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Abstract

The information bottleneck is an information theoretic frame-
work, extending the classical notion of minimal sufficient
statistics, that finds concise representations for an ‘input’ ran-
dom variable that are as relevant as possible for an ‘out-
put’ variable. This framework has been used successfully
in various supervised and unsupervised applications. How-
ever, its learning theoretic properties and justification re-
mained unclear as it differs from standard learning models
in several crucial aspects, primarily its explicit reliance on
the joint input-output distribution. In practice, an empiri-
cal plug-in estimate of the underlying distribution has been
used, so far without any finite sample performance guaran-
tees. In this paper we present several formal results that ad-
dress these difficulties. We prove several non-uniform finite
sample bounds that show that it can provide concise repre-
sentations with good generalization based on smaller sam-
ple sizes than needed to estimate the underlying distribu-
tion. Based on these results, we can analyze the informa-
tion bottleneck method as a learning algorithm in the famil-
iar performance-complexity tradeoff framework. In addition,
we formally describe the connection between the information
bottleneck and minimal sufficient statistics.

1 Introduction
A fundamental issue in statistics, pattern recognition, and
machine learning is the notion of relevance. Finding the rel-
evant components of data is implicitly behind the problems
of efficient data representation, feature selection and dimen-
sion reduction in supervised learning, and is the essence of
most unsupervised learning problems. One of the earliest
and more principled approaches to relevance was the con-
cept of sufficient statisticsfor parametric distributions, in-
troduced by Fisher (Fisher, 1922) as function(s) of a sam-
ple that capture all the information about the parameter(s).
The notion ofminimal sufficient statisticswas introduced
by Lehmann and Scheffé (Lehmann and Scheffé, 1950) as
the simplest sufficient statistics, or the coarsestsufficient
partition of the sample space which captures the relevant
components of the sample with respect to the parameter.
However, this important concept was not pursued much fur-
ther mainly due to the Pitman-Koopman-Darmois theorem,
which showed that exact sufficient statistics with bounded
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dimensionality exist only for distributions of exponential
form (Koompan, 1936).

Kullback and Leibler (Kullback and Leibler) related suf-
ficiency to Shannon’s information theory, showing that suf-
ficiency is equivalent to preserving mutual information on
the parameter, while minimal sufficient statistics minimize
the mutual information with the sample due to the data-
processing inequality (Cover and Thomas, 1991). The In-
formation Bottleneck (IB) method, introduced in (Tishby,
Pereira and Bialek, 1999), is an information theoretic gener-
alization of the minimal-sufficient-statistic concept to gen-
eral distributions of two variables,X andY . It also pro-
vides a converging algorithm for extracting minimal relevant
components of the variableX with respect to the variable
Y , by finding a non-parametric model-independent com-
pression ofX (providing minimality), denoted byT , that
is most informative aboutY (providing approximate suffi-
ciency). The compression is quantified by the mutual in-
formation betweenT andX , while the informativeness is
quantified by the mutual information betweenT andY . A
scalar Lagrange multiplierβ smoothly controls the tradeoff
between these two quantities. Further details are presented
in Sec. 2.

Before turning to the topic of this paper, let us first ex-
emplify how the IB method can be used for both supervised
and unsupervised learning. Consider the area of text analy-
sis. A typical unsupervised problem can be clustering doc-
uments based on their word-statistics in order to discover
similarities and relationships between them. In this case the
X variable is taken as the document identity (typically con-
sidered as “bags of words”) and theY as the words in the
documents. TheT variable in this case will be clusters of
documents with similar word-statistics, based on “the two
sample problem” (Lehmann, 1959) similarity measure.

In a typical supervised application in this domain,X
can denote the words whileY are topic-labels of the doc-
uments. HereT are clusters of words that are (approxi-
mately) sufficient for document categorization (Tishby and
Slonim, 2000). In all the applications the variableβ al-
lows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution
and more information aboutY . This form of dimensional-
ity reduction, a special case of the information bottleneck,
was introduced under the name of distributional clustering



in (Pereira, Tishby and Lee, 1993), and has proven to be
highly effective in data analysis of high dimensional data
(Baker and McCallum, 1998;?).

The method has proven to be useful for a number of
successful applications (see (Tishby and Slonim, 2000;
Friedman, Mosenzon, Slonim and Tishby, 2001; Slonim, At-
wal, Tkacik and bialek, 2005) and references therein), but
its learning theoretic justification has remained unclear for a
number of reasons: (i) The method assumes the knowledge
of the joint distribution ofX and Y , in sharp contrast to
the finite-sample based machine learning algorithms. More-
over, it wasn’t clear what is left to be learned if it is as-
sumed that this distribution is known. (ii) In practice, since
the joint distribution ofX andY is not known, the empiri-
cal co-occurrence distribution is used to calculate a plug-in
estimate of the IB functional, without finite-sample general-
ization bounds or error guarantees of any kind. (iii) Finally,
IB is formally related to classical information theoretic prob-
lems, such as Rate-Distortion theory and Coding with Side-
Information, but it is unclear why maximizing mutual infor-
mation aboutY is useful for any “natural” learning theoretic
model, and in particular how it is related to classification
error.

In this paper we provide rigorous answers to most of the
above issues concerning the IB framework. We focus on a
learning theoretic analysis of this framework, whereX and
Y are assumed to be discrete, and the empirical distribution
of p(x, y) is used as a plug-in for the true distribution. We
develop several non-uniform finite sample bounds, and show
that despite this use of plug-in estimation, the IB framework
can actually generalize quite well, with realistic sample sizes
that can be much smaller than the dimensionality of this joint
distribution, provided that we are looking for a reasonably
simplerepresentationT of our data. We discuss in which
settings the information bottleneck can be seen as a stan-
dard learning algorithm, trading off a risk-like term and a
regularization term controlling the generalization. Finally,
we discuss its utility as a natural extension of the concept of
minimal sufficient statistics for discrimination.

The paper is organized as follows. In Sec. 2, we formally
present the information bottleneck framework and the nota-
tions of the paper. We then turn to analyze its finite sample
behavior in Sec. 3. Sec. 4 discusses the characteristics of the
information bottleneck as a learning algorithm, while its re-
lation to minimal sufficient statistics is considered in Sec. 5.
All the proofs of our main theorems are presented in Sec. 6,
and we finish by discussing our results in Sec. 7.

2 The Information Bottleneck Framework
In this section we formally describe the basic information
bottleneck (IB) framework. This framework has several
variants and extensions, both to multivariate variables and
to continuous representations (see (Slonim, 2003; Checik,
Globerson, Tishby and Weiss, 2005) for more details), but
these are not the focus of this paper.

As discussed in the introduction, the IB framework at-
tempts to find a simple representation of one random vari-
ableX through an auxiliary variableT , which is relevant
to another random variableY . We assume thatX andY

take values in the finite setsX andY respectively, and use
x andy respectively to denote elements of these sets. The
basic quantity that is utilized is Shannon’s mutual informa-
tion between random variables, which for discrete variables
is formally defined as:

I(X ; Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

(

p(x, y)

p(x)p(y)

)

.

Mutual information is well known to be the unique mea-
sure of informativeness, up to a multiplicative constant, un-
der very mild assumptions (Cover and Thomas, 1991). The
IB functional is built upon the relationship between mini-
mal sufficiency and information. It captures a tradeoff be-
tween minimality of the representation ofX , achieved by
minimizing I(X ; T ), and sufficiency of information onY ,
achieved by constraining the value ofI(Y ; T ). The auxil-
iary variableT is thus determined by the minimization of
the IB-Lagrangian

LIB [p(t|x)] = I(X ; T ) − βI(Y ; T ) (1)

with respect to the mappingp(t|x). T is subject to the
Markovian relationT − X − Y , andp(t|x) is subject to the
obvious normalization constraints. The tradeoff parameter
β is a positive Lagrange multiplier associated with the con-
straint onI(Y ; T ). Formally,T is defined over some space
T , but the elements of this space are arbitrary - only the
probabilistic relationships betweenT andX, Y are relevant.

