Learning and Generalization with the Information Bottleneck

Ohad Shamir', Sivan Sabatd*, and Naftali Tishby*
1 School of Computer Science and Engineerintpterdisciplinary Center for Neural Computation,
The Hebrew University, Jerusalem 91904, Israel
* IBM Research Laboratory in Haifa, Haifa 31905, Israel
{ohadsh, si van_sabat o, ti shby}@s. huji.ac.il

Abstract

The information bottleneck is an information theoretioie
work, extending the classical notion of minimal sufficient
statistics, that finds concise representations for an timpo-

dom variable that are as relevant as possible for an ‘out-
put’ variable. This framework has been used successfully
in various supervised and unsupervised applications. How-
ever, its learning theoretic properties and justificatien r
mained unclear as it differs from standard learning models
in several crucial aspects, primarily its explicit relianon

the joint input-output distribution. In practice, an enipir
cal plug-in estimate of the underlying distribution hasrbee
used, so far without any finite sample performance guaran-
tees. In this paper we present several formal results that ad
dress these difficulties. We prove several non-uniformeinit
sample bounds that show that it can provide concise repre-
sentations with good generalization based on smaller sam-
ple sizes than needed to estimate the underlying distribu-
tion. Based on these results, we can analyze the informa-
tion bottleneck method as a learning algorithm in the famil-
iar performance-complexity tradeoff framework. In acufiti

we formally describe the connection between the infornmatio
bottleneck and minimal sufficient statistics.

1 Introduction

A fundamental issue in statistics, pattern recognitiord an
machine learning is the notion of relevance. Finding the rel
evant components of data is implicitly behind the problems

of efficient data representation, feature selection anedim

sion reduction in supervised learning, and is the essence of
most unsupervised learning problems. One of the earliest
and more principled approaches to relevance was the CON- yocuments

cept of sufficient statisticgor parametric distributions, in-

troduced by Fisher (Fisher, 1922) as function(s) of a sam-
ple that capture all the information about the parameter(s)

The notion ofminimal sufficient statisticsvas introduced

by Lehmann and Scheffé (Lehmann and Scheffé, 1950) as

the simplest sufficient statistics, or the coarsadfficient

partition of the sample space which captures the relevant
components of the sample with respect to the parameter.
However, this important concept was not pursued much fur-
ther mainly due to the Pitman-Koopman-Darmois theorem,
which showed that exact sufficient statistics with bounded
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dimensionality exist only for distributions of exponeihtia
form (Koompan, 1936).

Kullback and Leibler (Kullback and Leibler) related suf-
ficiency to Shannon’s information theory, showing that suf-
ficiency is equivalent to preserving mutual information on
the parameter, while minimal sufficient statistics minieniz
the mutual information with the sample due to the data-
processing inequality (Cover and Thomas, 1991). The In-
formation Bottleneck (IB) method, introduced in (Tishby,
Pereira and Bialek, 1999), is an information theoretic gene
alization of the minimal-sufficient-statistic concept terg
eral distributions of two variablesY andY. It also pro-
vides a converging algorithm for extracting minimal releta
components of the variabl& with respect to the variable
Y, by finding a non-parametric model-independent com-
pression ofX (providing minimality), denoted by, that
is most informative about” (providing approximate suffi-
ciency). The compression is quantified by the mutual in-
formation betweery” and X, while the informativeness is
quantified by the mutual information betweghandY. A
scalar Lagrange multiplie# smoothly controls the tradeoff
between these two quantities. Further details are predente
in Sec. 2.

Before turning to the topic of this paper, let us first ex-
emplify how the IB method can be used for both supervised
and unsupervised learning. Consider the area of text analy-
sis. A typical unsupervised problem can be clustering doc-
uments based on their word-statistics in order to discover
similarities and relationships between them. In this chee t
X variable is taken as the document identity (typically con-
sidered as “bags of words”) and theas the words in the
. Th@& variable in this case will be clusters of
documents with similar word-statistics, based on “the two
sample problem” (Lehmann, 1959) similarity measure.

In a typical supervised application in this domaiR,
can denote the words whilg are topic-labels of the doc-
uments. Herel" are clusters of words that are (approxi-
mately) sufficient for document categorization (Tishby and
Slonim, 2000). In all the applications the varialgeal-
lows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution
and more information about. This form of dimensional-
ity reduction, a special case of the information bottleneck

was introduced under the name of distributional clustering



in (Pereira, Tishby and Lee, 1993), and has proven to be
highly effective in data analysis of high dimensional data
(Baker and McCallum, 1998).

The method has proven to be useful for a number of
successful applications (see (Tishby and Slonim, 2000;
Friedman, Mosenzon, Slonim and Tishby, 2001; Slonim, At-
wal, Tkacik and bialek, 2005) and references therein), but
its learning theoretic justification has remained uncleagaf
number of reasons: (i) The method assumes the knowledge
of the joint distribution of X andY’, in sharp contrast to
the finite-sample based machine learning algorithms. More-
over, it wasn't clear what is left to be learned if it is as-
sumed that this distribution is known. (ii) In practice,n
the joint distribution ofX andY is not known, the empiri-
cal co-occurrence distribution is used to calculate a jug-
estimate of the IB functional, without finite-sample getera
ization bounds or error guarantees of any kind. (iii) Fipall
IB is formally related to classical information theoretiop-
lems, such as Rate-Distortion theory and Coding with Side-
Information, but it is unclear why maximizing mutual infor-
mation aboul” is useful for any “natural” learning theoretic
model, and in particular how it is related to classification
error.

In this paper we provide rigorous answers to most of the
above issues concerning the IB framework. We focus on a
learning theoretic analysis of this framework, whéfeand
Y are assumed to be discrete, and the empirical distribution
of p(z,y) is used as a plug-in for the true distribution. We
develop several non-uniform finite sample bounds, and show
that despite this use of plug-in estimation, the IB framéwor
can actually generalize quite well, with realistic samjtes
that can be much smaller than the dimensionality of thigjoin
distribution, provided that we are looking for a reasonably
simplerepresentatiofl” of our data. We discuss in which
settings the information bottleneck can be seen as a stan-
dard learning algorithm, trading off a risk-like term and a
regularization term controlling the generalization. Hipa
we discuss its utility as a natural extension of the concépt o
minimal sufficient statistics for discrimination.

The paper is organized as follows. In Sec. 2, we formally
present the information bottleneck framework and the nota-
tions of the paper. We then turn to analyze its finite sample
behavior in Sec. 3. Sec. 4 discusses the characteristibg of t
information bottleneck as a learning algorithm, while #&s r
lation to minimal sufficient statistics is considered in Sgc
All the proofs of our main theorems are presented in Sec. 6,
and we finish by discussing our results in Sec. 7.

