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Abstract

First Order ID-Logic interprets general first order, non-
monotone, inductive definability by generalizing the well-
founded semantics for logic programs. We show that, for
general (thus perhaps infinite) structures, inference in First
Order ID-Logic is complet&l} over the natural numbers. We
also prove a Skolem Theorem for the logic: every consistent
formula of First Order ID-Logic has a countable model.

1 Introduction

Many formalisms have been proposed for non-monotonic
reasoning. In search of semantics for logic programming,
a key intuition of some researchers has been that of induc-
tive definitions, as this view obviously applies for many pro-

totypical Horn programs such as transitive closure, mem-
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sive power of FO(ID) over finite structures has been stud-
ied elsewhere (Mitchell & Ternovska 2005). By compari-
son, we just note that, in the context of finite structures, the
expressive power of FO(ID) is similar to that of first order
logic. For example, for any fixed FO(ID) formutg decid-

ing whether a finite structure for a given vocabularis a
model of a FO(ID) formula is polynomial in the size of the
structure. (That is, the “data complexity” of FO(ID) is poly-
nomial. And, as in first order logic, the so-called “expression
complexity” is EXPTIME.) For a fixed FO(ID) formula in

a vocabularyr, and forr’ C 7, determining whether a finite
7/ structure is the projection.¢., reduct) of a model op is

in NP and is NP-complete for certain FO(ID) formulas. And
determining whether a formula is satisfiablesiomefinite
structure is complete r.e. — just as for first order logic. For
any fixed FO(ID) formulap, there is a first order formulé’

in a larger language such that, for any finite structlirier

the language od, 2 = ¢ if and only if 2 can be expanded

ber, append, etc. In the last few years, the second authorto a model ofg’ (Mitchell & Ternovska 2005). So, in that
and others have suggested taking this seriously, replacing sense, FO(ID) is no more expressive than first order logic

formalisms where induction is implicit with one where ex-
plicit inductive definability is in the heart of the formal-
ism. A key step was the realization that, as argued in
(Denecker, Bruynooghe, & Marek 2001), the well-founded
model semantics of logic programming (Van Gelder, Ross,
& Schlipf 1991) correctly formalizes the intuitions underly-
ing different types of inductive definitions, not only mono-
tone but also non-monotone inductive definitions over a
well-founded order, and transfinite and iterated induction.
This led (Denecker 2000; Denecker & Ternovska 2004;
2007) to propose ID-logic, an extension of classical logic
with generalized nonmonotone inductive definitions. Simi-
lar extensions of classical logic with inductive definitions, in
particular fixpoints logics, are used in other areas of Com-
puter Science, but ID-logic differs from these by allowing a
uniform representation of a broader class of inductive defi-
nitions.

To understand a logical formalism, we want to identify
what can be expressed in it, not only in the most natu-
ral circumstances, but also in the most extreme. Here,
in particular, we study the expressivity of First Order ID-
Logic (FO(ID)). In particular, we study ID-logic over arbi-
trary (and thus potentially infinite) structures; the expres-
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over finite structures; FO(ID) provides only convenience in
modeling. Of course, from a practical point of view, this
modeling convenience may be considerable, since express-
ing an inductive definition in FO may amount to explicitly
encoding fixpoint computations in FO. But, this is not a con-
cern in a study of expressive power.

In this paper we consider the expressive power of FO(ID)
over arbitrary structures. In particular, we determine how
undecidable it is to ask whether a FO(ID) theory is satis-
fiable, or whether a FO(ID) theory logically implies a first
order formula. Fairly typically for nonmonotonic logics
(compare the survey in (Schlipf 1995)), the answers turn
out to come from higher order logics and generalized re-
cursion theory. We shall show that these decision problems
are complete=} and completéd} over the integers, respec-
tively.

Here, in particular, we consider First Order ID-Logic
(FO(ID)). For completeness, we repeat the formal defini-
tions, with some notational additions allowing condensed
discussion, but we do not repeat any motivating examples
for ID-Logic.