The solutions of this constrained optimization problem
are characterized bythe bottleneck equations,






p(t|x) = p(t)
Z(β,x) exp(−β DKL [p(y|x)‖p(y|t)])

p(t) =
∑

x∈X p(t|x)p(x)
p(y|t) =

∑

x∈X p(y|x)p(x|t) ,

(2)

where DKL is the Kullback-Leibler divergence andZ(β, x)
is a normalization function. These equations need to be
satisfied simultaneously, givenp(x, y) andβ. In (Tishby,
Pereira and Bialek, 1999) it is shown that alternating it-
erations of these equations converge - at least locally - to
a solution for any initialp(t|x), similar to the Arimoto-
Blahut algorithm in information theory (Cover and Thomas,
1991). In (Gilad-Bachrach, Navot and Tishby, 2001) it
is shown that the set of achievablep(x, y, t) distributions
form a strictly convex set in the(I(X ; T ), I(Y ; T )) plane,
bounded by a smoothIY (IX) optimal function - the in-
formation curve- similar to the rate-distortion function in
source coding. By increasing the value ofβ one can move
smoothly along this curve from the trivial, zero information,
solution at the origin, all the way to the most complex so-
lution whereT captures all the relevant information from
X andIX ≡ I(X ; T ) = H(X), H(X) denoting the en-
tropy of X . In addition, asβ is increased,IY ≡ I(Y ; T )
increases andT captures more information onY . Due to the
data-processing inequality,I(Y ; T ) ≤ I(X ; Y ), with equal-
ity only whenT becomes an exact sufficient statistic. The
tradeoff inherent in Eq. (1) forces us to find a simple repre-
sentationT of X , which preserves only those aspects ofX
which are informative, i.e. relevant, aboutY .



It should be emphasized that despite superficial similari-
ties, IB isnot a hidden variable model. In such models, we
assume that the joint distributionp(x, y) can be factorized
using an auxiliary random variableT , forming a Marko-
vian relationX − T − Y . In IB, we make no generative
assumption on the distribution, and the Markovian relation
is T−X−Y . Namely,T is a generic compression ofX , and
the information-curve is characterized by the joint distribu-
tion p(x, y) independently of any modeling assumptions.

An important observation is that the effective cardinality
of an optimalT is not fixed and depends onβ. Whenβ ≤ 1,
even a trivialT of cardinality1 will optimize Eq. (1), since
we always haveI(Y ; T ) ≤ I(X ; T ). On the other hand, as
β increases, more emphasis is put on informativeness with
respect toY , and the cardinality ofT will increase, although
the cardinality of an optimalT need not exceed the cardinal-
ity of X , as proven in (Harremoes and Tishby, 2007).

In order to optimize Eq. (1) we need to calculate the quan-
tities I(X ; T ) andI(Y ; T ) for any chosenT andβ. Since
T is defined only viaX , we need to knowp(x, y) in order
to calculate these two quantities. In most applications, how-
ever,p(x, y) is unknown. Instead, we assume that we have
an i.i.d sample ofm instances drawn according top(x, y),
and we use this sample to create a maximum-likelihood es-
timate of the distribution usinĝp(x, y), the empirical distri-
bution of the sample. Following current practice, this empir-
ical estimate is then plugged into the calculation ofI(X ; T )
andI(Y ; T ) instead of the true joint distribution, and Eq. (1)
is optimized using this plug-in estimate. In general, we use
the ˆ symbol to denote quantities calculated usingp̂(x, y)
instead ofp(x, y). Thus, instead of calculatingI(X ; T )
and I(Y ; T ) precisely, we rely on the empirical estimates
Î(X ; T ) and Î(Y ; T ) respectively. In this work we inves-
tigate how much these empirical estimates deviate from the
true values - in other words, whether this plug-in practice
justified. Note that the sample sizem is often smaller than
the number of bins|X ||Y|, and thusp̂(x, y) can be a poor
approximation top(x, y). Nevertheless, this is precisely the
regime we are interested in for many applications, text cate-
gorization to name one.

3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample be-
havior of the IB framework, and in particular on the relation-
ship betweenI(X ; T ) andI(Y ; T ) that appear in Eq. (1) and
their empirical estimateŝI(X ; T ) andÎ(Y ; T ).

Our first result shows that for any fixedT defined as a
random mapping ofX via p(t|x), it is possible to determine
the value of the objective function Eq. (1) within reasonable
accuracy based on a random sample.

Theorem 1. Let T be a given random mapping ofX , de-
termined byp(t|x), and letS be a sample of sizem drawn
from the joint probability distributionp(X, Y ). For any con-
fidence parameterδ ∈ (0, 1), it holds with a probability of

at least1 − δ over the sampleS that

|I(X ; T )− Î(X ; T )| ≤
(|T | log(m) + log(|T |))

√

log(4/δ)√
2m

+
|T | − 1

m
,

and that

|I(Y ; T )− Î(Y ; T )| ≤
(3|T | + 2) log(m)

√

log(4/δ)√
2m

+
(|Y| + 1)(|T | + 1) − 4

m
.

Note that the theorem holds for any fixedT , not just ones
which optimize Eq. (1). In particular, the theorem holds for
anyT found by an IB algorithm, even ifT is not a globally
optimal solution.

The theorem shows that estimating the objective func-
tion for a certain solutionT is much easier than estimating
p(x, y). Indeed, the bound does not depend on|X |, which
might even be countably infinite. In addition, it depends on
|Y| only as a second-order factor, since|Y| is multiplied by
1/m rather than by1/

√
m. The complexity of the bound

is thus mainly controlled by|T |. By constraining|T | to
be small, or by settingβ in Eq. (1) to be small enough so
that the optimalT has low cardinality, a tight bound can be
achieved.

Thm. 1 provides us with a bound on a certain pre-specified
T , where the sampleS is not part of the process of selecting
T . The next theorem is a full generalization bound, deter-
mined by the sample when it is used as a training set by
whichT is selected.

In order to present the theorem compactly, we will use
some extra notation. Letx1, . . . , x|X | be some fixed order-
ing of the elements ofX , andy1, . . . , y|Y| be an ordering
of the elements ofY. We use the shorthandp(T = t|x)
to denote the vector(p(t|x1), . . . , p(t|x|X |)). Simi-

larly, Ĥ(T |y) denotes the vector(Ĥ(T |y1), . . . , Ĥ(T |y|Y|))

whereĤ(T |yi) is the entropy of̂p(T |yi). H(T |x) denotes
the vector
(H(T |x1), . . . , H(T |xX )), whereH(T |xi) is the entropy
of p(T |xi). Note thatp(T |xi) is known as it definesT , and
thus does not need to be estimated empirically.

For any real-valued vectora = (a1, . . . , an), we define
the functionV (a) as follows:

V (a) = ‖a − 1

n

n
∑

j=1

aj‖2 ,

n
∑

i=1



ai −
1

n

n
∑

j=1

aj





2

. (3)

Note that1nV (a) is simply the variance of the elements ofa.
In addition, we define the real-valued functionφ(x) : R+ →
R+ as

φ(x) =







0 x = 0

x log(1/x) 0 < x ≤ 1/e

1/e x > 1/e.