2 The Information Bottleneck Framework

In this section we formally describe the basic information
bottleneck (IB) framework. This framework has several
variants and extensions, both to multivariate variablet an
to continuous representations (see (Slonim, 2003; Checik,
Globerson, Tishby and Weiss, 2005) for more details), but
these are not the focus of this paper.

As discussed in the introduction, the IB framework at-
tempts to find a simple representation of one random vari-
able X through an auxiliary variabl@’, which is relevant
to another random variablg. We assume thak andY

take values in the finite sefs and) respectively, and use

x andy respectively to denote elements of these sets. The
basic quantity that is utilized is Shannon’s mutual informa
tion between random variables, which for discrete vargble
is formally defined as:

I(X;Y) =YY px,y)log
zeX yey

Mutual information is well known to be the unique mea-
sure of informativeness, up to a multiplicative constant, u
der very mild assumptions (Cover and Thomas, 1991). The
IB functional is built upon the relationship between mini-
mal sufficiency and information. It captures a tradeoff be-
tween minimality of the representation &f, achieved by
minimizing I(X;T'), and sufficiency of information oi,
achieved by constraining the value BfY; T'). The auxil-
iary variableT is thus determined by the minimization of
the IB-Lagrangian

Lipp(tlz)] = I(X;T) - BI(Y;T)

p(z,y)

p()p(y)

1)

with respect to the mapping(¢|z). T is subject to the
Markovian relatiorl’ — X — Y, andp(t|x) is subject to the
obvious normalization constraints. The tradeoff paramete
(3 is a positive Lagrange multiplier associated with the con-
straint on/(Y'; T'). Formally, T is defined over some space
7T, but the elements of this space are arbitrary - only the
probabilistic relationships betwe&hand X, Y are relevant.

The solutions of this constrained optimization problem
are characterized kihe bottleneck equations

p(t)

p(tle) = z55y exp(=BDrlp(yl)lp(ylt)])
p(t) = seap(tl)p(z)
pylt) =X cxplylr)p(zlt),

where L, is the Kullback-Leibler divergence and(g3, =)

is a normalization function. These equations need to be
satisfied simultaneously, giver(z,y) and . In (Tishby,
Pereira and Bialek, 1999) it is shown that alternating it-
erations of these equations converge - at least locally - to
a solution for any initialp(t|x), similar to the Arimoto-
Blahut algorithm in information theory (Cover and Thomas,
1991). In (Gilad-Bachrach, Navot and Tishby, 2001) it
is shown that the set of achievahlér,y,t) distributions
form a strictly convex set in thel (X;T),1(Y;T)) plane,
bounded by a smootliy (Ix) optimal function -the in-
formation curve- similar to the rate-distortion function in
source coding. By increasing the value®bne can move
smoothly along this curve from the trivial, zero informatjo
solution at the origin, all the way to the most complex so-
lution whereT captures all the relevant information from
X andIx = I(X;T) = H(X), H(X) denating the en-
tropy of X. In addition, asg is increased]y = I(Y;T)
increases and captures more information dn. Due to the
data-processing inequalititY; 7") < I(X;Y), with equal-

ity only whenT' becomes an exact sufficient statistic. The
tradeoff inherent in Eq. (1) forces us to find a simple repre-
sentatiorl” of X, which preserves only those aspectsXof
which are informative, i.e. relevant, abdut



It should be emphasized that despite superficial similari-
ties, IB isnota hidden variable model. In such models, we
assume that the joint distributigi{x, y) can be factorized
using an auxiliary random variablg, forming a Marko-
vian relationX — 7' — Y. In IB, we make no generative
assumption on the distribution, and the Markovian relation
isT— X —Y. Namely,T' is a generic compression &f, and
the information-curve is characterized by the joint disiFi
tion p(z,y) independently of any modeling assumptions.

An important observation is that the effective cardinality
of an optimall’ is not fixed and depends gh Whens < 1,
even a trivialT' of cardinality1 will optimize Eq. (1), since
we always havd (Y;T) < I(X;T). On the other hand, as
[ increases, more emphasis is put on informativeness with
respect td’, and the cardinality of” will increase, although
the cardinality of an optimal’ need not exceed the cardinal-
ity of X, as proven in (Harremoes and Tishby, 2007).

In order to optimize Eq. (1) we need to calculate the quan-
tities I(X;T) andI(Y; T') for any choser¥” and. Since
T is defined only viaX, we need to know(zx,y) in order
to calculate these two quantities. In most applications;-ho
ever,p(z, y) is unknown. Instead, we assume that we have
an i.i.d sample ofn instances drawn according tdz, y),
and we use this sample to create a maximume-likelihood es-
timate of the distribution using(x, y), the empirical distri-
bution of the sample. Following current practice, this empi
ical estimate is then plugged into the calculatiod X; T')
andI(Y; T) instead of the true joint distribution, and Eq. (1)
is optimized using this plug-in estimate. In general, we use
the © symbol to denote quantities calculated usjiig, y)
instead ofp(x,y). Thus, instead of calculating(X;T)
and I(Y; T) precisely, we rely on the empirical estimates
I(X;T) andI(Y;T) respectively. In this work we inves-
tigate how much these empirical estimates deviate from the
true values - in other words, whether this plug-in practice
justified. Note that the sample size is often smaller than
the number of bingX||)|, and thusp(z,y) can be a poor
approximation t(z, y). Nevertheless, this is precisely the
regime we are interested in for many applications, text-cate
gorization to name one.

3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample be-
havior of the IB framework, and in particular on the relation
ship betweed (X; T") andI(Y'; T') that appear in Eq. (1) and
their empirical estimate( X ; T") and(Y; T').

Our first result shows that for any fixel defined as a
random mapping oX via p(¢|x), it is possible to determine
the value of the objective function Eq. (1) within reasorabl
accuracy based on a random sample.

Theorem 1. Let T be a given random mapping of, de-
termined byp(¢|x), and letS be a sample of sizex drawn
from the joint probability distributiomp (X, Y"). For any con-
fidence parametef € (0, 1), it holds with a probability of

at leastl — § over the samplé that

L(X;T) = 1(X;T)] <
([7]1og(m) +log(|71)) iog(4/0) | |T| -1
V2m

)

m
and that
[(Y:T) - 1(Y;T)| <

(3|71 + 2)log(m)y/log(4/0) . (¥ + D(IT]+1) —4
V2m m '

Note that the theorem holds for any fixéd not just ones
which optimize Eqg. (1). In particular, the theorem holds for
anyT found by an IB algorithm, even if’ is not a globally
optimal solution.