1.1 Standard Logical Formalism

We use standard first-order-logic notation for vocabularies
(languages) and structures. Of particular interest is the struc-
ture of arithmetic) = (N; 0, Succ+, -), whereN is the set
{0,1,2,...} of natural numbers. (To simplify notation, here
we write the same symbol for the vocabulary element and its
interpretation, rather than writing®, etc.) For each natural
numbern, let™n™ be the ternBuc¢ (0), which namesa.

Let2l = (A;...) be ar-structure. Let relation symbols
Ry,...,R,, & 7, where eachR; is k;-ary. Forl < i <
m, letS; C A*i. Then2A[Si/R1,...,Sm/Rn] is ther U
{R1,..., Ry }-structure with universel that interprets all
symbols inr exactly a( does and interprets eaéh by S;.
We use a similar notation on environments (assignments of
global variables) on formulas: fat ann-tuple of elements

1.

2 Induction in ID-Logic

Definition 2.1 An(inductive) definitionA, in a vocabulary
(language)r, for relationsRy,..., R,, ¢ 7,' is a set of
formulasA =

VE[R(Z) « ¢1a(D)], -+, VI[R1(Z) — o1, (D)),
T[Ro(T) — ¢21(D)], -+, VI[R2(T) — 2.0, (7],

VIR (7) — Gma(@)], -
where:

formulas ¢, ; are in first order formulas ofr U

{Ry,..., Ry} (we shall sometimes Wrim(ﬁ, Z) to em-
phasize the extra relation symbols);

of A and# ann — tuple of variables = ¢(a/Z) says 2. symbol < isanew binary symbol -ealleddefinitional

that ¢ is satisfied irRl in the environment where eaalj is implicationin ID-logic;

interpreted bys;. . 3. for k; the arity of R; in each formula
Form-tupleskR = (Ry,...,Rp), S = (S1,...,Sm) of VIR (Z) «— ¢;(Z)], fisxixs...2y,;and

sets, we write? C Sto meanthateacR; C S;,andR ¢ S 4. we writeg; () to indicate that the free variables of ;

to mean in addition that one inclusion is proper. Baa set
of suchm-tuples,|J S is the the coordinate-by-coordinate
union.

Second Order (SO) Logichas two varieties of vari-
able symbolsfirst order variables written x, y, z, x1, . . .,
vary over elements of (the universe of) the structure
being discussed, whilsecond order variableswritten
R,S,X,Y,Z Ryq,..., vary over relations of appropriate ar-
ity on the structure. Second order variables may be quanti-
fied but otherwise have the same syntax as relation symbols
of the vocabulary. It is well-known that second order logic
is “grossly undecidable.”

Second order formulas are classified based on the number

are amongr.?

The intuition is that these rules inductively define the rela-
tions Ry, ..., R, by (simultaneous) induction. Thus, the
individual formulasvz[R;(Z) «— ¢; ;(Z)] are treated as
closure rules. For any-structure2l and allZ in structure
2, whatever the interpretation of tii&,s are in, if ¢, ;()
is true, thenZ must be in (the interpretation ofy;, and if
no ¢; ;(Z) is true, thenz must not be ink;. But this is not
a full specification of what an inductive definition means.
The next section defines the formal semantics of inductive
definitions.

In ID-logic, the formulasvZ[R;(Z)

«—

¢i,;(Z)] are

of alternations of second order quantifiers. Formulas with Calleddefinitional rules with head iz, () andbody; ; ().

no second order quantifiers — thus only first order variables
— are defined to be bothj andIIj. A formulaisX; , if
itis of the form3X, ...3X,,¢ where¢ isII}; itis I}, , if
it is of the formVX; ...VX,,¢ where¢ is ;. This is the
basis for theanalytical hierarchyover the natural numbers
and, with a change at the 0Oth level, for thelynomial time
hierarchyover finite structures.

Each formula (first or second ordep)in T with free first
order variables, say, defines am-ary relation in the con-
text of ar-structuredi:

{de A" : M = p(d/x)}.
A relation X in the domain of structur@? is said to be:},
definablein Mt if it is definable oveft by aX} formula. A
setX of integers isS;, hard if, for everyX} setY’, there is a
recursive functioryy so that, for all integers,
y € Yifand only if fy (y) € X.

