approaches. Experimental
results demonstrated that these models can further improve
tracking accuracy, verifying the flexibility of our algorithm.

In future work, we may consider exploring other object
representations and improving the accuracy further by
considering more challenging cases.

APPENDIX

Definition 1 (Convex Hull): For a collection of r (r>1)
n-dimensional vectors up,up,...,u,., if there exists any
nonnegative numbers Ay, A2, ---, A, combined with

A 4+ Ay + -+ A = 1, then the set > ;_, ;u; is the
convex hull.

Proposition 1: Pa and Be are convex hulls, and Equation 6
is the minimum Euclidian distance between these two convex
hulls.

Proof: Equation 6 is equivalent to

min{[| P —Be [13 +41 D lail + 42 D leil}
i i
= min{min{|| P — Be 13} + A1 + Aaul,
u=

s.t. Vi,a,-zO,Zaizl,cizO,Zciz,u. (19)
i i

For the space Pa, a; > 0, Zi a; = 1; hence, according to
Definition 1, the space Pa is a convex hull.

For the space Be, for any nonnegative u, the coefficient of ¢
is subject to ¢; > 0, Zi ¢i = u; hence, there exists a collection

of n 4+ 2d d-dimensional vectors ubi, ubo,- -, ubyi24, and
a collection of n + 2d nonnegative numbers %‘, %,- .. C”ﬂ;z’j

and & 4 &2 4 ... 4 942 — 1 apd thus the space Be is also
a convex hull.

In Equation 19, for a given g, the minimization of
Equation 19 is dependent on the min{| Pa — Be ||%}, which
may reach zero, i.e., the spaces Pa and Be are in contact or
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just the min{|| Pa — B¢ ||%}, which is the Euclidian distance
between convex hulls Pa and Be.
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