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Abstract

We provide a description of generalized default logic as
a unified formalism for nonmonotonic reasoning. Spe-
cial attention will be paid to the role of the monotonic
logic underlying default reasoning, as well as to the
representation opportunities created by the use of as-
sumptions (justifications) in the heads of default rules.
On the other hand, it will be shown that even the gener-
alized default logic can be simplified to a formal system
that involves only monotonic rules and default assump-
tions.

1 Introduction
Default logic is now an almost thirty years old, so it
is a good opportunity to review the present status of
its development and try to understand its role in the
general field of nonmonotonic reasoning.

Default logic has been born as just one of a number of
alternative formalizations of nonmonotonic reasoning.
In the course of its development, however, it has become
increasingly clear that default logic occupies a special
place in nonmonotonic reasoning, both with respect to
its representation capabilities, and in its relations to
other nonmonotonic formalisms.

The main objective of this study consists in confirm-
ing and elaborating the claim that default logic can
serve as a general formalism for nonmonotonic reason-
ing, sufficient to deal with the majority of the tasks and
problems posed to the latter by AI.

The plan of the paper is as follows. First, we de-
scribe a powerful generalization of the original, Reiter’s
default logic to disjunctive default rules that may con-
tain, in addition, justifications in heads. Essentially,
this generalization has been suggested first in (Lin &
Shoham 1992; Lifschitz 1994) in a modal framework,
and it subsumes disjunctive default logic of (Gelfond et
al. 1991). Next, we will describe the formalism of de-
fault biconsequence relations that constitutes the log-
ical basis of this generalized default logic. The latter
will help us in showing, in particular, that both the
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autoepistemic logic (Moore 1985) and production and
causal inference from (Bochman 2004) are subsumed
by the latter. In both cases the differences between
these formalisms and default logic are reducible to dif-
ferences in the underlying logic. Finally, we will show
that the generalized default logic is equivalent in expres-
sive capabilities to the disjunctive default logic. Fur-
thermore, both are reducible to a simplified formalism
that contains only monotonic rules and default assump-
tions (aka supernormal defaults). This latter reduction
will demonstrate also that default logic subsumes, in a
sense, the general assumption-based formalism for non-
monotonic reasoning suggested in (Bondarenko et al.
1997).

2 Default Logic Generalized

Originally (see (Reiter 1980)) default theory was de-
fined as a pair (W,D), where W is a set classical propo-
sitions (the axioms), and D a set of default rules of the
form A : b/C, where A,C are propositions and b a finite
set of propositions. Very informally, a rule A : b/C was
intended to state something like: ‘if A is believed, and
each B ∈ b can be consistently believed, then C should
be believed’.

Extensions of a default theory were defined by a fixed
point construction: for a set u of propositions, let Γ(u)
be the least deductively closed set that includes W and
satisfies the following condition:

• If A : b/C, A ∈ Γ(u) and ¬B /∈ u, for any B ∈ b,
then C ∈ Γ(u).

Then a set s is an extension of the default theory if
and only if Γ(s) = s.

As can be seen, default claims are represented in de-
fault logic as inference rules affecting our beliefs. In this
respect, Reiter’s default logic has been largely inspired
by the need to provide logical foundations for the pro-
cedural approach to nonmonotonicity found in deduc-
tive databases, logic programming and Doyle’s truth
maintenance. This representation avoids some of the
problems arising with formula-based interpretations of
defaults (such as contraposition of default claims). On
the other hand, this representation makes default logic
an inherently epistemic formalism. Namely, it primarily



describes our beliefs and knowledge, unlike the exten-
sional classical logic normally used for a direct repre-
sentation of objective facts about the world. This epis-
temic understanding can be clearly discerned from the
original description given in (Reiter 1980). For exam-
ple, the very notation initially used by Reiter, namely
A:MB1, . . . ,MBn/C, involved a rudimentary modal
operator M employed for designating justifications. It
was dropped later as syntactically unnecessary, though
without changing the original understanding.

(Marek & Truszczyński 1989) have suggested a more
logical description of default logic using the notion of
a context-depended proof as a way of formalizing Re-
iter’s operator Γ. This representation has been devel-
oped in (Marek, Nerode, & Remmel 1990) to a general
theory of nonmonotonic rule systems (see also (Marek
& Truszczyński 1993)).