A setisX; complete if it is both®} definable and}, hard.
The definitions offl; definability, hardness and complete-

The predicate®y, ..., R,, are called the defined predicates
of A, and all other symbols are callegpgensymbols ofA.

2.1 Positive Inductive Definability

When all occurrences of all defined relation symhbBlsin

all the ¢y, ;'s arepositive® the inductive definitiom\ is also
referred to agpositive In this case, the semantics of induc-
tive definability is standard (seeg., (Moschovakis 1974a;
Aczel 1977; Barwise 1975; Immerman 1986; Vardi 1982)).
We quickly summarize it here.

In (Denecker & Ternovska 2007), the vocabularyfs con-
sidered to be our U {Ry, ..., Rn }. Defining the vocabulary not
toinclude{ Ry, ..., R} makes the discussion in this section a bit
more straightforward and also stays closer to the language of some
standard sources on inductive definitions, such as (Moschovakis
1974a; Aczel 1977; Barwise 1975). There is no significant differ-
ence.

2(Denecker & Ternovska 2007) does allow other free variables
to appear in the; ;'s. But in FO(ID) these free variables cannot
be quantified, so, for the questions asked in this paper, they can be

ness are analogous. In the context of natural numbers, whereyeated as constant symbols.

we have recursive bijections froNi" to N (e.g., Godel num-
bering), ann-ary relation is¥} iff its mapping under this
bijection is aX}, set. It therefore suffices to study; sets
(n=1).

3An occurrence if a relation symb@ in a first order formulap
is positiveif, when ¢ is converted to negation normal form, that oc-
currence ofR is not in the scope of a. Otherwise, the occurrence
of R is negative



Given ar-structure2l and an inductive definitiod\, de-
fine an operatol’ A on m-tuples of relations: For relations
S1,...,5, on2 (each relatiorb; of the same arity as sym-
bol R;), let, for1 <i<m

S;={Ze€W:AS/Ry,...,Sm/Rm) =\ ¢i;(@)}.
1<j<n;

oY)

And letTA (S, .., Sm) = (S1,...,50) )

Since thep;'s are all positive in all the?;’s, operatorl» is
monotone in its arguments. So by the Tarski-Knaster theo-
rem, it has a least fixed point, which can be constructed by
induction:

§0:(@7"'5®)7

andS, = U S, for A a limit ordinal.
a<A

— —

Sa+1 =Ta(S,) for « any ordinal,

Denote the least fixed point B2 = (R%2, ... RLA),
Wheneverl is obvious, write, simply,R2. Each relation

R™* is said to bepositively inductively definablever.

For any positive inductive definitiod\, and over any
structurell and for any sequence of values for the free
variables of2l, the least ordinal whereS; = I'a(Sj) is
called theclosure ordinal ofA (over|, @); we denote it by
|Ala,a, or simply by|A| where context maked andd clear.
Note that ifx is an infinite ordinal with more thajd | prede-
cessors 4 the domain of(), then|A| < &, simply because
the sequence of,’s is increasing and there are less than
possible tuples to add into the relations.

A key result for this paper is the following:

Theorem 2.1 (Kleene-Spector Theorem)A relation R on
the natural numbers is positively inductively definable over
M if and only if it isTT} definable ovedt®.

2.2 Nonpositive Definitions

More complex forms of induction used in mathematics
are inherently non-monotonic. For instance, the standard
definition of the satisfaction relatiop= contains the non-
monotonic rule

IE—pif I} .
As observed in (Denecker, Bruynooghe, & Marek 2001), the
well-founded model semantics of logic programming (Van
Gelder, Ross, & Schlipf 1991) uniformally formalizes the
intuitions underlying different types of inductive definitions,
not only monotone but also non-monotone inductive defini-
tions over a well-founded order, and transfinite and iterated
induction® Thus, ID-logic uses the well-founded semantics
for inductive definitionsA in which the ¢;'s need not be
positive in all their arguments.

This result has been generalized to broad classes of countably

infinite structures; see, g., (Barwise 1975; Moschovakis 1974a).

A sort of non-monotonic induction not formalized by the
well-founded model semantics is the “inflationary” induction of
(Moschovakis 1974b).