(4)

Note thatφ is a continuous, monotonically increasing and
concave function, and thatlimx→0 φ(x) = 0.



Theorem 2. Let S be a sample of sizem drawn from the
joint probability distributionp(X, Y ). For any confidence
parameterδ ∈ (0, 1), it holds with a probability of at least
1 − δ over the sampleS that for anyT simultaneously,

|I(X ; T ) − Î(X ; T )| ≤
√

C log(|Y|/δ) · V (H(T |x))

m

(5)

+
∑

t

φ

(
√

C log(|Y|/δ) · V (p(T = t|x))

m

)

,

and

|I(Y ; T ) − Î(Y ; T )| ≤

√

C log(|Y|/δ) · V (Ĥ(T |y))

m
(6)

+ 2
∑

t

φ

(
√

C log(|Y|/δ) · V (p(T = t|x))

m

)

,

whereV andφ are defined in Eq. (3) and Eq. (4), and C is a
small constant.

As in Thm. 1, this theorem holds for anyT , not just those
optimizing Eq. (1). Also, the bound enjoys the advantage of
not being uniform over a hypothesis class of possibleT ’s,
but rather depending directly on theT of interest.

Intuitively, these bounds tell us that the ‘smoother’T is
with respect toX , the tighter the bound. To see this, assume
that for any fixedt ∈ T , p(t|x) is more or less the same
for any choice ofx. By definition, this means thatV (p(T =
t|x)) is close to zero. In a similar manner, ifH(T |x) is more
or less the same for anyx, thenV (H(T |x)) is close to zero,
and so isV (Ĥ(T |y)) if Ĥ(T |y) is more or less the same for
anyy. In the extreme case, ifT is independent ofX , then
p(t|x) = p(t), H(T |x) = H(T ) andĤ(T |y) = Ĥ(T ) for
any choice ofx, y, and the generalization bound becomes
zero. This is not too surprising, since in this caseI(X ; T ) =

ˆI(X ; T ) = 0 andI(Y ; T ) = Î(Y ; T ) = 0 regardless of
p(x, y) or its empirical estimatêp(x, y).

This theorem thus suggests that generalization becomes
better asT becomes less statistically dependent onX , and
so provides a more compressed probabilistic representation
of X . This is exactly in line with empirical findings (Slonim,
2003), and with the intuition that ‘simpler’ models should
lead to better generalization.

A looser but simpler bound on Thm. 2 can be achieved by
fixing the cardinality ofT , with worst-case assumptions on
the statistical dependency betweenX andT .

Theorem 3. Under the conditions and notation of Thm. 2,
we have that with a probability of at least1 − δ, for anyT
simultaneously,

|I(X ; T )− Î(X ; T )| ≤
1
2

√

C log(|Y|/δ)(
√

|T ||X | log(m)+|X | 12 log(|T |))+ 1
e |T |√

m

and

|I(Y ; T )− Î(Y ; T )| ≤
√

C log(|Y|/δ)
(

√

|T ||X | log(m)+ 1
2 |Y|

1

2 log(|T |)
)

+ 2
e |T |

√
m

,

whereC is the same constant as in Thm. 1.

Even with this much looser bound, if|Y| is large and
|T | ≪ |Y| the bound can be quite tight, even with sample
sizes which are in general insufficient to reasonably estimate
the joint distributionp(x, y). One relevant setting is in un-
supervised learning, whenY models the feature space.

In this section, we have shown that the quantities that
make up the IB objective function can be estimated reliably
from a sample of a reasonable size, depending on the char-
acteristics ofT . In the next section we investigate the moti-
vation for using these quantities in the objective functionin
the first place, from a learning theoretic perspective.

4 A Learning Theoretic Perspective
The IB framework optimizes a trade-off betweenI(X ; T )
andI(Y ; T ). In this section we discuss the learning theo-
retic properties of this tradeoff and why mutual information
provide reasonable measures for both learning complexity
and accuracy.

In an unsupervised setting, such as clustering, it is rather
easy to see howI(X ; T ) and I(Y ; T ) control the com-
plexity and granularity of the clustering by trading between
homogeneity and resolution of the clusters; this has been
discussed previously in the literature (such as (Tishby and
Slonim, 2000;?)). Therefore, we will focus here mainly on
the use of this framework in supervised learning, where the
objectives are more well defined.

Most supervised learning algorithms are based on a trade-
off between two quantities: a risk term, measuring the per-
formance of a hypothesis on the sample data, and a regu-
larization term, which penalizes complex hypotheses and so
ensures reasonable generalization to unseen data. In the fol-
lowing we argue that under relevant settings it is reasonable
to considerI(Y ; T ) as a measure of risk andI(X ; T ) as a
regularization term that controls generalization.

4.1 I(Y;T) as a Measure of Performance
In this section we investigate the plausibility ofI(Y ; T ) as
a measure of performance or risk in a supervised learning
setting. We show that in those supervised learning settings
where IB was demonstrated to be highly effective, such as
document categorization (Slonim and Tishby, 2001), there is
a strong connection between the classification error and the
mutual informationI(Y ; T ), especially when the categories
are uniformly spread. The discussion here is a first step to-
wards a full analysis of the IB classification performance in
a more general setting, which we leave for future work.

For example, a document classification task we modelX
as a random variable over the set of possible words, andY
as a random variable over the set of document categories
or classes. Each document is treated as an i.i.d. sample of
words drawn fromp(x|y), in accordance with the bag of



words representation, wherey is the class of the document.
Unlike the simple supervised learning settings, where each
example is described as a single data point, in this case each
example (document) to be labeled is described by a sample
of points (words) of variable size (usually large) and we seek
the most probable class of the whole sample (document)col-
lectively.

IB is used in this setting to findT , a compressed represen-
tation of the words in a document, which is as informative
as possible on the categoriesY . The bottleneck equations
Eq. (2) provide for each classy its conditional distribution
onT , via

p̂(t|y) =
∑

x

p(t|x)p̂(x|y).

When a new documentD = {x1, . . . , xn} of sizen is to
be classified, the empirical distribution ofT givenD is

p̃(t) =

n
∑

i=1

p(t|xi)p̂(xi).

Assuming that the document is sampled according top(t|y)
for some classy, the most probable classy∗ can be selected
using the maximum likelihood principle, namely

y∗ = argmin
y

DKL [p̃(t)‖p̂(t|y)].

We now show that̂I(Y ; T ) is indeed a reasonable objec-
tive function in this case - namely, whenever we wish to col-
lectively label an entire set of sampled instances.

Assume that the true class for documentD is y1, with its
word distribution sampled viap(t|y1). The probabilityαn

of misclassifying this sample asy2 for somey2 6= y1 via
the likelihood test decreases exponentially with the sample
sizen. The rate of exponential decrease is larger if the two
distributionsp(t|y1), p(t|y2) are more distinct. Formally,
by Stein’s lemma (Cover and Thomas, 1991), ifp̂(t|y1) =
p(t|y1) andp̂(t|y2) = p(t|y2), then

lim
n→∞

1

n
log(αn) = DKL [p(t|y2)‖p(t|y1)]. (7)

When p̂(t|y1) and p̂(t|y2) deviate from the true con-
ditional distributions, Stein’s Lemma still holds up to an
additive constant which depends on the amount of de-
viation, and the exponent is still controlled mainly by
DKL [p(t|y2)‖p(t|y1)]. In the following we will assume for
simplicity that Eq. (7) holds exactly.