Given a set s of propositions (the ‘context’), let us
consider the set D(s) of all propositions that are deriv-
able from W using the classical entailment and the fol-
lowing ordinary inference rules:

{A ` C | A : b/C ∈ D & ¬B /∈ s, for any B ∈ b}.

Then s is an extension of the default theory if and
only if s = D(s).

The above representation makes it vivid that a large
part of reasoning in default logic involves ordinary rule-
based inference, the only distinction from traditional in-
ference systems being that the very set of rules allowed
in the inference process is determined by the (assump-
tions made in the) context.

An important generalization of default logic has been
proposed in (Gelfond et al. 1991), guided by the need
to provide a logical basis for disjunctive logic program-
ming, as well as more perspicuous ways of handling dis-
junctive information. A disjunctive default theory is
a set of disjunctive defaults, rules of the form a : b/c,
where a, b, c are finite sets of formulas1. An informal
meaning of such rules is ‘If all propositions from a are
believed, and each B ∈ b can be consistently believed,
then at least one proposition from c should be believed’.

Disjunctive default rules is actually a generalization
of monotonic disjunctive rules a ` b, where a and b are
sets of propositions. A set u of propositions is said to
be closed with respect to a set R of disjunctive rules
when, for any rule a ` b from R, if a ⊆ u, then b ∩ u 6=
∅. This generalized notion of deductive closure turns
out to be a key to defining extensions of a disjunctive
default theory.

For a set s of propositions, let D(s) denote the set of
all minimal deductively closed theories that are closed
also with respect to the following monotonic disjunctive
rules:

{a ` c | a : b/c ∈ D & ¬B /∈ s, for any B ∈ b}.

1This representation exploits the fact that the axioms
W of a default theory are representable as rules of the form
t : ∅/A.

Then s is said to be an extension of a disjunctive
default theory if s ∈ D(s).

A final generalization of interest for our present study
has been suggested in (Lifschitz 1994; Lin & Shoham
1992) in a modal framework with two modal operators
in an attempt to construct a unified formalism for non-
monotonic reasoning and logic programming. It has
been shown in (Bochman 1995), however, that this for-
malism can be expressed in a purely non-modal setting
by using rules of the form a : b/c : d, where a, b, c, d are
sets of classical propositions. Such rules could be read
as follows:

If all propositions from a are believed, and each
proposition from b can be consistently believed, then
at least one proposition from c should be believed,
or else at least one proposition from d can be con-
sistently believed’.

Thus, compared with the preceding generalization
to disjunctive default rules, the new default rules are
disjunctive rules that may involve justifications also in
their heads.

Below, for a set u of propositions, ¬u will denote
the set {¬A | A ∈ u}. Then, in full analogy with the
preceding constructions, the corresponding generalized
default logic can be described as follows.

Definition 2.1. A generalized default theory is a set
of rules a : b/c : d, where a, b, c, d are sets of classical
propositions.

For a set s of propositions, let D(s) denote the set of
minimal deductively closed theories that are closed also
with respect to the rules

{a ` c | a : b/c : d ∈ D & ¬b ∩ s = ∅ & ¬d ⊆ s.}

Then s is an extension of a generalized default theory
if s ∈ D(s).

An important feature of extensions of generalized de-
fault theories is that they already need not be minimal,
so one extension may be a proper subset of another
extension.

In effect, it has been shown already in (Lin & Shoham
1992) that an autoepistemic logic is representable in
this formalism by using rules with justifications in
heads. In addition, it has been suggested in (Lifschitz
& Woo 1992) that generalized rules of this kind might
be useful also in logic programming. And indeed, it has
been shown in (Inoue & Sakama 1998) that program
rules of the form

A,notA←
provide a faithful description of abducibles, so they can
be used for a formal representation of abductive logic
programming.

In what follows, we will show that both the autoepis-
temic logic and a more recent causal calculus (McCain
& Turner 1997a; Turner 1999), are subsumed by the
generalized default logic. In both cases, the general-
ization to default rules involving justifications in heads



will turn out to be essential for an adequate represen-
tation. But first we will consider the underlying local
basis of this default logic.

3 The Logic of Default Logic
A logical account of generalized default logic can be
given in the framework of biconsequence relations. Bi-
consequence relations (see (Bochman 1998)) are special-
ized consequence relations for reasoning with respect to
a pair of contexts. On the interpretation suitable for
nonmonotonic reasoning, the first of these two contexts
is the main (objective) one, while the other context pro-
vides assumptions that justify inferences in the main
context. This separation of inferences and their justifi-
cations creates a framework for nonmonotonic reason-
ing.

