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Abstract

The iterates Tt
P (I) of the one-step consequence op-

erator TP of a finite or infinite propositional normal
logic program P applied to Herbrand interpretation
I constitute a function t 7→ Tt

P (I) from natural
numbers to Herbrand interpretations. Without loss
of generality, altering clause

p← q1, . . . qm,¬r1, . . . ¬rn

of P to

dp

dt
= p⊕ (q1, . . . qm,¬r1, . . . ¬rn)

amounts to regarding P as a system of first-order
differential equations, where the mapping t 7→
Tt

P (I) is a projection of the flow of the system
with initial condition t0 7→ I . The aim of this
shift in viewpoint is to seamlessly combine logic
program clauses with conventional first-order or-
dinary differential equations involving e.g. real-
valued functions of a real variable. This is rigor-
ously enabled by differentiation of functions that
are morphisms in the category CONV of conver-
gence spaces. The form of differentiation we de-
scribe is a conservative extension of differentia-
tion of functions between familiar spaces associ-
ated with ordinary analysis. In particular, we can
integrate logic programs over continuous time. In
that case, stable models semantics provides the nat-
ural means to have an ordinary normal program be
equivalent to its differential version.

1 Introduction
In prior work () the authors conservatively ex-
tended differentiation of functions arising in ordi-
nary analysis, to differentiation of functions in the
Cartesian-closed category of convergence spaces,

Copyright c© 2007, H.A. Blair, D.W. Jakel, R.J.Irwin,
A.J.Rivera. All rights reserved.

CONV. Our purpose here is to apply the differenti-
ation notion in CONV to seamlessly combine nor-
mal logic programs with ordinary differential equa-
tions to obtain hybrid programs.

By the idea of conservative extension we mean
that differentiation is not altered for functions be-
tween the familiar spaces of ordinary analysis such
as Euclidean vector spaces over the real numbers
and Hilbert spaces over the complex numbers. The
chain rule for differentiation in CONV holds: if

f : X −→ Y and g : Y −→ Z

and df is a differential (not derivative) of f at x0

and and dg is a differential of g at f(x0), then
dg ◦ df is a differential of g ◦ f at x0. It follows,
for example, that if X = Y = R, where R is the
set of real numbers, then dg ◦ df is a conventional
differential of a function on R at real number x0,
even if Y is some bizarre discrete/continuous hy-
brid convergence space. The notion of differential
for functions on R has not been altered.

Convergence spaces include all topological
spaces, and all reflexive directed graphs. The lat-
ter have multiple representations as convergence
spaces. The morphisms of the category CONV are
continuous functions between convergence spaces.
The CONV notion of continuity is itself a conser-
vative extension of the topological notion of conti-
nuity: If f : X −→ Y is continuous in the CONV
sense, and X and Y are topological spaces, then
f : X −→ Y is continuous in the topological
sense, and conversely. The topological notion of
continuity remains unaltered. In the case of all of
the representations of reflexive directed graphs that
we consider, CONV-continuity conservatively ex-
tends graph-homomorphism.

A word about derivatives: The derivative of a
function at a point is a differential. For example,
the derivative of λx . x2 at 1 is λx . 2x, the linear
function with slope 2. The derivative of a function
f on a subset of the function’s domain is another



function that maps each point x of the subset to the
derivative of f at x. The point is that derivatives
are differential-valued. In the case of E1, the real
numbers with the standard Euclidean topology, the
space of linear functions, i.e. the space of differ-
entials, is taken with a topology making it homeo-
morphic to E1. For situations where no such home-
omorphism is available, we expect the codomain of
a derivative of f to be different from the codomain
of f . This is evident already with 2-dimensional
vector spaces over the reals in ordinary analysis.

Plan of the paper: In the next section we discuss
prior related work. In section 3 we introduce the
syntax of hybrid programs. In section 4 we draw
upon our earlier work in order to present enough
about differentiation in CONV to provide a rigor-
ous foundation for hybrid programs. In section 5
we discuss stable models for syntactically ordinary
normal logic programs but integrated over continu-
ous time.

2 Prior related work
There is a beautiful paper including a brief but
powerful tutorial on convergence spaces due to R.
Heckmann (Heckmann 2003). We highly recom-
mend this paper.