There are many ways of formalizing the well-founded se-
mantics. For the purposes of this paper, the alternating fixed
point construction of the well-founded semantics for logic
programs (Van Gelder 1993) is well-suited — extended in
the obvious way to the broader class of inductive definitions
defined above. For completeness, we present it here; for
more discussion and many examples, again see (Denecker
& Ternovska 2007).

Definition 2.2 Let A be an inductive definition in vocabu-
lary 7. Fori = 1,...,m, let R; be a newrelation sym-
bol of the same arity af?;. For each definitional rule
Vf[RZ(fZ") — gbl"j(f)], form ruIeVa‘z’[Rl(f) — éz,](f)]
by replacing eachegative occurrencef eachRy, in ¢; ;
with R, LetA be the set of these new definitional rules.

Observe that A is a positive inductive definition
of Ry,...,R, over A[Si/Ry,...,Sn/R,,]. Call
its least fixed point,A[Si/Ry,...,Su/R;]>, simply
SA(Sla"'aSm)'

The above definition thus defines an operator of tuples of
relations, mappingSi, . .., Sm) to SA(S1,...,Sm). Itex-
tends the well-known stable operator of logic programming
(Gelfond & Lifschitz 1991).

Van Gelder’s Intuition for the Alternating Fixed Point
Construction (phrased in the vocabulary of ID-Logic)
Suppose there is a “correct” interpretatii} of eachR;.

1. An inductively definable set should have only ele-

ments that are somehow “forced” to be in the set, so

SA(RY,...,R*)should bg RY,..., R%).

2. 1f (S1,...,S,) C (R},...,RY), then negative literals
—R; in rule bodies will be true “too often,” so
SA(Sh RS Sm) 2 (R%{v ce 7R7erz)'

3. Similarly, if (S1,...,Sm) D (R},..., RY), the negative
subgoals will be true “too seldom,” s (S1, ..., Sm) C
(R¥,....R>).

Formally, since theR;’s occur only negatively inA,
operatorS, is anti-monotone, and hen¢é&x)? is mono-
tone. So the intuition gives us, for the “correct” relations

R¥ = (RY,...,R%)andl = (0),...,0):

—

) 3)
And (Sa)? has a least fixed poinf§,, constructible by
transfinite induction:

(8a)%(S.) (a any ordinal)
Sy = U, Sa (A alimitordinal),and
+ = the least fixed point.

5By “new” we imply that the symbolg?; are all distinct and
that none are ir U {Ry, ..., Rm}.



Using the monotonicity and anti-monotonicity of respec-
tively (Sa)? andSa, we can prove a result slightly weaker
than (3):

@C(SA)() ( )4(g))

(S (@7)(

A)
Thus, in caseS,, = Sa(Ss), we
intuition above.

Definition 2.3 For an inductive definitionA in =, any 7
structure?(, and S, as above, ifSA(S«) = S, We say
definitionA defineA® = S, = (R*4, ..., R%A) induc-

m

tively; we also say\ defines eachRf1 A mductlvely. Other-
wise, we say thati® and all R>*'s are undefined.

The least ordinak Whereg(y = *(Hg is called theclo-
sure ordinal ofA (over 2, d); it is denoted|A|y z — or
simply|A| when2l, @ are clear.

As with positive induction, if is an infinite ordinal with
more than A| predecessors, theA| < k.

Proposition 2.2 Let®l be ar-structure.

1. If A is a positive inductive definition in, thenA defines
the same relations oveX in ID-logic than it does in first
order positive inductive definability.

If relations Sy, ..., S,, are inductively definable in ID-
logic over®, and relation.S is inductively definable in
ID-logic over structure[S; /Ry, ..., Sm/Ry], thenS

is inductively definable in ID-logic oveX.

The set of relations inductively definable o@etin 1D-
logic is closed under boolean combinations and projec-
tions.

Proof:

1. Since the inductively defined relations do not occur neg-
atively in A, the tupleSa(Si, ..., Sn) does not depend
upon Sy, ..., Sn,. Hence(Sa)?(0) is a fixed point and
equals(Sa)3(0).