A bisequent is an inference rule of the form a : b 
 c :
d, where a, b, c, d are finite sets of propositions. An in-
formal reading of such rules appropriate for our present
purposes is as follows:

If no proposition from b is assumed, and all propo-
sitions from d are assumed, then all propositions
from a hold only if one of the propositions from c
holds.

As can be seen from the above description, the mean-
ing of bisequents is slightly different from the informal
interpretation of generalized default rules a:b/c:d given
at the end of the preceding section. The reason for
the difference is that bisequents allow for a more sim-
ple and transparent description of the associated logical
system. Still, the correspondence between generalized
default rules and bisequents is straightforward; namely,
default rules a : b/c : d are representable by bisequents
of the form a : ¬b 
 c : ¬d.

A biconsequence relation is a set of bisequents satis-
fying the rules:

Monotonicity If a ⊆ a′, b ⊆ b′, c ⊆ c′, d ⊆ d′, then

a : b 
 c : d
a′ : b′ 
 c′ : d′

Reflexivity A : 
 A : and : A 
 : A;

Cut
a : b 
 A, c : d A, a : b 
 c : d

a : b 
 c : d

a : b 
 c : A, d a : A, b 
 c : d
a : b 
 c : d

.

For a set u of propositions, u will denote the set of
propositions that do not belong to u. A pair (u, v)
of sets of propositions will be called a bitheory of a
biconsequence relation if u : v 1 u : v. A set u of
propositions is a theory of 
, if (u, u) is a bitheory of

.

Bitheories can be seen as pairs of sets that are closed
with respect to the bisequents of a biconsequence re-
lation. A bitheory (u, v) of 
 is positively minimal,
if there is no bitheory (u′, v) of 
 such that u′ ⊂ u.

Such bitheories play an important role in describing
nonmonotonic semantics.

By a bimodel we will mean a pair of sets of proposi-
tions. A set of bimodels will be called a binary seman-
tics.
Definition 3.1. A bisequent a : b 
 c : d is valid in a
binary semantics B, if, for any (u, v) ∈ B, if a ⊆ u and
b ⊆ v, then either c ∩ u 6= ∅, or d ∩ v 6= ∅.

The set of bisequents that are valid in a binary se-
mantics forms a biconsequence relation. On the other
hand, any biconsequence relation 
 is determined in
this sense by its canonical semantics defined as the set
of bitheories of 
. Consequently, the binary semantics
provides an adequate interpretation of biconsequence
relations.

The nonmonotonic semantics of extensions for bicon-
sequence relations is defined as follows:
Definition 3.2. A set u is an extension of a bicon-
sequence relation 
, if (u, u) is a positively minimal
bitheory of 
.

The above descriptions of biconsequence relations
and the semantics of extensions are purely structural,
so they are still not sufficient for capturing reasoning
in default logic. To this end, we should ‘upgrade’ the
formalism to a logical system that subsumes classical
entailment.

An epistemic understanding of biconsequence rela-
tions is naturally obtained by treating the objective
and assumption contexts, respectively, as the contexts
of knowledge and belief. In other words, propositions
that hold in the objective context can be viewed as
known, while propositions belonging to the assumption
context can be seen as forming the set of associated
beliefs. Accordingly, both the objective and assump-
tion contexts of bimodels will correspond in this case
to deductively closed theories.

Supraclassical biconsequence relations, defined be-
low, are biconsequence relations in a classical language
such that both its component contexts respect classical
entailment.
Definition 3.3. A biconsequence relation in a classical
language will be called supraclassical, if it satisfies

Supraclassicality
a � A
a : 
 A :

a � A
: A 
 : a

Falsity f : 
 and 
 : f .
The most important consequence of Supraclassical-

ity is the possibility of replacement of classically equiv-
alent formulas in bisequents. In addition, it allows us
to replace sets of objective premises and assumption
sets in conclusions by their conjunctions, but objec-
tive conclusion sets and assumption sets in premises are
not replaceable in this way by their classical disjunc-
tions. Speaking more generally, supraclassical biconse-
quence relations are only supra-classical, which means,
in particular, that the deduction theorem, contraposi-
tion, and disjunction in the antecedent are not valid, in



general, for each of the two contexts. In addition, the
conditions of Falsity impose a restriction to classically
consistent theories2.