The importance of the Cartesian-closed category
of convergence spaces and continuous maps was
introduced in (Kent 1964). Over time, a num-
ber of researchers have sought to generalize dif-
ferentiability to spaces where the generalization
is non-obvious. Some of the more serious and
sophisticated results in this direction have em-
ployed one or another restriction of the notion of
convergence space, often near to pre-topological
spaces, or else stayed within TOP (Arens 1946;
Averbukh & Smolyanov 1968; Binz 1966; Binz
& Keller 1966; Fox 1945; Frölicher & Bucher
1966; Keller 1974; Kriegl 1983; Marinescu 1963;
Michal 1938). These explorations assumed the ex-
istence of additional structure characterizing linear-
ity. (Kriegl 1983) recognized the importance of
Cartesian-closure for obtaining a robust chain-rule.

(Choquet 1947) studied what are now known
as pretopological spaces. It is evident that ev-
ery topological space is a pretopological space (cf.
(Choquet 1947; Bourbaki textbf858 1940 textbf916
1942 textbf1029 1947 textbf1045 1948 textbf1084
1949; Kelley 1955)). and that the convergence
space notion of continuity is a conservative exten-
sion of the topological space notion of continuity.
(Bordaud 1979) proved that a certain 3-point pre-
topological space is universal for all pretopological
spaces.

The convergence structure of function spaces
that provides for the Cartesian closure of CONV
is traceable to (Katĕtov 1965).

Boolean derivatives (Reed 1954; Akers Jr. 1959;
Vichniac 1990) are a specific special case of differ-
entiation in the category CONV.

The earliest traces in the direction of conver-
gence spaces that we are aware of are due to
Hausdorff, (Hausdorff 1935) and Bertrand Russell.
Hausdorff studied spaces he called Gestufte Räume
- a term rife with allusions to art deco interiors of
restaurants and night clubs of the era. This was
preceded by an effort of Bertrand Russell (Russell
1919) in which he attempted to characterize conti-
nuity purely in terms of intervals within relations.

Bill Rounds and Hosung Song (Reidys & Stadler
2003) developed Hybrid Pi-Calculus, which in-
formed the notion of hybrid program presented
here.

For basic notions and fundamental results
concerning logic programs and stable models
the reader is referred to Nonmonotonic Logic
by Wiktor Marek and Miroslaw Truszczynski
(V. W. Marek 1993).

3 Hybrid programs
In this section we begin with a slight variant of
ordinary normal ground logic programs that are
equivalent to ordinary ground normal logic pro-
grams, but that avoid a potential inconsistency
when programs are transformed to their differen-
tial versions. We then give the syntax of differen-
tial propositional normal logic programs, and show
how differential normal logic programs are equiv-
alent to normal logic programs. Next we add in
first-order ordinary differential equations to obtain
hybrid programs.

Let P be a finite non-ground normal logic pro-
gram, with possibly infinitely many clauses. Each
clause in P has the form

p← β

where β is a formula q1, . . . qm,¬r1, . . . ¬rn
where p, q1, . . . qm, r1, . . . rn are ground atoms,
after possibly reordering the literals of β. β is
called the body of the clause, and p is its head. p oc-
curs as the head of possibly infinitely many clauses
of P . For each atom p that occurs as the head
of some clause in P , we define, following (Clark
1978), the definition of p to be

p←
∨
{β | p← β is a clause in P}

where
∨

denotes possibly infinitary disjunction.
We will overload the term propositional normal
logic program to allow for programs whose clauses



have the form given for the definition of p. Given
a propositional normal logic program P , let def(P )
be the program that consists of clauses that are def-
initions of atoms that occur as the head of some
clause in P .