This is a standard consequence of the monotonicity of
(Sa)? (sometimes referred to as showing that iterated in-
duction is the same as simultaneous induction); compare
the Transitivity Theorem 1.C.3 of (Moschovakis 1974a).
Alternatively, it is also a simple consequence of the ab-
stract stratification theorem 3.11 for non-monotone oper-
ators (Vennekens, Gilis, & Denecker 2006).

By part (2), ifA definesRy, ..., R4 (andRy, Ry have the
same arity, and?, has arity> 1), thenA U { R (%) «
Ry(Z) V Ry(T), Rn(¥) — Ri(T) A Ro(T), R-(T) —
—R3(Z), R,(Z) <« JyRy(Z,y) } defines the desired
union, intersection, complement, and projectionll

Observation 2.3 The above proposition shows a key differ-
ence between positive inductive definability and the induc-
tive definability in ID-logic: over many infinite structures,
e.g. the structuref for arithmetic, the class of first or-
der positively inductively definable sets is not closed under
complementation. Thus, over such structures, the inductive
definitions of ID-logic are very different than in first order
positive inductive definability.

- C S C Sa(5s)
2)3(0) C Sa (D).

have fully captured the

On the other hand, Immerman and Vardi proved (Immer-
man 1986; Vardi 1982) proved that, over finite structures,
the class of relations that are (uniformly) positive inductively
definable is closed under complementation.

3 FO(ID)

First Order Inductive Definition Logic (FO(ID)) extends first
order logic with inductive definitions. We merely give the
formal definition here; see (Denecker & Ternovska 2007)
for many motivating examples.

An FO(ID) formula over is defined by adding an addi-
tional base case to the standard inductive rules defining first
order formulas over a vocabulary

e A definition A of predicate symbol,,..., R, in 7\
{R1,..., Ry} isan FO(ID) formulainr. A may contain
free variables.

Thus, the construction units of FO(ID) are the atoms and the
definitions, and the logic is closed under conjunction, dis-
junction, negation, existential and universal quantification.
Since rule bodies of definitions are FO, nested definitions
are not allowed in FO(ID), contrary to, e.g., the logic LFP
(Libkin 2004).

Definition 3.1 A FO(ID) theoryT in a vocabularyr is a set
of FO(ID) sentences in.

Definition 3.2 The satisfaction relation — denot¢d[wl
— of FO(ID) is defined by the same structural rules defining
satisfaction= of FO, augmented with one extra base rule:

e for a structure2l interpretingr and all free variables of
A, let be the reductofl to 7" = 7\ {Ry,..., R, }.

We defin@l = A if ()4 exists and eaclii.’,f"’A is equal
to R¥ (the interpretation of?; in 21).

Example 3.1 Let A, A, be two inductive definitions of
the same se{Rl, ..., Ry} of relations. A structurél =
A;... RY,...,R%) is a model ofA; A A, if and only
if RY.. R?,‘L are the relations defined h$x; and also are
the relations defined byA, — so, in particular, only if it
turns out that the relations defined ki; and A, over

A = (4;...) are the same.

For T a theory of FO(ID) and) an FO(ID) sentencel’
logically implies¢ — written T" |=(;p; ¢ — if ¢ is true in
every model ofl". Note that, just as in first order logic, for
¢ a sentence of FO(IDY =(;p) ¢ if and only if 7' U {—¢}

is unsatisfiablé.

—~

4

Our proof below iheavilydependent upon (i) formalization
of model theory in the universg of sets (with relatiore),
and (ii) results in ordinal recursion theory.

Inference in FO(ID) is IT} over Arithmetic

"Note that a definitional rule is not an FO(ID) sentence, such
thatT" |=(;p) ¢ is not defined.



4.1 Background in Set Theory

In this paper we use several results about definability in set
theory. We summarize them here and in the next section.
(Proofs of theorems can be found in, for example, (Barwise
1975).)

The vocabulary of set theory isc}; the usual axioms
are the Zermelo-Fraenkel (ZF) axioms plus the Axiom of
Choice (AC). It is assumed that there is a real universe of
sets, called, and that it satisfies ZF+AC. When we talk
about definability in set theory, we talk about definability in
V, not in arbitrary models of ZF+AC.