The overall probability of misclassifying a document
when there are more than two possible classes is thus up-
per bounded by

∑

y 6=y1

exp(−nDKL [p(t|y)‖p(t|y1)]). (8)

On the other hand, by the definition of mutual informa-
tion and the convexity of the Kullback-Leibler divergence
we have that

I(Y ; T ) = EyDKL [p(t|y)‖p(t)]

= EyDKL [p(t|y)‖Ey′p(t|y′)] (9)

≤ Ey,y′DKL [p(t|y)‖p(t|y′),

Hence−nI(Y ; T ) is an upper bound on the expected value
of the exponent in Eq. (7), assuming thaty1 and y2 are
picked according top(y). The relationship between Eq. (9)
on the one hand, and Eq. (7), Eq. (8) on the other hand, is
not direct. Nonetheless, these equations indicate that if the
examples to classify are represented by a large sample, as in
the document classification setting, higher values ofI(Y ; T )
should correspond to a reduced probability of misclassifica-
tion. For example, if DKL [p(t|y)‖p(t|y1)] is equal for every
y 6= y1, we have that Eq. (8) is upper bounded by

(n − 1) exp

(

− n

|Y| − 1
I(Y ; T )

)

,

in which case the probability of misclassification is expo-
nentially dominated byI(Y ; T ). This is the case when
categories are uniformly spread, which happens for many
applications incidently or by design. In this case, when
the bottleneck variableT captures just a fractionα =
I(Y ; T )/I(X ; Y ) of the relevant information, the test (doc-
ument) size should increase only by a factor1/α in order to
achieve a similar bound on the classification error.

4.2 I(X;T) as a Regularization Term
In this subsection we discuss the role ofI(X ; T ), the com-
pression or minimality term in IB, as a regularizer when
maximizing I(Y ; T ). Note that without regularization,
I(Y ; T ) can be maximized by settingT = X . However,
p(x|y) cannot be estimated efficiently from a sample of a
reasonable size; therefore the formal solutionT = X can-
not be used to perform reliable classification. Moreover, in
the context of unsupervised learning, settingT = X is gen-
erally a meaningless operation, corresponding to singleton
clusters.

The bottleneck variableT must therefore be restricted to
allow reasonable generalization in a supervised setting and
to generate a reasonable model in an unsupervised setting.
In the IB frameworkI(X ; T ) can be viewed as a penalty
term that restricts the complexity ofT . A more formal jus-
tification for this is given in the following theorem, which is
derived from Thm. 2.

Theorem 4. For any probability distributionp(x, y), with a
probability of at least1 − δ over the draw of the sample of
sizem fromp(x, y), we have that for anyT simultaneously,

|I(Y ; T ) − Î(Y ; T )| ≤
√

C log(|Y|/δ)

m

(

C1 log(m)
√

|T |I(X ; T )

+ C2|T |3/4(I(X ; T ))1/4 + C3Î(X ; T )
)

,

whereC is the same constant as in Thm. 1, andC1, C2, C3

depend only onp(x) andp(y).

This bound is controlled byI(X ; T ) andÎ(X ; T ), which
are closely related as Thm. 3 shows. This is not a fully
empirical bound, as it depends on the unknown quantity
I(X ; T ) and the marginal distributions ofX, Y . The bound
does however illustrate the relationship between the gener-
alization error and the mutual informationI(X ; T ). This



provides motivation for the use ofI(X ; Y ) as a regulariza-
tion term, beyond its obvious description length, or coding,
interpretation.

5 Relationship with Sufficient Statistics
As we discussed in the introduction, there is a natural re-
lationship between the IB framework and the fundamental
statistical concept ofminimal sufficient statistics, which cap-
tures the notion of relevance in the context of parametric dis-
tributions. In this section we elaborate on this connection.

In the parametric statistics setting,Y is a random vari-
able that parameterizes a family of probability distributions,
andX is a data point drawn fromp(x|y) wherex ∈ X and
y ∈ Y. For example, the family of probability distributions
may be the set of Bernoulli distributions with success proba-
bility p determined byy, with Y ⊆ [0, 1] and some prior dis-
tributionp(y). In this case, for a giveny, p(X = 1|y) = y,
andp(X = 0|y) = 1 − y.

Y andX may be high dimensional. For instance,Y may
determine the mean and the variance of a normal distribu-
tion, or fully parameterize a multinomial distribution.X
may be a high dimensional data point. For any family of
probability distributions, we can consider a sample ofm i.i.d
data points, all drawn from the same distribution determined
by a single draw ofY . In the context of sufficient statistics,
this is just a special case of a high dimensionalX which
is drawn from the cross-product ofm identical probability
distributions determined by the value ofY .

Fisher (Fisher, 1922) introduced the concept of sufficient
statistic that denotes the relevant part of the sampleX with
respect to the parameterY , as follows.

Definition 1 (Sufficient Statistic). LetY be a parameter in-
dexing a family of probability distributions. LetX be ran-
dom variable drawn from a probability distribution deter-
mined byY . Let T be a deterministic function ofX . T is
sufficient forY if

∀x ∈ X , t ∈ T , y ∈ Y p(x|t, y) = p(x|t).

Throughout this section we assume that it suffices that the
equality holds almost everywhere with respect to the proba-
bility of y andx.

In words, the sufficiency ofT means that given the value
of T , the distribution ofX does not depend on the value of
Y .

Just asX andY may be high dimensional, so canT map
X to a multidimensional space. IfX denotes and i.i.d sam-
ple, the number of dimensions inT may depend on the size
of the samplem. Specifically,T = X is always suffi-
cient forY . To avoid trivial sufficient statistics such as this,
Lehmann and Scheffé (Lehmann and Scheffé, 1950) intro-
duced the concept of a minimal sufficient statistic, which
denotes the coarsest sufficient partition ofX , as follows:

Definition 2 (Minimal Sufficient Statistic). A sufficient
statisticS is minimal if and only if for any sufficient statis-
tic T , there exists a deterministic functionf such thatS =
f(T ) almost everywhere w.r.tX .

For instance, for an i.i.d sample of sizem of the Bernoulli
distribution in the example above,T = X is trivially a suffi-
cient statistic, but the one-dimensionalT = 1

m

∑

i xi where
x = (x1, . . . xm) is also sufficient. It can be shown that
the latterT (and any one-to-one function of it) is a minimal
sufficient statistic.

By the Pitman-Koopman-Darmois theorem (Koompan,
1936), sufficient statistics whose dimension does not depend
on the sample size exist only for families of exponential
form. This makes the original concept of sufficiency rather
restricted.

The IB framework allows us to naturally extend this con-
cept of relevance to any joint distribution ofX andY , not
necessarily ones of exponential form, in a constructive com-
putational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency (Kull-
back and Leibler), one can find compact representationsT
of a sampleX that maximize mutual information about the
parameter variableY , corresponding to sufficiency forY ,
and minimizeI(X ; T ), corresponding to the minimality of
the statistic. However, unlike the original concepts of suffi-
cient statistic and minimal sufficient statistic, the IB frame-
work provides a soft tradeoff between these two objectives.

It can easily be seen that asβ grows to infinity, ifT is not
restricted thenI(Y ; T ) converges toI(X ; Y ) andT con-
verges to a minimal sufficient statistic. The following theo-
rem formalizes this insight.
Theorem 5. Let X be a sample drawn according to a dis-
tribution determined by the random variableY . The set of
solutions to

min
T

I(X ; T )

s.t. I(Y ; T ) = max
T ′

I(Y ; T ′).

is exactly the set of minimal sufficient statistics forY based
on the sampleX .