The theorem shows that estimating the objective func-
tion for a certain solutiorT” is much easier than estimating

p(z,y). Indeed, the bound does not depend &, which

might even be countably infinite. In addition, it depends on
|| only as a second-order factor, sing4 is multiplied by
1/m rather than byl /\/m. The complexity of the bound
is thus mainly controlled by7|. By constraining|7| to

be small, or by settings in Eq. (1) to be small enough so
that the optimall” has low cardinality, a tight bound can be
achieved.

Thm. 1 provides us with a bound on a certain pre-specified
T, where the sampl§ is not part of the process of selecting
T. The next theorem is a full generalization bound, deter-
mined by the sample when it is used as a training set by
whichT is selected.

In order to present the theorem compactly, we will use
some extra notation. Lety, ...,z x| be some fixed order-
ing of the elements oft’, andyy,...,y|y be an ordering
of the elements ofy. We use the shorthanpl(T" = t|z)
to denote the vector(p(t|zy),...,p(t[zx))).  Simi-
larly, HH(T'|y) denotes the vectdid (T'|y1), . .., H(T|yy)))
whereH (T'|y;) is the entropy ofi(T'|y;). H(T|z) denotes
the vector
(H(T|z1),...,H(T|xx)), where H(T|z;) is the entropy
of p(T|x;). Note thatp(T'|z;) is known as it define¥’, and
thus does not need to be estimated empirically.

For any real-valued vecter = (aq,...,a,), we define
the functionV (a) as follows:

2

1 n
a; — E jzzlaj . (3)

Note that%V(a) is simply the variance of the elementsof
In addition, we define the real-valued functiofx) : R, —
R, as

n

D

1 n
V@) =lla- > a2
j=1 i=1

0 z=0
d(x) =< zlog(l/z) O0<zxz<1/e 4)
1/e x> 1/e.

Note that¢ is a continuous, monotonically increasing and
concave function, and théin,_.¢ ¢(z) = 0.



Theorem 2. Let S be a sample of sizew drawn from the and
joint probability distributionp(X,Y"). For any confidence . Py
parameters € (0, 1), it holds with a probability of at least I(Y3T) = 1Y T)| <

1 — & over the samplé& that for anyT” simultaneously, VClog(IVI/9) (\/|T||X| log(m)+%|y|%log(|7|))+§|7|
. . vm ’
LK T) — £ T < Wloga'yva) V(H(T|z)) | |
m whereC' is the same constant as in Thm. 1.
(%) Even with this much looser bound, j#| is large and
— |7| <« || the bound can be quite tight, even with sample
+3 ¢ \/Clog“y'/&) V(p(T = t|z)) : sizes which are in general insufficient to reasonably eséima
7 m the joint distributionp(z, y). One relevant setting is in un-
supervised learning, whén models the feature space.
and In this section, we have shown that the quantities that
make up the IB objective function can be estimated reliably
. Clog(|Y|/6) - V(H(Ty from a sample of a reasonable size, depending on the char-
I(Y;T) - 1(Y;T)| < \/ )/ zn HTly)) (6) acteristics of". In the next section we investigate the moti-
vation for using these quantities in the objective funcfion
n 22 s (\/Olog(|y|/6) -V(p(T = t|:c))) the first place, from a learning theoretic perspective.
m 3
t

4 A Learning Theoretic Perspective

whereV and¢ are defined in Eqg. (3) and Eq. (4),and Cisa The IB framework optimizes a trade-off betweéfX;T')
small constant. andI(Y;T). In this section we discuss the learning theo-
retic properties of this tradeoff and why mutual informatio

As in Thm. 1, this theorem holds for affy; not just those provide reasonable measures for both learning complexity

optimiz_ing Eq. (2). Also, the bound _enjoys the advantage of and accuracy.
not being uniform over a hypothesis class of possibi In an unsupervised setting, such as clustering, it is rather
but rather depending directly on tfieof interest. easy to see how (X;T) and I(Y;T) control the com-

Intuitively, these bounds tell us that the ‘smoothéris plexity and granularity of the clustering by trading betwee
with respect taX,, the tighter the bound. To see this, assume homogeneity and resolution of the clusters; this has been

that for any fixedt € 7, p(t|x) is more or less the same  giscussed previously in the literature (such as (Tishby and

for any choice ofr. By definition, this means that(p (7" = Slonim, 20007)). Therefore, we will focus here mainly on
t|x)) is close to zero. In a similar manner/if(7'|:x) is more the use of this framework in supervised learning, where the
or less the same for any thenV (H(T'|z)) is close to zero, objectives are more well defined.

and so isV (H(T'|y)) if H(T'|y) is more or less the same for Most supervised learning algorithms are based on a trade-
anyy. In the extreme case, i is independent of, then off between two quantities: a risk term, measuring the per-
p(tlx) = p(t), H(T|x) = H(T)andH(T|y) = H(T) for formance of a hypothesis on the sample data, and a regu-
any choice ofz,y, and the generalization bound becomes larization term, which penalizes complex hypotheses and so
zero. This is not too surprising, since in this cd¢& ; T') = ensures reasonable generalization to unseen data. Inithe fo
I(X;T) = 0andI(Y;T) = I(Y;:T) = 0 regardless of lowing we argue that under relevant settings it is reas@nabl
p(z,y) or its empirical estimatg(z, y). to considerI(Y'; T') as a measure of risk and.X;7T") as a

This theorem thus suggests that generalization becomes'€gularization term that controls generalization.

better asI” becomes less statistically dependent®nand :

so provides a more compressed probabilistic representatio 4.1 ) I(Y’T? asa Measgre of Perform.a.n.ce

of X. This is exactly in line with empirical findings (Slonim, ~ In this section we investigate the plausibility bfy; 7') as

2003), and with the intuition that ‘simpler’ models should @ measure of performance or risk in a supervised learning

lead to better generalization. setting. We show that in those supervised learning settings
A looser but simpler bound on Thm. 2 can be achieved by where IB was demonstrated to be highly effective, such as

fixing the cardinality of ", with worst-case assumptions on document categorization (Slonim and Tishby, 2001), theere i
the statistical dependency betwekrandT'. a strong connection between the classification error and the

mutual information/ (Y; T'), especially when the categories
Theorem 3. Under the conditions and notation of Thm. 2,  are uniformly spread. The discussion here is a first step to-

we have that with a probability of at least— 9, for anyT’ wards a full analysis of the IB classification performance in
simultaneously, a more general setting, which we leave for future work.