The iterates Tt
P (I) of the one-step consequence

operator TP (Lloyd 1987) of a finite or infinite
propositional normal logic program P applied to
Herbrand interpretation I constitute a function t 7→
Tt

P (I) from natural numbers to Herbrand interpre-
tations.
Proposition 3.1

Tt
P (I) = Tt

def(P )(I)

Now consider the expression

dp

dt
= γ

where p is a ground atom and γ is a possibly in-
finitary disjunction of finite conjunctions of literals.
We call the above expression a differential clause,
and extend the usage of head and body in the ob-
vious way. We call a collection of such clauses a
differential program. A solution of a differential
program is a mapping t 7→ It, where t varies over
the integers and each It is an Herbrand interpre-
tation for the language of the program, such that
at each t′, γ in It′ is the differential of It′(p), for
each ground atom p in the language of the program.
We regard an Herbrand interpretation as a mapping
from the ground atoms of the program to {f, t},
the set of truth-values. For this to make sense, we
must be able to identify the differentials of func-
tions from the integers to {f, t} with the members
of {f, t}. We will return to this problem after the
next section in which we define differentials.

Definition 3.1 Let ≤ be the reflexive relation on
{f, t} such that let f ≤ t. ≤ on {f, t} lifts pointwise
to an ordering ≤ on Herbrand interpretations.

For the present, assume we can make this iden-
tification and that if dp

dt �t=t′= f, then It′+1(p) =
It′(p), and if dp

dt �t=t′= t, then It′+1(p) 6= It′(p).
Then

Theorem 3.1 Let P be a propositional normal
logic program in which each clause head occurs
in only one clause of P . Suppose that the mapping
t 7→ Tt

P (I) is monotonic. Let Q result from P by
replacing each clause p ← γ of P with the differ-
ential program clause

dp

dt
= γ

Then,
t 7→ Tt

P (I)
is the least monotonic solution of Q such that 0 7→
I .

The restriction to least monotonic solutions in
the previous proposition arises from the conver-
gence structure on the space of the two differentials
with which the members of {f, t} are identified, cf.
the next section.

Each clause body of a differential program can
be regarded as a function from Herbrand interpre-
tations to {f, t}. An Herbrand interpretation as a
mapping from an Herbrand base to {f, t} is an ele-
ment of a Cartesian power of {f, t} indexed by the
Herbrand base, {f, t}H . Thus each clause body
is a function from a suitable Cartesian power of
{f, t} to {f, t}. For a hybrid program P we use
two kinds of clause bodies: Choose a collection of
real-valued variables Λ. The domain of each clause
body is {f, t}H ×RΛ. The first kind of clause body
maps {f, t}H×RΛ to {f, t}. The second kind maps
{f, t}H × RΛ to R. In each case we will be iden-
tifying the return values of the clause bodies with
differentials of suitable type, depending on whether
t is integer or real-valued.

4 Differentiation
We begin with a brief description of the category
CONV: A filter on a set X is a nonempty collec-
tion of subsets of X closed under finite intersec-
tion and reverse inclusion. F is a proper filter if
the empty set is not a member of F . Let Φ(X) de-
note the set of all filters on X . For a subset A of
X , {B |A ⊆ B ⊆ X } is a member of Φ(X). We
denote this filter by [A]. In the special case where
A is a singleton {x} we denote [A] by [x] and call
this the point filter at x.
Definition 4.1 (Kent 1964; Heckmann 2003) A
convergence structure on X is a relation ↓ (read
as “converges to”) between members of Φ(X) and
members of X such that for each x ∈ X: (1) [x]
converges to x, and (2) the set of filters converg-
ing to x is closed under reverse inclusion. A pair
(X, ↓) consisting of a set X and a convergence
structure ↓ on X is called a convergence space.

A function f : X −→ Y where X and Y are
sets, induces functions f̂ : 2X −→ 2Y and
ˆ̂
f : Φ(X) −→ Φ(Y ). f̂ is defined by f̂(A) =
{f(a) | a ∈ A}, which we call the f -image of
A. For F ∈ Φ(X) note that the collection of all
supersets of f -images of members of F forms a

filter which we call ˆ̂
f(F). Hereafter we overload

notation and drop the ˆand ˆ̂annotations.