An {e}-formulaisA, if it is built up from atomic formu-
las using only boolean connectives asalinded quantifica-
tion: 3z € y ¢ (defined to belx(z € y A ¢)) andVz € y ¢
(defined to b&vz(x € y — ¢)). AformulaisX; if it is of
the form3xy, ..., xx¢ whereg is Ay. An important result
(provable even in a fairly weak set theory such as KPU) is
that if 41, 1o ared; formulas andc, y are any variable sym-
bols, then(yy V 12), (1 Atha), FJz € yiby, andVe € yiy
are equivalent t&; formulas.

Recall that, for a set theorist, objects such as structures,
formulas and tuples are all special kinds of sets. For ex-
ample, a structurél (A,R},... R} for a vocabu-
lary = Ry,...,R,,} can be represented as a tuple
(A, {(n1,R}), ..., {(nk, R})}) with n; the Godel-number
of symbol R;. And 7-formulas may be represented, for ex-
ample, by their @del numbers. The standard inductive def-
inition of satisfaction is by an induction that can be captured
by a straightforward; formula:

Theorem 4.1 There is & formulaxsa: (4, s, f, x,v) of set
theory such that,

14 ': XSat(T/ga 91/57 ¢/f’ f/l‘, d/?))
7 is a finite language,

2 is ar-structure,

¢ is (the Gddel number of) a first order formula of

for some natural numben, Z is the n-tuple of all free
variable symbols of, anda is ann-tuple of elements of
A, and

o A= ¢(a/7). I

A set or classS of sets idransitiveif whenever any: € S
andy € z,y € S. A (von Neumannprdinal is a set that
is transitive and linearly ordered by relatien The class
of ordinals is also linearly ordered lwy, and the axioms of
ZF prove that this is a well-ordering ¥. On ordinalsx, 3,

a < fmeansy € 8, anda = S+1 meansy = SU{S}. (By
compactness, there are “non-standard” models of ZF+AC,
where the “ordinals” are not well-ordered, but that is not a
concern here; we are working ovir)

It is obvious than when &! formula 3X; ...3Xy
(with free variablesz) uniformly defines relationsSy in
T-structures, then these relationSy can be defined uni-
formly in V by a¥; formula:

Sq={dcAm:V = 3v,... 3V,
(Xsat (T /LAY /X1, Y/ X /5,0 f, 22, dfv))}

wherer’ = TU{X3,..., X}, i.e., the symbolX;,..., X,
are now treated as predicate constants.

if and only if

But the converse fails:

Example 4.1 (Well-known) Suppose- contains binary re-
lation G.

1. There is na:i formula3X¢(x,y) uniformally defining
the transitive closure of7 in all 7-structures(.  This
follows directly from compactness for first order logic.
Indeed, assume towards contradiction thgt formula
3X ¢ expresses the transitive closure®f Consider the
infinite theory¥ = {=G(a,b), =3z ... 32, (G(a, zo) A
... AN G(zp,b)) : n € N}, wherea, b are constants not
appearing idX ¢. Clearly, ¥ U {3X ¢(a, b)} is unsatisfi-
able, and so i U {¢(a, b)}. By compactness of FO, the
latter theory should have a finite unsatisfiable subset, and
this is clearly not the case.

. But there is &, formulaiy (s, z,y) of set theorywhere
V E ¢&/s,d/x,d /y) if and only if (d,d’) is in the
transitive closure ofz*.  The formula is — in mixed
formal notation and English —

Af,

2

(avis a natural numbeA (f : oo+ 1—A)A
f0) =z A f(a) =yA
vn € a(G(f(n), f(n+1)))

Theorem 4.2 There is &%, formulaxposrna (¥, s, d, z, v, 1)
of set theory where

V = Xpostnd (/4,4 /s, AJd, ¥/z,d/v,{S1,...,Sm)/T)

if and only if

1. 7 is afinite language,

2. A is ar structure,

3. A is a positive inductive definition of some relations
Ry,...,R,, & 7,withmthelength ofS,,...,S,,), and
with free variablest = x4, ..., x,,

4. the arity of eachS; is the same as oR; anda is ann-
tuple of elements & (for n as above), and

5. (S1,...,S,) = A*, where the environment binds each
v; toa;.