A logical semantics of supraclassical biconsequence
relations can be obtained from the general binary se-
mantics by requiring that bimodels are pairs of consis-
tent deductively closed sets. Such bimodels and seman-
tics are called classical. Then we have (see (Bochman
2005))
Proposition 3.1. A biconsequence relation is supra-
classical if and only if it has a classical binary seman-
tics.

Recall that default rules a : b/c : d are translated
as bisequents a:¬b 
 c:¬d. Now, for a generalized de-
fault theory D, 
D will denote the least supraclassical
biconsequence relation that includes bisequents corre-
sponding to the rules of D. Then the following result
shows that biconsequence relations provide an adequate
logical framework for default reasoning.
Theorem 3.2. Extensions of a generalized default the-
ory D coincide with extensions of 
D.

The above representation theorem implies, in par-
ticular, that all the postulates of a supraclassical bi-
consequence relation are valid logical rules for default
reasoning. The latter rules still do not constitute, how-
ever, a maximal logic underlying such a reasoning. Such
a maximal logic can be defined as follows.
Definition 3.4. A default biconsequence relation is a
supraclassical biconsequence relation that satisfies the
following structural rules:
Consistency A : A 

Regularity If b : a 
 a : b, then : a 
 : b.

Consistency correspond to the semantic requirement
that u ⊆ v, for any bimodel (u, v), while regularity re-
stricts the classical binary semantics to a quasi-reflexive
semantics in which, for any bimodel (u, v), (v, v) is also
a bimodel.

It turns out that the above defined default biconse-
quence relations constitute a maximal logic adequate
for the generalized default logic. This fact can be
demonstrated by showing that equivalence with respect
to default biconsequence relations coincides with the
strong equivalence for default theories.
Definition 3.5. Default theories D1 and D2 will be
called strongly equivalent, if, for any set D of default
rules, D1 ∪D has the same extensions as D2 ∪D.

Originally, the notion of strong equivalence has been
suggested in logic programming (see (Lifschitz, Pearce,
& Valverde 2001)), but it turns out to have general
significance. Strong equivalence is already a logical no-
tion, since strongly equivalent theories are interchange-
able in any larger theory without changing the associ-
ated semantics. And indeed the following result shows

2A fortiori, inconsistent extensions will be excluded from
consideration.

that strong equivalence amounts to logical equivalence
equivalence with respect to default biconsequence rela-
tions.
Theorem 3.3. Default theories are strongly equivalent
if and only if they determine the same default biconse-
quence relation.

In other words, default theories D1 and D2 are
strongly equivalent if and only if each rule of D2 is
derivable from D1 using the postulates of default bi-
consequence relation, and vice versa.

It is interesting to note that default biconsequence
relations allow us to provide the following simplified
description of extensions.
Proposition 3.4. A set u is an extension of a default
biconsequence relation 
 if and only if

u = {A
∣∣ : u 
 A : u}.

By the above description, an extension can be seen
as a set of formulas that are provable on the basis of
taking precisely itself as the set of assumptions. This
description demonstrates, in particular, that general-
ized default logic is based essentially on the same ideas
as the original Reiter’s logic.

3.1 Saturation and autoepistemic logic
(Marek & Truszczyński 1989) introduced the notion
of a weak extension of a default theory as a default
counterpart of stable expansions in autoepistemic logic
and models of Clark’s completion in logic programming.
Weak extensions of a default theory (W,D) can be de-
fined as fixed points of a modified operator. For a set
s of propositions, let Γw(s) be the least deductively
closed set that includes W and satisfies the following
condition:
• If A : b/C ∈ D, A ∈ s and ¬B /∈ s, for any B ∈ b,

then C ∈ Γw(s).
Then a set s is a weak extension of the default theory

if Γw(s) = s.
It can be shown indeed that (under a suitable transla-

tion), the above notion of a weak extension corresponds
precisely to the notion of expansion in autoepistemic
logic (Moore 1985). In this sense, the autoepistemic
logic can be defined formally in a non-modal framework
of Reiter’s default rules by changing the associated non-
monotonic semantics. Unfortunately, this change in the
nonmonotonic semantics is implicitly based on a more
substantial change in the meaning of the default rules
themselves. It should be clear that deliberations of this
kind cannot even be stated precisely without consider-
ing the underlying logic of default reasoning. And in-
deed, it has been shown in (Bochman 1994) that both
default and autoepistemic logic are definable in a single
logical framework of default consequence relations by
alternating the underlying logic of default rules. More-
over, it has been shown that the respective alternative
underlying logics are incompatible on pain of trivializa-
tion.