. For example, a document classification task we model
[I(X;T)—I(X;T)| < as a random variable over the set of possible words,Yand

1 1 1 as a random variable over the set of document categories
51/ Clog(|Y]/0)(\/IT|X[log(m) +X|>log(|T 1))+ ¢|T| or classes. Each document is treated as an i.i.d. sample of

vm words drawn fromp(z|y), in accordance with the bag of




words representation, wheges the class of the document.  Hence—nI(Y;T) is an upper bound on the expected value
Unlike the simple supervised learning settings, where each of the exponent in Eq. (7), assuming that and y, are
example is described as a single data point, in this case eachpicked according t@(y). The relationship between Eq. (9)
example (document) to be labeled is described by a sample on the one hand, and Eqg. (7), Eq. (8) on the other hand, is

of points (words) of variable size (usually large) and weksee
the most probable class of the whole sample (docuncei)
lectively.

IB is used in this setting to fin@, a compressed represen-
tation of the words in a document, which is as informative
as possible on the categori®s The bottleneck equations
Eq. (2) provide for each clagsits conditional distribution

onT,via
Pltly) =D ptlx)p(ly).

When a new docume® = {x1,...,x,} of sizen is to
be classified, the empirical distribution @fgiven D is

p(t) = Zp(ﬂxi)ﬁ(xi)-
i=1

Assuming that the document is sampled accordingtfy)
for some clasg, the most probable clag$ can be selected
using the maximum likelihood principle, namely

Y= argqfnin Dxw [B()[1D(t]y)]-

We now show thaf (Y'; T') is indeed a reasonable objec-
tive function in this case - namely, whenever we wish to col-
lectively label an entire set of sampled instances.

Assume that the true class for documeénis y;, with its
word distribution sampled via(t|y;). The probabilityc,,
of misclassifying this sample ag for someys # y; via
the likelihood test decreases exponentially with the sampl
sizen. The rate of exponential decrease is larger if the two
distributionsp(t|y1), p(t|y2) are more distinct. Formally,
by Stein’s lemma (Cover and Thomas, 1991)(if|y1)

p(tlyr) andp(tly2) = p(t|y2), then

nlirgo % log(arn) = Diw [p(t|y2)llp(t|y1)]. (7

When p(t|y1) and p(t|y2) deviate from the true con-
ditional distributions, Stein’s Lemma still holds up to an
additive constant which depends on the amount of de-
viation, and the exponent is still controlled mainly by
Dk [p(t|y2)||lp(tly1)]. In the following we will assume for
simplicity that Eq. (7) holds exactly.

The overall probability of misclassifying a document

when there are more than two possible classes is thus up-

per bounded by
> exp(—nDw [p(t[y) |p(tly1)]).

Y71

On the other hand, by the definition of mutual informa-
tion and the convexity of the Kullback-Leibler divergence
we have that

I(Y;T) = E,Dk [p(t]y) | p(t)]
= E, Dk [p(t[y)|Ey p(t]y")]
< Ey . Drc[p(tly)llp(tly),

(8)

9)

not direct. Nonetheless, these equations indicate thheif t
examples to classify are represented by a large sample, as in
the document classification setting, higher value®f; T')
should correspond to a reduced probability of misclassifica
tion. For example, if R [p(t|y)||p(t|y1)] is equal for every

y # y1, we have that Eq. (8) is upper bounded by

(n—1)exp (—M%I(Y; T)) :

in which case the probability of misclassification is expo-
nentially dominated byl (Y; 7). This is the case when
categories are uniformly spread, which happens for many
applications incidently or by design. In this case, when
the bottleneck variabld™ captures just a fractiom =
I(Y;T)/I(X;Y) of the relevant information, the test (doc-
ument) size should increase only by a factgw in order to
achieve a similar bound on the classification error.

4.2 1(X;T) as a Regularization Term

In this subsection we discuss the roleld¥ ; T'), the com-
pression or minimality term in 1B, as a regularizer when
maximizing I(Y; 7). Note that without regularization,
I1(Y;T) can be maximized by settinf = X. However,
p(z|y) cannot be estimated efficiently from a sample of a
reasonable size; therefore the formal solutior= X can-
not be used to perform reliable classification. Moreover, in
the context of unsupervised learning, setting- X is gen-
erally a meaningless operation, corresponding to singleto
clusters.

The bottleneck variabl& must therefore be restricted to
allow reasonable generalization in a supervised settiglg an
to generate a reasonable model in an unsupervised setting.
In the IB framework/(X;T) can be viewed as a penalty
term that restricts the complexity @f. A more formal jus-
tification for this is given in the following theorem, which i
derived from Thm. 2.

Theorem 4. For any probability distributiorp(x, y), with a
probability of at leastl — ¢ over the draw of the sample of
sizem from p(z, y), we have that for an¥’ simultaneously,

\1(Y;T)—I(Y;T)| <

Clog(|)/9) (C110g(m) /ITTICX T)

m

+ GIT PG T) Y + GoI(X:T)),

whereC' is the same constant as in Thm. 1, avid Cs, Cy
depend only op(z) andp(y).

This bound is controlled by(X; T') andI(X; T'), which
are closely related as Thm. 3 shows. This is not a fully
empirical bound, as it depends on the unknown quantity
I1(X;T) and the marginal distributions df, Y. The bound
does however illustrate the relationship between the gener
alization error and the mutual informatidiiX'; 7). This



provides motivation for the use d{ X;Y") as a regulariza-
tion term, beyond its obvious description length, or coding
interpretation.

5 Relationship with Sufficient Statistics

As we discussed in the introduction, there is a natural re-
lationship between the IB framework and the fundamental
statistical concept ahinimal sufficient statisticsvhich cap-
tures the notion of relevance in the context of parametse di
tributions. In this section we elaborate on this connection

In the parametric statistics settingy, is a random vari-
able that parameterizes a family of probability distribus,
andX is a data point drawn from(z|y) wherexz € X and
y € ). For example, the family of probability distributions
may be the set of Bernoulli distributions with success proba
bility p determined by, with ) C [0, 1] and some prior dis-
tributionp(y). In this case, for a given, p(X = 1|y) = v,
andp(X =0ly) =1—y.

Y and X may be high dimensional. For instandémay
determine the mean and the variance of a normal distribu-
tion, or fully parameterize a multinomial distributionX
may be a high dimensional data point. For any family of
probability distributions, we can consider a sampledfi.d
data points, all drawn from the same distribution deterhine
by a single draw ot’. In the context of sufficient statistics,
this is just a special case of a high dimensioAawhich
is drawn from the cross-product ef identical probability
distributions determined by the value Bt

Fisher (Fisher, 1922) introduced the concept of sufficient
statistic that denotes the relevant part of the samplsith
respect to the parameter, as follows.