The IB framework thus provides a natural generalization
of the concept of a sufficient statistic, where by settingβ to
lower values, different degrees of approximate minimal suf-
ficient statistics can be found, characterized by the fraction
of mutual information they maintain on theY . Furthermore,
such approximate minimal sufficient statistics exist for any
joint distributionp(X, Y ) in a continuous hierarchy that is
fully captured by the set of optimal IB solutions for all val-
ues ofβ. These solutions lie on the information curve of the
distribution.

6 Proofs
6.1 Proof of Thm. 1
LetS be a sample of sizem, and letT be a random mapping
of X defined byp(t|x) for all x ∈ X andt ∈ T .

To prove the theorem, we first bound the deviations of the
information estimations from their expectation:|Î(X ; T )−
E(Î(X ; T ))| and |Î(Y ; T ) − E(Î(Y ; T ))|, and then use a
bound on the expected bias of entropy estimation.

To bound the deviation of the information estimates, we
use McDiarmid’s inequality (McDiarmid, 1989), in a man-
ner similar to (Antos and Kontoyiannis, 2001). For this we



must bound the change in value of each of the entropy esti-
mates when a single instance inS is arbitrarily changed.

We use the equalitŷI(X ; T ) = Ĥ(T ) − Ĥ(T |X). First,
we bound the change caused by a single replacement in
Ĥ(T ). We have that

Ĥ(T ) = −
∑

t

(
∑

x

p(t|x)p̂(x)) log(
∑

x

p(t|x)p̂(x)).

(10)
If we change a single instance inS, then there exist two pairs
(x, y) and(x′, y′) such that̂p(x, y) increases by1/m, and
p̂(x′, y′) decreases by1/m. This means that̂p(x) andp̂(x′)
also change by at most1/m, while all other values in the
distribution remain the same. Therefore, for eacht ∈ T ,
∑

x

p(t|x)p̂(x) changes by at most1/m.

We use the following easily-proven inequality (a special
case of Lemma 2 appearing later): for any naturalm and for
anya ∈ [0, 1 − 1/m] and∆ ≤ 1/m,

∣

∣

∣(a + ∆) log(a + ∆) − a log (a)
∣

∣

∣ ≤ log(m)

m
. (11)

Based on this inequality and Eq. (10), we have thatĤ(T )
changes by at most|T | log(m)/m. We now move to bound
the change in̂H(T |X). We have

Ĥ(T |X) =
∑

x

p̂(x)H(T |X = x).

H(T |X = x) is dependent only onp(t|x) which is known
and does not depend on the sample. Changing a sin-
gle instance inS changesp̂(x) by at most1/m for two
values x. Since H(T |X = x) ≤ log(|T |), this im-
plies thatH(T |X) changes by at mostlog(|T |)/m. Over-
all, Î(X ; T ) = Ĥ(T ) − Ĥ(T |X) can change by at most
(|T | log(m)+log(|T |))/m. Invoking McDiarmid’s inequal-
ity, we have that with a probability of at least1 − δ1,

|Ĥ(T ) − Ĥ(T |X))− E(Ĥ(T ) − Ĥ(T |X)|

≤ (|T | log(m) + log(|T |))
√

log(2/δ1)√
2m

. (12)

We now turn toÎ(Y ; T ) and perform a similar analysis
using the fact that̂I(Y ; T ) = Ĥ(Y ) + Ĥ(T ) − Ĥ(Y, T ).
First, forĤ(Y ), we have that

Ĥ(Y ) = −
∑

y

p̂(y) log(p̂(y)).

Changing a single instance inS changeŝp(y) by at most
1/m for two valuesy, hence by Eq. (11),̂H(Y ) changes by
at most2 log(m)/m. ForĤ(Y, T ), we have

Ĥ(Y, T ) = −
∑

t,y

p̂(t, y) log (p̂(t, y))

and
p̂(y, t) =

∑

x

p(t|x)p̂(x, y)

SinceT − X − Y is a Markov chain, changing a single
instance inS changes

∑

x

p(t|x)p̂(x, y) by at most1/m

for two valuesy. Using Eq. (11), we have that̂H(Y, T )
can change by at most2|T | log(m)/m. Finally, as we saw
above, by replacing a single instanceĤ(T ) can change by
at most|T | log(m)/m. Overall, we have that̂I(Y ; T ) can
change by at most(3|T | + 2) log(m)/m. By McDiarmid’s
inequality, we have that with a probability of at least1− δ2,

|(Ĥ(Y )+Ĥ(T )−Ĥ(Y, T ))−E(Ĥ(Y )+Ĥ(T )−Ĥ(Y, T ))|

≤ (3|T | + 2) log(m)
√

log(2/δ2)√
2m

. (13)

Eq. (12) and Eq. (13) provide bounds on the deviation of
the Î(X ; T ), Î(Y ; T ) from their expected values. In order
to relate these to the true values of the mutual information
I(X ; T ) andI(Y ; T ), we use the following bias bound from
(Paninski, 2003).
Lemma 1 (Paninski, 2003). For a random variableX , with
the plug-in estimatêH(·) on its entropy, based on an i.i.d
sample of sizem, we have that

|EĤ(X) − H(X)| ≤ log

(

1 +
|X | − 1

m

)

≤ |X | − 1

m
.

From this lemma, we have that

|EH(T ) − H(T )| ≤ |T | − 1

m
,

|EH(Y ) − H(Y )| ≤ |Y| − 1

m
,

|EH(Y, T ) − H(Y, T )| ≤ |Y||T | − 1

m
.

Combining these with Eq. (12) and Eq. (13), and setting
δ1 = δ2 = δ/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2
We start the proof by bounding|I(X ; T ) − Î(X ; T )| and
|I(Y ; T ) − Î(Y ; T )| with deterministic bounds that depend
onp(x). These bounds are then factorized, such that quanti-
ties that depend on the empirical sample are separated from
quantities that depend on the characteristics ofT . Quantities
of the first type can be bounded by concentration of measure
theorems, while quantities of the second type can be left de-
pendent on theT we choose.

Starting with|I(X ; T )− Î(X ; T )|, we use the fact that

|I(X ; T )−Î(X ; T )| ≤ |H(T |X)−Ĥ(T |X)|+|H(T )−Ĥ(T )|
and bound each of the summands on the right separately. For
the first summand, since

∑

x p(x) =
∑

x p̂(x) = 1, we have
that for any scalara,

|H(T |X)− Ĥ(T |X)| =
∣

∣

∣

∑

x

(p(x) − p̂(x))H(T |x)
∣

∣

∣

=
∣

∣

∣

∑

x

(p(x) − p̂(x))(H(T |x) − a)
∣

∣

∣ (14)

≤ ‖p(x) − p̂(x)‖‖H(T |x) − a‖,



wherep andH stand for vectors indexed by the values of
X , and we subtracta from all entries of the vector. Setting
a = 1

|X |
∑

x H(T |x) we get

|H(T |X) − Ĥ(T |X)| (15)

≤ ‖p(x) − p̂(x)‖
√

V (H(T |x)),

WhereV (·) is defined in Eq. (3).
We now turn to bound the second summand. For the rest

of the proof, we use the following easily proven lemma.

Lemma 2. For anya, b ∈ [0, 1],

|a log(a) − b log(b)| ≤ φ(a − b),

whereφ(·) is defined in Eq. (4).

From this lemma we have that

|H(T ) − Ĥ(T )| =
∣

∣

∣

∑

t

p(t) log(p(t)) − p̂(t) log(p̂(t))
∣

∣

∣

≤
∑

t

φ(p(t) − p̂(t))

=
∑

t

φ

(

∑

x

p(t|x)(p(x) − p̂(x))

)

≤
∑

t

φ
(

√

V (p(T = t|x))‖p(x) − p̂(x)‖
)

, (16)

where the last inequality is derived as in Eq. (14), by setting
a , 1

|X |
∑

x p(T = t|x).