In contrast to the above results (and in accordance
with (Lin & Shoham 1992)), it can be shown that the
autoepistemic logic is actually subsumed by the gener-
alized default logic while preserving a single meaning of
(generalized) default rules.

To begin with, it has been shown in (Bochman 2005)
that the following nonmonotonic semantics for biconse-
quence relations constitutes an exact non-modal coun-
terpart of Moore’s autoepistemic logic.

As a preparation, note that any deductively closed
theory u always contains maximal deductive sub-
theories; such sub-theories are representable as sets
u ∩ α, where α is a world (maximal deductive theory).
Now, for a deductively closet set u, let u⊥ denote the
set of all maximal sub-theories of u, plus u itself.
Definition 3.6. A theory u of a supraclassical bicon-
sequence relation 
 is a classical expansion of 
, if, for
any v ∈ u⊥ such that v 6= u, the pair (v, u) is not a
bitheory of 
. The set of classical expansions deter-
mines the autoepistemic semantics of 
.

It follows directly from the respective definitions of
extensions and expansions that any extension of a supr-
aclassical biconsequence relation will be a classical ex-
pansion, though not vice versa. Still, it can be shown
that expansions are precisely extensions of biconse-
quence relations under a stronger underlying logic de-
scribed in the following definition.
Definition 3.7. A default biconsequence relation will
be called saturated, if it satisfies the following postulate:
Saturation 
 A ∨B,¬A ∨B : B.

The the next definition provides a semantic descrip-
tion of Saturation.
Definition 3.8. A bimodel (u, v) will be called satu-
rated, if u ∈ v⊥. A classical binary semantics B will be
called saturated if its bimodels are saturated.

According to the above definition, a bimodel (u, v)
is saturated, if u either coincides with v, or is a max-
imal theory included in v. The next result establishes
completeness of saturated biconsequence relations with
respect to the saturated binary semantics.
Proposition 3.5. A biconsequence relation is satu-
rated if and only if it has a saturated binary semantics.

Now, it can be shown that the postulates of saturated
biconsequence relations preserve expansions, so they are
admissible for the autoepistemic semantics. Moreover,
the next result shows that, for such biconsequence re-
lations, expansions actually collapse to extensions.
Proposition 3.6. Classical expansions of a saturated
biconsequence relation coincide with its extensions.

Actually, the next result shows that saturated bicon-
sequence relations constitute a maximal logic for the
autoepistemic semantics.
Theorem 3.7. Two generalized default theories are
strongly equivalent with respect to the autoepistemic se-
mantics if and only if they determine the same saturated
biconsequence relation.

Our final result here states an important sufficient
condition for coincidence of expansions and extensions
of a default theory.

A generalized default theory D will be called posi-
tively simple, if objective premises and conclusions of
any rule from D are sets of classical literals. Then we
have3

Theorem 3.8. Expansions of a positively simple de-
fault theory coincide with its extensions.

Bisequents a:b 
 c:d such that a, b, c, d are sets of
classical literals, are logical counterparts of program
rules of extended logic programs with classical negation
(see (Gelfond & Lifschitz 1991; Lifschitz & Woo 1992)).
The semantics of such programs is determined by an-
swer sets that coincide with extensions of respective
bisequent theories. Moreover, such bisequent theories
are positively simple, so by Theorem 3.8 extended logic
programs obliterate the distinction between extensions
and expansions. This is the logical basis for a possi-
bility of representing extended logic programs also in
autoepistemic logic.

3.2 Causal biconsequence relations and
causal logic

Production and causal inference relations have been in-
troduced in (Bochman 2003) as a logical formalization
of reasoning in causal theories of action and change
(McCain & Turner 1997a). Such inference relations are
based on conditionals of the form A⇒B saying ‘A ex-
plains B’.
Definition 3.9. A (regular) production inference rela-
tion is a binary relation⇒ on the set of classical propo-
sitions satisfying the following postulates:
(Strengthening) If A � B andB⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

From a logical point of view, the most significant
‘omission’ of the above set of postulates is the absence
of reflexivity A⇒A. It is this feature that creates a
possibility of nonmonotonic reasoning.