For a proof of the above, again seeg., (Barwise 1975).
(And the same approach is used in our proof of Lemma 4.6.)
There is a%; formula that identifies the list of symbolB;

and their arities from the syntactic form 4f.

4.2 Background in Constructibility and Ordinal
Recursion Theory

Godel proved the relative consistency of the axiom of choice
and the continuum hypothesis using a smaller class of sets,
the class of constructible sets, calléd The constructible
sets are constructed by transfinite induction over all ordinals
a € V; L(a) is the set of sets thus constructed before stage
a. EachL(«), as well ad, is transitive.

Theorem 4.3 (absoluteness ok, and persistence o)
Let S be a transitive set or class of sets. For afwy formula



¢(Z), and for any vectors of appropriate length and of
elements of,

S | ¢(5/Z) ifand only ifV = ¢(5/%).

For any ¥, formula¢(Z), and for any vectok of appropri-
ate length and of elements 6f

if S = ¢(5/7) thenV = ¢(3/1).

An ordinalo is stableif, for every Y, formula¢ with free
variables among;, and for everyd € L(o), L E ¢[d/]
if and only if L(o) = ¢[d/Z] — i.e., in standard notation,
L(0) <1 L. There are countable stable ordinals. The least
one is calledry. It is not difficult to show that the structure
M € L(oo), which maked.(oy) suitable to study expressive
power in the context dit.

Theorem 4.4 A relation R on the natural numbers &}
definable ot if and only if it is X;-definable onL(oy).

Theorem 4.5 (Schoenfield Absoluteness Theorengjvery
31 sentence(i.e.,formula with no free variables) of set
theory true inV is also true inL. |

It is an easy generalization to show thatf{fr) is a¥;
formula whose only free variable is and ifn is an integer,
if V |=6(n/x)thenL = 0(n/x).

4.3 Inference in FO(ID) isTI} over 91
Lemma 4.6 There is a%; formula
Ja, é, F,m, cz,w(ﬁwﬂnd(m o, F,m, cf, ls,d,x,v,r,w))

of set theory wheré,, ¢1,4 is Ao and

V = Ousina(T/,A)s,A)d,Z/x,d/v,{S1,...,Sm)/T, u/w)
if and only if

1. 7 is afinite language,

2. Ais at structure,

3. A is a definition of some relationg, ..., R,, ¢ 7, with

m the length of(Sy,...,S,,), and with free variables’
equal to somey, ..., x,,

. the arities of eaclt; is the same as oR; and d is an
n-tuple of elements &k (for n as above), and,

. in the notation of formula 2.2,5,...,.5,,) is the least
fixed point of(Sa )2.

Proof:

The constructions for parts (1-4) are fairly standard, so
we omit them; seee.g., the proof of our Theorem 4.1 in
(Barwise 1975).

Theorem 4.2 shows that positive inductiondis defin-
able, say by formulayd(¢, s, d, z,v,r, %). The alternating
fixed point construction is by induction, where each stage
of the induction uses positive inductive definition. To cap-
ture the inner induction we usg.snq; to capture the outer
induction, we use a functiof’ with domain an ordinak
(where, in light of earlier remarks, we could choest be
any infinite ordinal with> |A| predecessors).

For each ordinapB in its domain,F'(/3) wil be an ordered

pair
<Q[[51/R;7"'7SM/RT:L]7Q>7 (4)

where each inductively defined predicdtg has been split
into positive occurrencel; and negative occurrencés as
in Definition 2.2 — andy will be witnesses for existensial
guantifiers, as noted below. Below, let
o F(B)y beUA[S1/s1 s\ Sm/Sm],
e F(3)(;) be theS; in F(3), and
. F(ﬂ)(m be the@j' of F(ﬂ)
Formally, we can replace mention of them below willy
formulas involvingF(3).