From Eq. (15) and Eq. (16) we conclude the following
deterministic bound:

|I(X ; T )− Î(X ; T )| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(

√

V (p(T = t|x))
)

(17)

+ ‖p(x) − p̂(x)‖ ·
√

V (H(T |x)).

Turning now to|I(Y ; T )− Î(Y ; T )|, we similarly use the
inequality

|I(Y ; T )−Î(Y ; T )| ≤ |H(T |Y )−Ĥ(T |Y )|+|H(T )−Ĥ(T )|.

It remains to bound the first summand, as the second sum-
mand was already bounded above. We have

|H(T |Y ) − Ĥ(T |Y )|

=
∣

∣

∣

∑

y

(

p(y)H(T |y) − p̂(y)Ĥ(T |y)
) ∣

∣

∣

≤
∣

∣

∣

∑

y

p(y)
(

H(T |y) − Ĥ(T |y)
) ∣

∣

∣

+
∣

∣

∣

∑

y

(p(y) − p̂(y))Ĥ(T |y)
∣

∣

∣. (18)

For the first summand in this bound we have
∣

∣

∣

∑

y

p(y)
(

H(T |y) − Ĥ(T |y)
) ∣

∣

∣

≤
∣

∣

∣

∑

y

p(y)
∑

t

(p̂(t|y) log(p̂(t|y)) − p(t|y) log(p(t|y)))
∣

∣

∣

≤
∑

y

p(y)
∑

t

φ (p̂(t|y) − p(t|y))

=
∑

y

p(y)
∑

t

φ

(

∑

x

p(t|x) (p̂(x|y) − p(x|y))

)

=
∑

y

p(y)
∑

t

φ
(

‖p̂(x|y) − p(x|y)‖ ·
√

V (p(T = t|x))
)

,

where the last inequality is again derived similarly to
Eq. (14), by settinga , 1

X
∑

x p(t|x). For the second sum-
mand in Eq. (18) we have
∣

∣

∣

∑

y

(p(y)−p̂(y))Ĥ(T |y)
∣

∣

∣ ≤ ‖p(y)−p̂(y)‖·
√

V (Ĥ(T |y)).

Therefore,

|H(T |Y ) − Ĥ(T |Y )| ≤
∑

y

p(y)
∑

t

φ
(

‖p̂(x|y) − p(x|y)‖ ·
√

V (p(T = t|x))
)

+ ‖p(y) − p̂(y)‖ ·
√

V (Ĥ(T |y)). (19)

From Eq. (16) and Eq. (19) we conclude the following
deterministic bound:

|I(Y ; T )− Î(Y ; T )| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(

√

V (p(T = t|x))
)

) (20)

+
∑

y

p(y)
∑

t

φ
(

‖p̂(x|y) − p(x|y)‖ ·
√

V (p(T = t|x))
)

+ ‖p(y) − p̂(y)‖ ·
√

V (Ĥ(T |y)).

In order to transform the bounds in Eq. (17) and Eq. (20)
to bounds that do not depend onp(x), we can use concentra-
tion of measure arguments onL2 norms of random vectors,
such as the following one based on an argument in section
4.1 of (Cristianini and Shawe-Taylor, 2004): Letρ be a dis-
tribution vector of arbitrary (possible countably infinite) car-
dinality, and letρ̂ be an empirical estimation ofρ based on a
sample of sizem. Then with a probability of at least1 − δ
over the samples,

‖ρ− ρ̂‖2 ≤ 2 +
√

2 log(1/δ)√
m

. (21)

To make sure all of our uses of this result hold simul-
taneously for anyT with a probability of1 − δ, we use
Eq. (21) with δ replaced byδ/(|Y| + 2). Applying this
concentration bound to‖p(x) − p̂(x)‖, ‖p(y) − p̂(y)‖ and
‖p̂(x|y) − p(x|y)‖ in Eq. (17) and Eq. (20), and using the



union bound, we get that the following bounds hold simul-
taneously for anyT with a probability of1 − δ:

|I(X ; T )− Î(X ; T )| ≤

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (H(T |x))

m

+
∑

t

φ

(

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (p(T = t|x))

m

)

,

and

|I(Y ; T ) − Î(Y ; T )| ≤

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (Ĥ(T |y))

m

+ 2
∑

t

φ

(

(2 +
√

2 log ((|Y| + 2)/δ))

√

V (p(T = t|x))

m

)

.

To get the bounds in Thm. 2, we note that

2 +
√

2 log ((|Y| + 2)/δ) ≤
√

C log(|Y|/δ)

whereC is a small constant.
It is interesting to note that these bounds still hold in cer-

tain cases even ifX is infinite. Specifically, suppose that for
all t ∈ T , p(t|x) is some constantct for all but a finite num-
ber of elements ofX . If the definition ofV (·) is replaced
with

V (p(T = t|x)) =
∑

x

(p(T = t|x) − ct)
2,

ThenV (p(T = t|x)) is finite and the proof above remains
valid. Therefore, under these restrictive assumptions the
bound is valid and meaningful even thoughX is infinite.

6.3 Proof of Thm. 3
In this proof we apply worst-case assumptions on Thm. 2
to get a bound that does not depend onp(t|x) but only on
the cardinality ofT . The variance of any random variable
bounded in[0, 1] is at most1/4. Since 1

nV (p(T = t|x))
is the variance of the vectorp(T = t|x), we have that
V (p(T = t|x)) ≤ |X |/4 for anyp(t|x). Assume that

m ≥ C

4
log(|Y|/δ)|X |e2n2(δ), (22)

for C as in Thm. 2, then it follows that for anyp(t|x),
r

C log(|Y|/δ)V (p(T = t|x))

m
≤

r

C log(|Y|/δ)|X |

4m
≤ 1/e.

For readability, we defineV , C log(|Y|/δ)V (p(T =
t|x)). Therefore we have that

∑

t

φ

(
√

V
m

)

=
∑

t

(
√

V
m

log

(√

m

V

)

)

≤
∑

t

√
V log(

√
m) + 1/e√
m

,

where the last inequality follows from
√
V log( 1√

V ) ≤ 1/e.
Reintroducing the definition ofV and rearranging, we have

∑

t

φ

(
√

V
m

)

≤ (23)

√

C log(|Y|/δ) log(m)

(

∑

t

√

V (p(T = t|x))

)

+ 2
e |T |

2
√

m
.

To bound
∑

t

√

V (p(T = t|x)), we note that

∑

t

√

V (p(T = t|x)) ≤
∑

t

‖p(T = t|x)‖2.

Finding an upper bound for the right-hand expression is
equivalent to solving the following optimization problem

max
ai,j

∑

t

√

∑

x

a2
t,x

s.t. ∀x
∑

t

at,x = 1 , ∀t, x at,x ≥ 0.