Production rules are extended to rules with sets of
propositions in premises as follows: for a set u of propo-
sitions,

u⇒A ≡
∧
a⇒A, for some finite a ⊆ u.

Let C(u) denote the set {A | u⇒A}. The operator
C is monotonic and continuous, and it plays the same
role as the usual derivability operator for consequence
relations. However, this operator is not reflexive, which
creates an important distinction among theories of a
production relation.

3The origins of this result are in the Main Lemma from
(Lifschitz & Schwarz 1993).



Definition 3.10. A nonmonotonic semantics of a pro-
duction inference relation is the set of all its exact theo-
ries, namely sets u of propositions such that u = C(u).

An exact theory describes an informational state in
which every proposition is explained by other propo-
sitions accepted in this state. Accordingly, restricting
our universe of discourse to exact theories amounts to
imposing a kind of an explanatory closure assumption
on intended models.

It turns out that rules A⇒B are representable as
bisequents 
 B : A of a biconsequence relation. More
precisely, let us define the production subrelation ⇒

of a biconsequence relation 
 as the following set of
production rules:

{A⇒B |
 B : A}.

Then we have the following embedding:
Lemma 3.9. ⇒ is a production inference relation if
and only if it is a production subrelation of some default
biconsequence relation.

The above correspondence can be extended to the
correspondence between the associated nonmonotonic
semantics. Namely, exact theories of a production in-
ference relation coincide with the extensions of the asso-
ciated biconsequence relation. Note, however, that bi-
consequence relations are not determined uniquely by
their production subrelations, and hence constitute a
more general logical formalism.

An especially interesting class of production inference
relations is formed by causal inference relations defined
as follows:
Definition 3.11. A production inference relation is
causal if it satisfies
(Or) If A⇒C and B⇒C, then A ∨B⇒C.

The rule Or sanctions reasoning by cases, and hence
causal inference relations can be seen as systems of rea-
soning about complete worlds. Moreover, production
rules of a causal inference relation can already be inter-
preted as truly causal rules, since they provide a nat-
ural representation of ordinary causal assertions. Also,
the nonmonotonic semantics of such inference relations
provide an exact formalization of reasoning in causal
theories of action and change.

We will define now a class of biconsequence relations
related to causal inference.
Definition 3.12. A default biconsequence relation will
be called causal if it satisfies
(Negative Completeness) : A,¬A 
.

Negative Completeness restricts the assumption con-
texts to worlds, and hence a semantic representation of
causal biconsequence relations can be given in terms of
bimodels of the form (u, α), where α is a world. This
implies, in particular, that any theory of a causal bi-
consequence relation should be a world.

Causal biconsequence relations satisfy all the rules
and conditions for classical inference with respect to

the assumption context of bisequents. In particular, we
have the following reduction that eliminates negative
conclusions in bisequents:

a : b 
 c : d ≡ a :
∧
d→

∨
b 
 c : .

It can be shown that causal biconsequence relations
constitute an exact non-modal counterpart of Turner’s
logic of universal causation (UCL) from (Turner 1999).

The next result shows that any causal biconsequence
relation generates a causal inference relation.
Lemma 3.10. ⇒ is a causal inference relation iff it is
a production subrelation of some causal biconsequence
relation.

The above embedding demonstrates that the formal-
ism of supraclassical biconsequence relations subsumes
causal inference as a special case. This correspondence
can also be extended to the associated nonmonotonic
semantics. Note in this respect that the above elimi-
nation of negative conclusions implies that causal rules
A⇒B are representable also by bisequents : ¬A 
 B :,
which correspond to ordinary prerequisite-free default
rules of the form : A/B. The latter representation of
causal theories in default logic can be found already in
(McCain & Turner 1997b).

Finally, it can be shown that causal biconsequence re-
lations constitute a maximal underlying logic for com-
plete extensions. This is a syntactic counterpart of the
semantic characterization of strong equivalence of UCL
theories, given in (Turner 2004).

4 Default Logic Simplified
It has been shown above that generalized default logic
subsumes many other nonmonotonic formalisms. More-
over, generalized default rules containing justifications
in heads have played an important role in the repre-
sentation of these formalisms. This makes still more
surprising the reduction result we present in this sec-
tion, which shows, in particular, that justifications in
head of default rules can be eliminated. Furthermore,
the result will show that default logic in its full general-
ity is reducible to a quite simple and extremely natural
formalism that involves only monotonic rules and as-
sumptions.