Definition 1 (Sufficient Statistic) LetY be a parameter in-
dexing a family of probability distributions. Let be ran-
dom variable drawn from a probability distribution deter-
mined byY. LetT be a deterministic function oX'. 7' is
sufficient forY” if

Vee X teT,ycY pzlt,y) = pla|t).

Throughout this section we assume that it suffices that the
equality holds almost everywhere with respect to the proba-
bility of y and .

In words, the sufficiency of’ means that given the value
of T, the distribution ofX does not depend on the value of
Y.

Just asX andY may be high dimensional, so cdhmap
X to a multidimensional space. K denotes and i.i.d sam-
ple, the number of dimensions i may depend on the size
of the samplem. Specifically,7 = X is always suffi-
cient forY. To avoid trivial sufficient statistics such as this,
Lehmann and Scheffé (Lehmann and Scheffé, 1950) intro-
duced the concept of a minimal sufficient statistic, which
denotes the coarsest sufficient partitionxgfas follows:

Definition 2 (Minimal Sufficient Statistic) A sufficient
statistic.S' is minimal if and only if for any sufficient statis-
tic T', there exists a deterministic functighsuch thatS =
f(T) almost everywhere w.rX .

For instance, for an i.i.d sample of sizeof the Bernoulli
distribution in the example aboVé&, = X is trivially a suffi-
cient statistic, but the one-dimensioflal= # >, x; where
T (x1,...x,) is also sufficient. It can be shown that
the latterT” (and any one-to-one function of it) is a minimal
sufficient statistic.

By the Pitman-Koopman-Darmois theorem (Koompan,
1936), sufficient statistics whose dimension does not dipen
on the sample size exist only for families of exponential
form. This makes the original concept of sufficiency rather
restricted.

The IB framework allows us to naturally extend this con-
cept of relevance to any joint distribution &f andY’, not
necessarily ones of exponential form, in a constructive-com
putational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency (Ku
back and Leibler), one can find compact representafions
of a sampleX that maximize mutual information about the
parameter variabl&”, corresponding to sufficiency fdr,
and minimizel (X; T'), corresponding to the minimality of
the statistic. However, unlike the original concepts ofisuf
cient statistic and minimal sufficient statistic, the |Brfre-
work provides a soft tradeoff between these two objectives.

It can easily be seen that Aggrows to infinity, if 7" is not
restricted then/(Y;T") converges td (X;Y) andT' con-
verges to a minimal sufficient statistic. The following theo
rem formalizes this insight.

Theorem 5. Let X be a sample drawn according to a dis-
tribution determined by the random variabte The set of
solutions to

min [(X;T)
T

st I(V;T) = II%%XI(Y; .

is exactly the set of minimal sufficient statistics Yobased
on the sampleX.

The IB framework thus provides a natural generalization
of the concept of a sufficient statistic, where by settihp
lower values, different degrees of approximate minimal suf
ficient statistics can be found, characterized by the foacti
of mutual information they maintain on thé Furthermore,
such approximate minimal sufficient statistics exist foy an
joint distributionp(X,Y") in a continuous hierarchy that is
fully captured by the set of optimal IB solutions for all val-
ues of3. These solutions lie on the information curve of the
distribution.

6 Proofs
6.1 Proof of Thm. 1
LetS be a sample of sizey, and letT” be a random mapping
of X defined byp(t|x) forall z € X andt € 7.

To prove the theorem, we first bound the deviations of the
information estimations from their expectatiqi(X; 7') —
E(I(X;T))| and |I(Y;T) — E(I(Y;T))|, and then use a
bound on the expected bias of entropy estimation.

To bound the deviation of the information estimates, we
use McDiarmid’s inequality (McDiarmid, 1989), in a man-
ner similar to (Antos and Kontoyiannis, 2001). For this we



must bound the change in value of each of the entropy esti-
mates when a single instanceSris arbitrarily changed.

We use the equality(X;T") = H(T) — H(T|X). First,

SinceT — X — Y is a Markov chain, changing a single
instance inS changesZp(ﬂ:c)ﬁ(a:,y) by at mostl/m

we bound the change caused by a single replacement in for two valuesy. Usmg Eq. (11), we have thatg(y T)

H(T). We have that
=2 ptle)p(a) log(y_ pltl)p(x))

If we change a single instancedh then there exist two pairs
(x,y) and(2’,y’) such thatp(z, y) increases byt /m, and
p(x’,y") decreases by/m. This means thagi(x) andp(z’)
also change by at modt/m, while all other values in the
distribution remain the same. Therefore, for each 7,

Zp t|z)p(xz) changes by at mogt/m.

We use the following easily-proven inequality (a special
case of Lemma 2 appearing later): for any natusand for
anya € [0,1 —1/m]andA < 1/m,

log(m) . (11)

‘(a—l—A)log(a—i—A) —alog(a)‘ <

Based on this inequality and Eq. (10), we have ﬂ?laT)
changes by at mos$7 | log(m)/m. We now move to bound

the change i1 (T'| X ). We have
Zp

H(T|X = x) is dependent only op(t|z) which is known
and does not depend on the sample. Changing a
gle instance inS changesp(z) by at mostl/m for two
valuesz. Since H(T|X = z) < log(|T]), this im-
plies that/(T'|.X ) changes by at mostg(|7)/m. Over-
all, I(X;T) = H(T) — H(T|X) can change by at most
(I7|log(m)+log(|T]))/m. Invoking McDiarmid’s inequal-

ity, we have that with a probability of at leakt- 41,

H(T|X) = H(T|X = 2).

sin-

|H(T) — H(T|X)) - E(H(T) — H(T|X)|
(I7]1og(m) +log(|7))/1og(2/61)
< N . (12)

We now turn tol(Y;T) and perform a similar analysis
using the fact thal (Y;7) = H(Y) + H(T) — H(Y,T).
First, forH(Y), we have that

Zp

Changing a single instance & changes(y) by at most
1/m for two valuesy, hence by Eq. (11} (Y") changes by
at most2 log(m)/m. For H(Y, T), we have

= p(t,y) log ((t, y))

) log(p

and

£) =5 pltle)p(x

can change by at mo8t7 |log(m)/m. Finally, as we saw
above, by replacing a single instanﬁe{T) can change by

at most|7 | log(m)/m. Overall, we have thai(Y; T) can
change by at mos8|7| + 2) log(m)/m. By McDiarmid’s
inequality, we have that with a probability of at ledst ¢,

(H(Y)+H(T)~H(Y,T)~E(H(Y)+H(T)-H(Y.T))
< BIT] +2)log(m)/log(2/d>)
V2m '

Eq. (12) and Eg. (13) provide bounds on the deviation of

the I(X;T),1(Y;T) from their expected values. In order
to relate these to the true values of the mutual information
I(X;T)andI(Y;T), we use the following bias bound from
(Paninski, 2003).