It is easily seen that in this problem we are maximizing
a convex function over a compact convex set. It is well
known (e.g. (Rockafellar, 1970)) that the maximal values
in this case are achieved on vertices of the set. In other
words, we can limit ourselves to solutions{at,x} such that
for any x, at,x = 1t=t∗x

wheret∗x is a function ofx. Let-
ting bt =

√

|{x : t∗x = t}|, we get the following equivalent
optimization problem:

max
bt

∑

t

bt

s.t.
∑

t

b2
t = |X | , ∀t b2

t ∈ Z+

To upper bound this, we can relax the integer constraint, and
get the following problem

max
b=(b1,...,b|T |)

‖b‖1

s.t. ‖b‖2 =
√

|X | , b ∈ R
|T |,

whose optimal solution is of course
√

|X ||T | by choosing
bt =

√

|X |/|T | for all t. We can plug this bound back into
Eq. (23) to get that

∑

t

φ

(
√

C log(|Y|/δ)V (p(T = t|x))

m

)

≤
√

C log(|Y|/δ)|X ||T | log(m) + 2
e |T |

2
√

m
. (24)

To complete the proof, note thatH(T |x) andĤ(T |y) are
in [0, log(|T |)]. Therefore

V (H(T |x)) ≤ |X | log2(|T |)
4

, (25)



and

V (Ĥ(T |y)) ≤ |Y| log2(|T |)
4

, (26)

Applying Eq. (24), Eq. (25) and Eq. (26) on the bounds in
Thm. 2 generates the required result.

Finally, it is easy to show that the resulting bound is triv-
ially true for m not satisfying Eq. (22), and thus this bound
it true for anym.

6.4 Proof of Thm. 4
Throughout the proof we assume that our modelT pertains
only to values ofX, Y actually observed in the sample, and
therefore w.l.o.gp(x), p(y) > 0 for anyx ∈ X , y ∈ Y of
interest.

To prove this theorem, we will find a new upper bound
for Eq. (6), using the same notation as in Thm. 2. As a
shorthand, We denote the two summands of Eq. (6) byS1

for the first summand andS2 for the second summand, so
that we have|I(Y ; T ) − Î(Y ; T )| ≤ S1 + S2. We start by
boundingS2, and as first step will seek an upper bound for
√

V (p(T = t|x)).
By definition ofV (·) and using Bayes’ formulap(t|x) =

p(x|t)p(t)
p(x) , we have that

√

V (p(T = t|x)) = (27)

p(t)

√

√

√

√

∑

x

(

p(x|t)
p(x)

− 1

|X |
∑

x′

p(x′|t)
p(x′)

)2

.

Denoting1 = (1, . . . , 1), we have by the triangle inequal-
ity that
√

√

√

√

∑

x

(

p(x|t)
p(x)

− 1

|X |
∑

x′

p(x′|t)
p(x′)

)2

≤ ‖p(x|t)
p(x)

− 1‖2 +

√

√

√

√

∑

x

(

1 − 1

|X |
∑

x′

p(x′|t)
p(x′)

)2

= ‖p(x|t)
p(x)

− 1‖2 +
1

√

|X |

∣

∣

∣

∑

x′

(1 − p(x′|t)
p(x′)

)
∣

∣

∣

= ‖p(x|t)
p(x)

− 1‖2 +
1

√

|X |
‖p(x|t)

p(x)
− 1‖1

≤
(

1 +
1

√

|X |

)

‖p(x|t)
p(x)

− 1‖1

≤ 2

minx p(x)
‖p(x|t) − p(x)‖1 (28)

From an inequality linkingKL-divergence and theL1

norm (lemma 12.6.1 in (Cover and Thomas, 1991)), we have
that

‖p(x|t) − p(x)‖1 ≤
√

2 log(2)DKL [p(x|t)‖p(x)].

Plugging this into Eq. (28) and using Eq. (27), we get the
following bound:
√

V (p(T = t|x)) ≤ 2
√

2 log(2)

minx p(x)
p(t)

√

DKL [p(x|t)‖p(x)].

(29)

For notational convenience, let

g(m) =

√

C log(|Y|/δ)

m
· 2
√

2 log(2)

minx p(x)
,

and letdt = DKL [p(x|t)‖p(x)]. Then, using Eq. (29), we
have

S2 ≤ 2
∑

t

φ(g(m)p(t)
√

dt). (30)

At this point, let us assume that givenT , m is large
enough so thatg(m)p(t)

√
dt ≤ 1/e for anyt. We will later

see that this condition can be discarded. For suchm, we get
by definition ofφ(·) that

S2 ≤ 2
∑

t

g(m)p(t)
√

dt

(

log

(

1

g(m)

)

+ log

(

1

p(t)
√

dt

))

= 2g(m)

(

log

(

1

g(m)

)

∑

t

p(t)
√

dt

+
∑

t

pt

√

dt log

(

1

p(t)
√

dt

)

)

.

It is easily verified that for anyx > 0, x log(1/x) ≤ √
x.

Using this fact and thinking ofp(t)
√

dt as a vector indexed
by t, we have

S2 ≤ 2g(m)

(

log

(

1

g(m)

)

‖p(t)
√

dt‖1 + ‖
√

p(t)
√

dt‖1

)

.

We use the following two inequalities:

‖p(t)
√

dt‖1 ≤
√

|T |‖p(t)
√

dt‖2 ≤
√

|T |‖
√

p(t)dt‖2,

and

‖
√

p(t)
√

dt‖1 ≤
√

|T |‖
√

p(t)
√

dt‖2

=
√

|T |
√

‖p(t)
√

dt‖1 ≤ |T |3/4

√

‖
√

p(t)dt‖2,

to have

S2 ≤ 2g(m)
(

log

(

1

g(m)

)

√

|T |‖
√

p(t)dt‖2

+ |T |3/4

√

‖
√

p(t)dt‖2

)

.

Using the equality

‖
√

p(t)dt‖2 =
√

Et [DKL [p(x|t)‖p(x)]] =
√

I(X ; T ),

we reach the following bound

S2 ≤ 2g(m)
(

log

(

1

g(m)

)

√

|T |I(X ; T ) (31)

+ |T |3/4(I(X ; T ))1/4
)

.

By inserting the definition ofg(m) back into the inequality,
we get our final bound forS2,

S2 ≤
√

C log(|Y|/δ)

m

(

C1 log(m)
√

|T |I(X ; T ) (32)

+ C2|T |3/4(I(X ; T ))1/4
)

.



with C1 andC2 as constants that depend only onminxp(x).

Turning now toS1, we have to bound
√

V (Ĥ(T |y)). By
definition ofV (·), and using the triangle inequality, we have
√

V (Ĥ(T |y)) ≤
√

∑

y

(Ĥ(T |y) − Ĥ(T ))2

+

√

√

√

√

√

∑

y



Ĥ(T ) − 1

|Y|
∑

y′

Ĥ(T |y′)





2

For the second summand we have
√

√

√

√

√

∑

y



Ĥ(T ) − 1

|Y|
∑

y′

Ĥ(T |y′)





2

=
√

|Y|
∣

∣

∣Ĥ(T ) − 1

|Y|
∑

y′

Ĥ(T |y′)
∣

∣

∣

=
1

√

|Y|

∣

∣

∣

∑

y′

(Ĥ(T ) − Ĥ(T |y′))
∣

∣

∣

=
1

√

|Y|
‖Ĥ(T ) − Ĥ(T |y)‖1,

where we think ofĤ(T ) − Ĥ(T |y) as a vector ranging
over the values ofy. Therefore, we have that

√

V (Ĥ(T |y)) ≤
(

1 +
1

√

|Y|

)

‖Ĥ(T )−Ĥ(T |y)‖1. (33)

It is known thatĤ(T ) ≥ Ĥ(T |y) for anyy, since condi-
tioning cannot increase entropy. Therefore

‖Ĥ(T ) − Ĥ(T |y)‖1 ≤
∑

y

p(y)

miny p(y)

(

Ĥ(T ) − Ĥ(T |y)
)

=
1

miny p(y)

(

Ĥ(T ) −
∑

y

p(y)Ĥ(T |y)

)

=
1

miny p(y)
Î(Y ; T ) ≤ 1

miny p(y)
Î(X ; T ),

where the last inequality follows from the data processing
inequality. Substituting this into Eq. (33), and since|Y| ≥ 1,
we get

√

V (Ĥ(T |y)) ≤ 2

miny p(y)
Î(X ; T ). (34)

SettingC3 = 2
miny p(y) we thus have our bound forS1,

S1 ≤
√

C log(|Y|/δ)

m
C3Î(X ; T ).