When convenient, we will refer to a convergence
space (X, ↓) by its carrier, X .
Definition 4.2 (Kent 1964; Heckmann 2003) Let
f : X −→ Y where X and Y are convergence
spaces, and let x0 ∈ X . f is continuous at x0

iff for each F ∈ Φ(X), if F ↓ x0 in X , then
f(F) ↓ f(x0) in Y . f is continuous iff f is contin-
uous at every point of X .
Continuity can be characterized in terms of filter
members, which play a role analogous to the role
played by neighborhoods, as supersets of open sets,
in topological spaces.
Proposition 4.1 Let f : X −→ Y where X
and Y are convergence spaces, and let x0 be
a point of X . f is continuous at x0 iff for
every filter F converging to x0 in X , there is
a filter G converging to f(x0) in Y such that
(∀V ∈ G)(∃U ∈ F)[f(U) ⊆ V ].

Definition 4.3 (Kent 1964) A homeomorphism be-
tween two convergence spaces is a continuous bi-
jection whose inverse is continuous.

The objects of the category of convergence
spaces CONV are the convergence spaces. For con-
vergence spaces X and Y , HOM(X,Y ) is the set
of continuous functions from X to Y .

Definition 4.4 Let x be a point of a convergence
space X , and let U be a subset of X . U is said to
be a neighborhood of x iff U belongs to every filter
converging to x.

Definition 4.5 (Choquet 1947) A convergence
space (X, ↓) is said to be a pretopological space if
and only if ↓ is a pretopology, i.e. for each x ∈ X ,
the collection of all neighborhoods of x converges
to x.

Proposition 4.2 Let f : X −→ Y where X and
Y are pretopological spaces, and let x0 ∈ X . f
is continuous at x0 iff for every neighborhood V of
f(x0), there is a neighborhood U of x0 such that
f(U) ⊆ V .

There are multiple ways of representing a reflex-
ive directed graph as a convergence space. Two
of these representations are centrally important for
our purposes. The first way is to have a pretopo-
logical space all of whose neighborhood filters are
principal; that is, has a smallest member. Then
each point in the space has a smallest neighbor-
hood containing the point, which serves as the di-
graph neighborhood of the point. The second way
requires a little setting up.
Definition 4.6 A convergence spaceX will be said
to be postdiscrete if and only if every convergent
proper filter is a point filter.

Definition 4.7 Let (V,E) be a reflexive digraph.
Induce a convergence structure on V by letting a
proper filter F converge to a vertex x iff F = [y]
for some vertex y with an edge in E from x to y.

It is readily verified that if (V1, E1) and (V2, E2)
are reflexive digraphs, then a function f : V1 −→
V2 is continuous (with respect to the induced con-
vergence structures on V1 and V2) iff, for all edges
(x, y) inE1, the edge (f(x), f(y)) is present inE2.

Proposition 4.3 The reflexive digraphs whose in-
duced pretopologies are topological are precisely
those in which the underlying binary relation is
transitive as well as reflexive.

Unlike TOP and PreTOP, CONV is a Carte-
sian closed category ((MacLane 1971; Arbib &
Manes 1975; Adámek, Herrlich, & Strecker 1990;
Schröder 2001; Katĕtov 1965)):

Definition 4.8 (Katĕtov 1965)
Let X and Y be convergence spaces. The func-

tion space Y X is the set of all continuous functions
from X to Y , equipped with the convergence struc-
ture ↓ defined as follows: For each H ∈ Φ(Y X)
and each f0 ∈ Y X , let H ↓ f0 if, and only if, for
each x0 ∈ X and each F ↓ x0, { { f(x) | f ∈
H,x ∈ F } |H ∈ H, F ∈ F } is a base for a filter
which converges to f(x0) in Y .

Just as continuity itself neither presupposes any
separation strength nor any notion of linearity, nei-
ther does differentiability. The familiar differential
calculus on Euclidean spaces is of course intrinsi-
cally dependent on the vector space structure, but
this is due to the choice of functions used to serve
as differentials, and the consequent determination
of the conditions under which functions are differ-
entiable. What matters is the differentiability re-
lation “differential g is a differential of f at x”.
Unless we demand of g that it satisfy some kind
of linearity property, linearity does not intrinsically
enter into the relation.

The central idea in setting up differentiation in
CONV is to uniformly define the 3-place relation

is a differential of at
for each pair of convergence spacesX,Y in the cat-
egory, where the first and second arguments are el-
ements of Hom(X,Y ) and the third argument is an
element of X , in such a way as to (1) obtain the
chain rule and (2) have the relation be in agreement
with standard definitions in real and complex anal-
ysis.