Lemma 1 (Paninski, 2003) For a random variableX, with

the plug-in estimated(-) on its entropy, based on an i.i.d
sample of sizen, we have that

N Xl -1
EA(X) - H(X)| < log <1+ i ) <
m
From this lemma, we have that

Hr) < T=L

(13)

X -1
—

EH(T) -

[EH(Y) —

EH(Y,T) - H(Y,T)| < ZTI=1
m
Combining these with Eq. (12) and Eq. (13), and setting
01 = 02 = 0/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2
We start the proof by bounding (X;T") — I(X;T)| and
|I(Y;T) — I(Y;T)| with deterministic bounds that depend
onp(z). These bounds are then factorized, such that quanti-
ties that depend on the empirical sample are separated from
quantities that depend on the characteristict.0Quantities
of the first type can be bounded by concentration of measure
theorems, while quantities of the second type can be left de-
pendent on th& we choose.

Starting with|I(X; T') — I(X; T)|, we use the fact that

[I(X;T)~1(X; T)| < |H(T|X)~H(T|X)|+|H(T)~H(T)]

and bound each of the summands on the right separately. For
the first summand, since, p(z) = >~ p(x) = 1, we have
that for any scalas,

H(T|X) ~ A(T|X)| = \ > H(T|z)
- Z H(T|z) ~ a>] (14)
< Ip(a) ~ p@IIH(TT2) — al,



wherep andH stand for vectors indexed by the values of For the first summand in this bound we have
X, and we subtraai from all entries of the vector. Setting

a =7 3, H(T|x) we get ’ZP ( (Tly) - (T|y)) ‘
IH(TIX)— A(TIX)I (15) < ‘ZP (p(tly) log(p(tly)) — p(tly) log(p(tly)))‘
< lp(z )V V(H(T|z)),
< p(y o (p(t p(t
WhereV (+) is defined in Eq. (3). Z Z (tly) ~p(tly))
We now turn to bound the second summand. For the rest
of the proof, we use the following easily proven lemma. — Zp Z é <Z (t|z) (p(x|y) — p(x|y))>
Lemma 2. For anya, b € [0, 1],
= . T = t
wlog(a) - blog(h)| < ola— b) Zp )220 (IGely) = plely)l - VTR = ).
where¢(-) is defined in Eq. (4). where the last inequality is again derived similarly to

Eq. (14), by setting = + >~ p(t|z). For the second sum-

From this lemma we have that mand in Eq. (18) we have

[H(T) — H(T)] = \ZP ) 1og(o()) = #(8) 08(5(0) \z DH(TI)| < Ip(y)~p(y) |-/ VE(T]y).
= zt:¢ p(t Therefore,
[H(T|Y) = H(T[Y)| <
= 10} tlx)(p(x) — p(x
2- (;p( e ”) S~ 0(0) 3¢ (Iblaly) — plaly)| - VT = 112)

<> o (VVBT =t)lp@) - p@)).  (16)

+lp(y) = D) -/ VE(T]y)). (19)
where the last inequality is derived as in Eq. (14), by settin From Eq. (16) and Eq. (19) we conclude the following
as ﬁ >, (T =tx). deterministic bound:

From Eq. (15) and Eq. (16) we conclude the following |I(Y-T) _ A(Y-T)| <
deterministic bound: -
A 2 lIp(e) = p(@)l - ¢ (VIR =) (20)
|I(X'T)—I(X'T)| <

> lp(@) = @)l ¢ (VVRT =) @) +2pyZ¢(Hﬁ<w|y>—p<w|y>|\- V(p(T = tlx)))

T lp@ = p@l - VV(H(T|w)). + Ip(y) — D) -/ VE(T]y)).
Turning now to|Z(Y; T) — I(Y; T)|, we similarly use the In order to transform the bounds in Eq. (17) and Eq. (20)
inequality to bounds that do not depend pfx), we can use concentra-
tion of measure arguments @n norms of random vectors,
\I(Y;T)—1(Y;T)| < |H(T|Y)—H(T|Y)|+|H(T)—H(T)|. such as the following one based on an argument in section
4.1 of (Cristianini and Shawe-Taylor, 2004): Lebe a dis-
It remains to bound the first summand, as the second sum- tribution vector of arbitrary (possible countably infiritar-

mand was already bounded above. We have dinality, and letp be an empirical estimation gfbased on a
sample of sizen. Then with a probability of at least— ¢
|H(T|Y) — H H(T|Y)| over the samples,
a 2 2log(1
=X (pwaw) - swiw)| I~ pll < 22 2ECS0), (21)
m
< ’Zp ( (Tly) — (T|y)) ’ To make sure all of our uses of this result hold simul-

taneously for anyl” with a probability of1 — ¢, we use

Eq. (21) with§ replaced bys/(|Y| + 2). Applying this
+ ‘ Z (T|y)‘ (18) concentration bound tp(=) — p(x)|, [Ip(y) — B(y)| and

Ip(z|y) — p(x|y)| in Eqg. (17) and Eg. (20), and using the



union bound, we get that the following bounds hold simul-
taneously for any/” with a probability ofl — ¢:

I(X;T) = 1(X;T)| <

2+ 2Ioa (T + 275y L)

+D 0 <(2+ V2log (1Y +2)/9)) M) |
and

I(Y;T) - 1(Y;T)| <

(2 + v/2log (IV[ +2)/9)) %T'y))
+2Z¢((2+\/210g((|y|+2)/5)) %ZW)U

To get the bounds in Thm. 2, we note that

2+ /2log (V] +2)/0) < /Clog(|Y|/9)

whereC'is a small constant.

It is interesting to note that these bounds still hold in cer-
tain cases even it is infinite. Specifically, suppose that for
allt € T, p(t|x) is some constany, for all but a finite num-
ber of elements oft. If the definition of V (-) is replaced
with

V(p(T = tle) = > (p(T = tlx) — )%,

x

ThenV (p(T = t|x)) is finite and the proof above remains
valid. Therefore, under these restrictive assumptions the
bound is valid and meaningful even thoughis infinite.