Plugging Eq. (32) and Eq. (34) into Eq. (6) gives us the
bound in our theorem.

Lastly, recall that we derived this bound by assuming that
g(m)p(t)

√
dt ≤ 1/e for any t. We now show that the

bound can be made trivial if this condition does not hold.
If the condition does not hold, there exists at such that
g(m)p(t)

√
dt > 1/e. Since

√

I(X ; T ) =

√

∑

t

p(t)dt ≥ p(t)
√

dt

for any t, we get that
√

I(X ; T ) ≥ 1
e·g(m) . Since|T | ≥ 1

andg(m) > 0, we get that our bound in Eq. (31) is at least

2g(m)
(

log

(

1

g(m)

)

√

|T |I(X ; T ) + |T |3/4(I(X ; T ))1/4
)

≥ 2
√

|T |
(

log(1/g(m))

e
+ |T |1/4

√

g(m)

e

)

≥
√

|T | ≥ log(|T |)

Therefore if indeedg(m)p(t)
√

dt > 1/e for some t,
then the bound in the theorem is trivially true, since
I(Y ; T ), Î(Y ; T ) are both within[0, log(|T |)]. Hence the
bound in Thm. 4 holds for anym.

6.5 Proof of Thm. 5
Similar formulations of Thm. 5 can be gleaned from (Kull-
back and Leibler) and (Cover and Thomas, 1991). We
present here the full proof of our formulation for complete-
ness. Thm. 5 follows directly from the following two lem-
mas.

We denote byF(X) the set of random mappings ofX ,
and byS(Y ) the set of sufficient statistics forY .

Lemma 3. Let T be a random mapping ofX . ThenT is a
sufficient statistic forY if and only if

I(Y ; T ) = max
T ′∈F(X)

I(Y ; T ′)

Proof. First, assume thatT is a sufficient statistic forY .
For everyT ′ which is a random mapping ofX , we have the
Markov chainY −X−T ′. Therefore, by the data processing
inequality,I(Y ; X) ≥ I(Y ; T ′). In addition,X ∈ F(X).
Therefore

I(Y ; X) = max
T ′∈F(X)

I(Y ; T ′).

SinceT is a sufficient statistic,Y −T −X is also a Markov
chain, henceI(Y ; X) ≤ I(Y ; T ). It follows that

I(Y ; T ) = I(Y ; X) = max
T ′∈F(X)

I(Y ; T ′).

This completes one direction of the claim. For the other
direction, assume that

I(Y ; T ) = max
T ′∈F(X)

I(Y ; T ′).

ThenI(Y ; T ) = I(Y ; X). SinceY − X − T is a Markov
chain, it follows thatY andX are conditionally indepen-
dent givenT (see (Cover and Thomas, 1991)), henceT is a
sufficient statistic.



Lemma 4. LetT be a sufficient statistic forY . ThenT is a
minimal sufficient statistic forY if and only if

I(X ; T ) = min
T ′∈S(Y )

I(X ; T ′). (35)

Proof. First, letT be a minimal sufficient statistic, and letT ′

be some sufficient statistic. By the definition of a minimal
sufficient statistic, there is a functionf such thatT = f(T ′).
Therefore,X − T ′ − T is a Markov chain. Therefore,
I(X ; T ) ≤ I(X ; T ′). This holds for any sufficient statis-
tic T ′, hence indeed Eq. (35) holds. This completes the first
direction of the proof.

For the second direction, we show that ifT is not minimal,
then there exists a sufficient statisticV such that
I(X ; T ) > I(X ; V ), thus Eq. (35) does not hold. We will
use the Fisher-Neyman factorization theorem (Fisher, 1922)
which states thatT is a sufficient statistic forY if and only
if there exist functionshT andgT such that

∀x, y p(x|y) = hT (x)gT (T (x), y). (36)

SinceT is not minimal, there exists a sufficient statisticT ′

such thatT is not a function ofT ′. Define the equivalence
relation∼ by

t1 ∼ t2 ⇐⇒ gT (t1, y)

gT (t2, y)
is a constant function ofY ,

wheregT is a function satisfying Eq. (36) with somehT . Let
V : X → T be a function such that

∀x, V (x) ∈ {t | t ∼ T (x)} .

V is thus a function ofT . We use Fisher-Neyman’s theorem
to show thatV is a sufficient statistic: Define

hV (x) , hT (x)
gT (T (x), y)

gT (V (x), y)

gV (V (x), y) , gT (V (x), y).

Then

p(x|y) = hT (x)gT (T (x), y)

= hT (x)
gT (T (x), y)

gT (V (x), y)
gT (V (x), y)

= hV (x)gV (V (x), y).

ThereforeV has a factorization; hence it is a sufficient statis-
tic. It is left to show thatI(X ; T ) > I(X ; V ). V is a func-
tion of T ′, for let x1, x2 such thatT ′(x1) = T ′(x2), then

gT (T (x1), y)

gT (T (x2), y)
=

p(x1|y)hT (x2)

p(x2|y)hT (x1)

=
hT ′(x1)gT ′(T ′(x1), y)hT (x2)

hT (x1)gT ′(T ′(x1), y)hT ′(x2)

=
hT ′(x1)hT (x2)

hT (x1)hT ′(x2)
.

HenceT (x1) ∼ T (x2), thereforeV (x1) = V (x2) for any
x1, x2 such thatT ′(x1) = T ′(x2).

SinceX − T − V is a Markov chain, we have

I(X ; T ) =I(X ; V ) + I(X ; T | V )

≥ I(X ; V ) + I(X ; T | T ′, V )

= I(X ; V ) + I(X ; T | T ′).

sinceT is a function ofX but is not a function ofT ′, we
have thatI(X ; T | T ′) > 0. ThereforeI(X ; T ) > I(X ; V ),
hence Eq. (35) does not hold.

7 Discussion
In this paper we analyzed the information bottleneck frame-
work from a learning theoretic perspective. This frame-
work has been used successfully for finding efficient rel-
evant data representations in various applications, but this
is its first rigorous learning theoretic analysis. Despite the
fact that the information bottleneck is all about manipulat-
ing the joint input-output distribution, we show that it can
generalize quite well based on plug-in empirical estimates,
even with sample sizes much smaller than needed for reli-
able estimation of the joint distribution. In fact, it is exactly
the reliance on the joint distribution that allows us to derive
non-uniform bounds without resorting to VC-theory or sim-
ilar complexity measures common in learning theory.

Moreover, these bounds allow us to view the information
bottleneck framework in the more familiar learning theoretic
setting of a performance-complexity tradeoff. In particular,
we analyze the role of mutual information as both a com-
plexity regularization term and as a bound on the classifi-
cation error for common supervised applications, such as
document classification. This provides a theoretical justi-
fication for many applications of interest, and in fact charac-
terizes the learning scenarios for which this method is best
suited for. Finally, we discuss how this framework extends
the classical statistical concept of minimal sufficient statis-
tics.

Although we have focused here on a setting involving two
discrete variables, our results may also be relevant for a more
complete learning theoretic analysis of information theoretic
based algorithms.
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