We first need to extract from the convergence
structure of each space how to translate a point in
the space.



Definition 4.9 An automorphism of a convergence
space X is a homeomorphism f : X −→ X .
Definition 4.10 A translation group on a conver-
gence space X is a group T of automorphisms of
X such that, for each pair of points p and q of X ,
there is at most one member of T which maps p to
q.

The action of a translation group on X is called
a semi-regular action on X .

A translation group T on X partitions X into
orbits. For x ∈ X , the orbit containing x is
{t(x) | t ∈ T}. From each orbit select one mem-
ber, called the origin of the orbit. The origin of the
orbit containing x is denoted by 0x. The member
of T that maps 0x to x is denoted by τx. For any
two points x and y of X , let x + y = τy(x), and
−y = τ−1

y (0y). If T is Abelian, and x are in the
same orbit, then x+y = y+x. If T is not Abelian,
then x + y does not have to commute, and never
commutes when x and y lie in distinct orbits. x−y
abbreviates x+ (−y).

The set of all origins of the orbits of T is called a
transversal with respect to T . For each convergence
space select a (possibly trivial) translation group
and a transversal. Choose a subcategory of CONV
by restricting every Hom(X,Y ) to set D(X,Y ) so
that (1) every member of D(X,Y ) preserves ori-
gins: If f ∈ D(X,Y ) then for every x ∈ X , f(0x)
is an origin in Y .

Let L ∈ D(X ,Y), where D(X ,Y) is the set of
all arrows in D from X to Y , equipped with the
subspace convergence structure inherited from the
function space Y X in CONV.
Definition 4.11 L is a differential of f at a iff
for every F ↓ a in X , there is some H ↓ L in
D(X ,Y) such that
i. H ⊆ [{L}], and

ii. for every H ∈ H, there is some F ∈ F such that
for every point x ∈ F , there is at least one func-
tion t ∈ H such that

t(x− a) = f(x)− f(a)

Theorem 4.1 (Chain Rule) Suppose that f is con-
tinuous at a. Also suppose that K is a differential
of f at a, and L is a differential of g at f(a). Then
L ◦K is a differential of g ◦ f at a.

5 Differentials for hybrid programs
and stable models semantics

In the section on hybrid programs we were left with
the need for choosing two differentials of the con-
tinuous functions from the set of integers to the set
{f, t}, and two differentials of the continuous func-
tions from the set of real numbers to the set {f, t}.

We equip the integers with the reflexive digraph
structure arising from the successor relation, the set
of real numbers with the standard Euclidean topol-
ogy, and the set {f, t} with the Sierpinski topology,
with {t} open. In both cases we choose the con-
stant function corresponding to f and the constant
function corresponding to t. The resulting 2-point
set will be equipped with the Sierpinski topology
with the singleton of the element corresponding to
1 as the open singleton. The effect of this conver-
gence structure on the set of differentials where t
varies over the integers is that whenever the dif-
ferential dp

dt is required to be the constant function
corresponding to t, the value of p is t and is re-
quired to remain so for at least one time-step. But,
whenever the value of dp

dt is t, p is unconstrained
at that moment. In the case where time t varies
over R, whenever the value of dp

dt is t, the value
of p must be t over some (think small) time inter-
val containing t0. There are many solutions of the
system, nondeterministically. But if we restrict the
admissible solutions to be monotonic, the conclud-
ing theorem of the section on hybrid programs now
follows.

In the theorem, if one did not begin with a pro-
gram that produced a monotonic trajectory when
started on the least Herbrand interpretation ⊥, one
may then seek Gelfond-Lifschitz transforms corre-
sponding to stable model guesses of the program
which do produce monotonic trajectories when
started on ⊥. Each differential program corre-
sponding to such a Gelfond-Lifschitz transform
then produces a least trajectory (i.e. slowest grow-
ing) whose least upper bound will be the original
guess iff the original guess was stable.
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Fenn. (Ser. A. I.) 1–21.



Binz, E. 1966. Ein Differenzierbarkeitsbegriff
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