6.3 Proof of Thm. 3

In this proof we apply worst-case assumptions on Thm. 2
to get a bound that does not dependpdt|=) but only on
the cardinality ofI". The variance of any random variable
bounded in0, 1] is at mostl /4. SinceiV(p(T = t|z))

is the variance of the vectgs(7' t|z), we have that
V(p(T = t|x)) < |X|/4 for anyp(t|x). Assume that

(9),

for C as in Thm. 2, then it follows that for am(t|z),

\/Clog(lyl/d)V(p(T =tl)) _ \/Clog(lyl/fS)le
= <

dm

m > < log(11/8)|¥|e*n? 22)

<1/e.

For readability, we defin@ £ Clog(|)|/6)V

t|z)). Therefore we have that

Ze ()2 (e ()

< Z \/910%(\/%)

(p(T

+1/e

vm

where the last inequality follows frordVlog(%) <1le.
Reintroducing the definition of and rearranging, we have

o (y3) =
V/ Clog(|Y|/0) log(m) <Z VV(p(T = tl%))) + 27|

2 m
To boundz VV(p(T = t|z)), we note that

Z\/ T = tlx)) lep

Finding an upper bound for the right-hand expression is
equivalent to solving the following optimization problem

w3 5,
a;,j ’
t x
s.t. Vo Zatym =1,
t

It is easily seen that in this problem we are maximizing
a convex function over a compact convex set. It is well
known (e.g. (Rockafellar, 1970)) that the maximal values
in this case are achieved on vertices of the set. In other
words, we can limit ourselves to solutiofis, ,, } such that
foranyz, a; . = 1,— wheret; is a function ofz. Let-

ting b: = /|{x : tx = t}|, we get the following equivalent

optimization problem:
mx 3 b
sz

To upper bound this, we can relax the integer constraint, and
get the following problem

Ibl[x

s.t. |[bllz = /]X] , beRI7,

whose optimal solution is of coursg'|X||7T| by choosing

by = +/|X|/|T| for all t. We can plug this bound back into
Eq. (23) to get that

Z ¢( \/mog |y|/6>m< p(I —t|x>>)

_ VClog([YI/8) X[ [log(m) +
< NG

To complete the proof, note thak(T'|z) and H (T'|y) are
in [0,1og(|7])]. Therefore

(23)

= tfx)]2.

Vt,z ai . > 0.

|X| , Vt bl eZy

LA

|X| log* (|7 1)

VE(T]) < SRR 25)



and )
vy < 218 0T (26)

Applying Eq. (24), Eg. (25) and Eq. (26) on the bounds in
Thm. 2 generates the required result.

Finally, it is easy to show that the resulting bound is triv-
ially true for m not satisfying Eq. (22), and thus this bound
it true for anym.

6.4 Proof of Thm. 4

Throughout the proof we assume that our mdbglertains
only to values ofX, Y actually observed in the sample, and
therefore w.l.o.g(x), p(y) > 0 foranyz € X,y € Y of
interest.

To prove this theorem, we will find a new upper bound
for Eq. (6), using the same notation as in Thm. 2. As a
shorthand, We denote the two summands of Eq. (65py
for the first summand and, for the second summand, so
that we havel(Y;T) — I(Y;T)| < S; + So. We start by
bounding$Ss, and as first step will seek an upper bound for

Vp(T = i[2)).

By definition of V(-) and using Bayes’ formula(t|z) =
plp®) e have that

p(x)
Ve = 1) = 2
plzlt) p(@ It
MJ 2 ( O )

Denotingl = (1,

ity that
(525

&

, 1), we have by the triangle inequal-

>

|X|Zp )

a5 (1o T2

:|p;ic|§)_1|2+\/|7‘z ’|t ‘

= 1270~ e+~ B2 -l
(1+ﬁ> 2,

< ml\p(wlﬂ — (@)l (28)

From an inequality linkingK L-divergence and thé.,
norm (lemma 12.6.1 in (Cover and Thomas, 1991)), we have

that
Ip(z[t) = ()|l < v/210g(2)Dke [p(2[t)[|p(x)].
Plugging this into Eq. (28) and using Eq. (27), we get the
following bound:
24/21og(2)
< X = 7
te)) < min,, p(x)

V(p(T

p(t)v/ D [p(z(t)[[p(z)].

(29)

For notational convenience, let
o(m) = \/Clog(|y|/5) . 2y/210g(2)
m ming p(z) ’

Then, using Eq. (29), we

and letd; = Dy [p(z[t)|[p(z)].
have
S5 <23 d(g(m)p(t)\/dr).

At this point, let us assume that given, m is large

enough so thag(m)p(t)v/d; < 1/e for anyt. We will later
see that this condition can be discarded. For sucive get

by definition of(-) that
V(v () + o ()

(30)

SQ <2Zg

2g(m) <10g (M) zt:p(t)\/d—t

S (iz))

It is easily verified that for any > 0, xlog(1/z) < /.
Using this fact and thinking of(¢)\/d; as a vector indexed

by ¢, we have
) ONCA TR ||1)

Sy < 2g(m) (10g (
We use the following two inequalities:

OVl < VTtV dill2 < VTV p()de |2,

POVl < VITTIY p()Vdill2
= \/l?\/ lp(t)v/delx < |T|3/4\/ 1V/p(E)de|2,

to have

S0 < 29(00) (108 (= ) VITTIV301al
+ (TP VP2

Using the equality

IV/p(£)dill2 = /B¢ [Dre [p([t) [p(a
we reach the following bound

52 < 2g(m)(1og (ﬁ) THXT)  (31)

+ TG T) ).

Hp
an

=I(X;T),

By inserting the definition ofj(m) back into the inequality,
we get our final bound fof,

55 <[ SERAD (0 togom) TG T (32

+ CaITP/(I(XT)4).



with Cy andC; as constants that depend only:@mn,p(z).

Turning now toS;, we have to boung/ V(H(T|y)). B
definition of V(-), and using the triangle inequality, we have

VT < \/Z (Tly) - F1(T))?

b (ﬁm - ﬁ ZH<T|y’>>

For the second summand we have

2
3 (mfr) - ﬁ 3 ff(ﬂy’))

~ 1
=M\H(T>—m
W\Z ~ A(Tly))|
H(T|y)]|1,
m” (T) — H(T]y)|

where we think ofd(T") — H(T'|y) as a vector ranging
over the values of. Therefore, we have that

V(H(Tly)) < <1+ m) H(T)-H(Ty)[l:- (33)

Itis known thatH (T) > H(T|y) for anyy, since condi-
tioning cannot increase entropy. Therefore

ja(r) = Al < Y- Y () - )

1
- ot (s Sy

R S

miny p(y) ~ miny p(y) 16T),

where the last inequality follows from the data processing

inequality. Substituting this into Eq. (33), and singg > 1,
we get

V(H(T|y)) < I(X;T). (34)

miny, p(y)

SettingCs = we thus have our bound faf,

i, 70)

Clog(|Y]/9)

S1 < CsI(X;T).