To simplify the notation, the monotonic rules a:/c:
having no justifications neither in bodies nor in heads
will be written below as ordinary inference rules a/c.
Definition 4.1. A generalized default theory will be
called simple if it includes only rules of the following
two kinds:
• Monotonic rules a/c;
• Supernormal defaults :A/A

We will describe now a translation of arbitrary de-
fault theories to simple ones. To begin with, we will
extend the source propositional language L with new
propositional atoms A◦, for any classical proposition A
in L. For a set u of propositions from L, u◦ will denote
the set of new atoms {A◦ | A ∈ u}.



Next, if D is a default theory in L, then D◦ will de-
note the following set of rules in the extended language:

{a, b◦/c, d◦ | a : b/c : d ∈ D} (1)

plus the following rules for any formula A from L that
appears as a justification in the rules from D:

¬A/¬A◦ and : A◦/A◦ (2)

To begin with, it can be easily seen that the above
translation is polynomial and modular. Moreover, the
following theorem shows that this translation is also
faithful, so it is actually a PFM translation in the sense
of (Janhunen 1999).

Theorem 4.1. A set u is an extension of D if and
only if there is a unique extension u0 of D◦ such that
u = u0 ∩ L.

As many other essential results in nonmonotonic rea-
soning, the above theorem is also not completely new
and has numerous precedents.

• From a technical side, the proof of the above result
generalizes the proof of the corresponding result for
disjunctive logic programs with negations in heads
given in (Janhunen 2001).

• The first expression of this kind of reduction can
be discerned from the representation of Reiter’s de-
fault logic in terms of argument systems suggested in
(Lin & Shoham 1989). In this representation, default
rules A:B1, . . . , Bn/C were represented as monotonic
rules A,¬ab(B1), . . . ,¬ab(Bn)/C. In addition, an ar-
gument system was required to contain monotonic
rules of the form ¬A/ab(A), plus nonmonotonic rules
t⇒¬ab(B), the latter rules having the same func-
tionality as supernormal defaults :¬ab(B)/ab(B). As
can be seen, for the case of Reiter’s default logic our
translation is just a notational variant of this repre-
sentation.

• A further development of the argumentation ap-
proach to nonmonotonic reasoning has led to a gen-
eral assumption-based framework for default reason-
ing suggested in (Bondarenko et al. 1997). The lat-
ter framework includes a deductive system of ordi-
nary monotonic rules, a distinguished set of propo-
sitions called assumptions, and a mapping from as-
sumptions to the set of all propositions of the lan-
guage that determines the contrary of any assump-
tion A. The authors have been able to demon-
strate that default logic, as well as a number of
other nonmonotonic formalisms, are expressible in
this framework. In particular, the representation
of default logic was based again on representing
default rules A:B1, . . . , Bn/C as monotonic rules
A,MB1, . . . ,MBn/C, where propositions of the form
MB were taken to be the assumptions, and ¬B was
considered a contrary to the assumption MB.
The above assumption-based representation is clearly
similar to our translation to simple default theories.

But in a sense, our reduction complements these rep-
resentation results by showing that default logic is
actually equivalent to such an assumption-based non-
monotonic framework.

5 Conclusions

It goes without saying that the ultimate aim of non-
monotonic formalisms consists in providing computa-
tional tools for solving the actual problems arising in
Artificial Intelligence. Nevertheless, as in many other
areas of scientific research, it should also be clear that
our formalisms will have a chance to fulfil this aim only
to the extent they will manage to provide an adequate,
concise and versatile framework for representing such
problems. In this sense, default logic can primarily
be viewed as a framework for representing defeasible
knowledge. The growing body of results on this sub-
ject indicates that default logic constitutes, ultimately,
a proper unified framework for this task.

It is also well known that default logic is a computa-
tionally difficult formalism. It seems, however, that (as
in any other honest business) this happens because we
have to pay for the ability to handle and act on the basis
of additional, defeasible knowledge that is not available
in ordinary logical reasoning. This implies that the rep-
resentation problems of nonmonotonic reasoning should
to some reasonable extent be separated from the com-
putability questions. In other words, we should know
what ought to be expressed, or represented, even before
we know how it could be computed. It seems to us that
there should be no difference here between the theory
of nonmonotonic reasoning and Logic in general.
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