Plugging Eq. (32) and Eg. (34) into Eq. (6) gives us the

bound in our theorem.

Lastly, recall that we derived this bound by assuming that

g(m)p(t)v/d; < 1/e for anyt. We now show that the

bound can be made trivial if this condition does not hold.
If the condition does not hold, there existst auch that

g(m)p(t)v/d; > 1/e. Since
VIX;T) Zp Ydy > p(t)

for anyt, we get that,/I(X;T) =50 Slnce|T| >1
andg(m) > 0, we get that our bound |n Eq (31) is at least

2g(m )(10g( )W+|7’|3/4 ))1/4)

7 (M 4 i ﬁm>

|T| > log(|T1)

Therefore if indeedg(m)p(t)v/d; > 1/e for somet,
then the bound in the theorem is trivially true, since
I(Y;T),I(Y;T) are both within[0,log(|7])]. Hence the
bound in Thm. 4 holds for any..

6.5 Proof of Thm. 5

Similar formulations of Thm. 5 can be gleaned from (Kull-
back and Leibler) and (Cover and Thomas, 1991). We
present here the full proof of our formulation for complete-
ness. Thm. 5 follows directly from the following two lem-
mas.

We denote byF(X) the set of random mappings &f,
and byS(Y) the set of sufficient statistics faf.

Lemma 3. LetT be a random mapping of. ThenT is a
sufficient statistic fol” if and only if

I(V;T)= max I(Y;T')
T/ €F(X)

Proof. First, assume thdl’ is a sufficient statistic foiy".
For everyI” which is a random mapping of, we have the
Markov chainy — X —T". Therefore, by the data processing
inequality, I(Y; X) > I(Y;T"). In addition,X € F(X).
Therefore
I(V;X)= max [I(Y;T).
T'e€F(X)
SinceT is a sufficient statisticy” — 7' — X is also a Markov
chain, hencd (Y; X) < I(Y; T). It follows that
Iy;m=1v;X) = mach Iy;7).
This completes one direction of the claim. For the other
direction, assume that
I(Y;T)= max I(Y;T).
T'€F(X)
ThenI(Y;T) = I1(Y; X). SinceY — X — T is a Markov
chain, it follows thatY” and X are conditionally indepen-

dent givenI’ (see (Cover and Thomas, 1991)), hefitis a
sufficient statistic. O



Lemma 4. LetT be a sufficient statistic faY'. ThenT is a
minimal sufficient statistic foy” if and only if

I(X;T) = min I(X:T").

T'eS(Y) ( )

Proof. First, letT be a minimal sufficient statistic, and [Et
be some sufficient statistic. By the definition of a minimal
sufficient statistic, there is a functigisuch thafl” = f(7").
Therefore,X — T/ — T is a Markov chain. Therefore,
I(X;T) < I(X;T"). This holds for any sufficient statis-
tic 77, hence indeed Eq. (35) holds. This completes the first
direction of the proof.

For the second direction, we show thdrfifs not minimal,
then there exists a sufficient statisticsuch that
I(X;T) > I(X;V), thus Eqg. (35) does not hold. We will
use the Fisher-Neyman factorization theorem (Fisher, 1922
which states that” is a sufficient statistic fol” if and only
if there exist function& andgr such that

Ve,y p(xly) = he(z)gr(T(x),y).

SinceT is not minimal, there exists a sufficient statisfic
such thatT" is not a function ofl”. Define the equivalence
relation~ by

(36)

gr(t1,y)
gr(t2,y)

wheregr is a function satisfying Eq. (36) with someg-. Let
V : X — 7 be afunction such that

Ve, Viz)e{t|t~T(x)}.

V is thus a function of". We use Fisher-Neyman’s theorem
to show thatl” is a sufficient statistic: Define

gr (T(x)v y)
gr(V(z),y)
gv(V(z),y) = gr(V(x),y).

t1 ~ty <— is a constant function df’,

hy (z) £ hy(x)

Then

Thereforel” has a factorization; hence it is a sufficient statis-
tic. Itis left to show thatl (X;T) > I(X;V). V is a func-
tion of T, for let 21, 22 such thatl” (z1) = T’(x2), then

gr(T(z1),y) _ plaily)hr(z2)
gr(T(22),y)  p(w2ly)hr(z:)
_ b (@)gr (T (1), y)hr (2)
b (1) g (T' (1), y) hr (22)
- hT/(.%'l)hT(.%'g)
- hT(SCl)hT/(SCQ).

HenceT'(z1) ~ T(x2), thereforeV (z1) = V(x2) for any
X1, T2 such thaT/(Il) = T/(SCQ).

SinceX — T — V is a Markov chain, we have
I(X;T) =1(X;V)+I(X;T | V)
>I(X;V)+ I[(X;T|T,V)
=I(X;V)+I1(X;T|T").

sinceT is a function of X but is not a function ofl”, we
havethatl (X;7 | T') > 0. Therefore/ (X;T) > I(X;V),
hence Eq. (35) does not hold. O

7 Discussion

In this paper we analyzed the information bottleneck frame-
work from a learning theoretic perspective. This frame-
work has been used successfully for finding efficient rel-
evant data representations in various applications, hsit th
is its first rigorous learning theoretic analysis. Desplite t
fact that the information bottleneck is all about manipulat
ing the joint input-output distribution, we show that it can
generalize quite well based on plug-in empirical estimates
even with sample sizes much smaller than needed for reli
able estimation of the joint distribution. In fact, it is etly

the reliance on the joint distribution that allows us to deri
non-uniform bounds without resorting to VC-theory or sim-
ilar complexity measures common in learning theory.

Moreover, these bounds allow us to view the information
bottleneck framework in the more familiar learning thewret
setting of a performance-complexity tradeoff. In partaul
we analyze the role of mutual information as both a com-
plexity regularization term and as a bound on the classifi-
cation error for common supervised applications, such as
document classification. This provides a theoretical justi
fication for many applications of interest, and in fact cleara
terizes the learning scenarios for which this method is best
suited for. Finally, we discuss how this framework extends
the classical statistical concept of minimal sufficientista
tics.

Although we have focused here on a setting involving two
discrete variables, our results may also be relevant forr@ mo
complete learning theoretic analysis of information tlegior
based algorithms.
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