Our formula is

Ja, 6, F,m,d
( 7 is a parsing function witnessing thatdefines”

A d is constructed frond as in Definition 2.2

A «a,d areordinals A (6 +2 < a)

A F'is a function with domaim

A VB < a(F(B) is of the form of (4))

AN F(0)=F(+2) (so a fixpoint has been reached)
AN (F(8)ay, - F(0)(m)) C

(FO+ 1)@y, F(0+ 1)m))
A Algigm F(0)) = 0
A V3 < af is a successor ordinal—

H(E’ F(ﬁ - 1)917 d: x,v,
(E(B) @y, F(B)amy) F(B) @)

A VB < a(fis alimit ordinal —

/\1§i§m F(B)u = Uy<ﬁ(F(7)(i) NF(y+1)u)
AN Niciem VE(@ €1 = T € F(5)))

)

It is fairly clear that the formula “says” that encodes the
stages of the alternating fixed point construction and that
F(§) is a fixed point of(Sa)?. But there are really two
fixed points achieved this wag,., andSa (S). As noted
earlier,S.. C Sa(S), so the line following the fixed point
condition F'(§) = F(§ + 2) states thaf'(d) gives the in-
tended one. For a limit ordinal, we should express that the
F())'s are the limit of earlier lower approximations. For
eachy < f, the intersectior¥'(y);) N F(y + 1), is the
lower approximation of the pa§, ;,.Sy41,-

It can be shown that each of the conjuncts following the
initial Jo, d, F, 7, z is expressible with & formula. It can
be shown that replacement/reflection axioms of ZF show
that the functionF’ itself exists (indeed, this is basically just
the standard proof that in set theory one can do definition by
recursion). |

Theorem 4.7 There is a%; formulaxro(rp) (¢, s, f,z,v)
of set theory where

14 ': XFO(ID)(T/£7 Q[/87¢/f7 a‘c’/m,c‘i/v)

1. 7 is afinite language,

2. 2is ar structure,

3. ¢ is aformula of FO(ID) with free variableg,

4. @is atuple of elements &f, of the same length ag and

if and only if



5. A = ¢(d/T). 5 Inference in FO(ID) is I13-hard over
Proof (sketch): Arithmetic

This construction repeats the standard construction used e show here that determining whettief=(, o, ¢, for T’ an

;OJ C'(I;f}ﬁgregwr st%c.) rF'rS.F#:ioe:é?:E&Si(ﬁ: gur?gxfgcit:]%%é%grzo' FO(ID) theory and first order, islT3-hard (over arithmetic),
P ¢- y .. even in the special case whekeis a system opositivein-
on the nodes the parse tree. The only new step for ID-logic is ductive definitions

to handle the base case of definitions. In fact, there are two
new base cases. Indeed, we assume that the formula is inExample 5.1 Letr be the usual languagf, <, Succ+, -}
negation normal form, so that the only negative occurrences for arithmetic, plus one unary relatio to be inductively

of inductive definitionsA are in the form—A. We cannot
express thatl = —A(a@/Z) through—(2 = A(d/Z)) since
then, thex; formula expressingl = A(ad/Z) would appear
under negation, and; formulas are not closed under nega-
tion. Fortunately, we can say that = —-A(d/Z) by a¥;
formula, and this is our second base case.
Say2l = A(@/Z) by writing
3p7 ll? Sl7 a? (57 F,ﬂ—, dﬂr
( pis the tuple of defined predicates Af
ANl =0\pAs = thereductoRltol’
A Gwﬂnd(a,&F,W,J,K’,s’7A/d,f/x,é’/v,r)
N /\1§igm F(8)@y =F(0+ 1) A /\1§igm Py =

Say2l E —~A(a/Z) by writing
3, U, s a8, F,m,d,r
( pis the tuple of defined predicates Af
ANl =L\pAs = thereductoflto!l
A Owrinale, 6, Fym,d, 0, s\ AJd,&/x,d/v,T)
A V1I§i§m F(0)q) # F(0+ 1)(i) v vlSiSm pim # T
).

Corollary 4.8 There is &, formulaxsar,, (f) of set the-
ory so that a FO(ID) sentenceg is satisfiable if and only
if V= xsar;p(¢/f), and ¢ is satisfiable if and only if
L(0o) = xsa1i5(9/f)-

Proof: The  formula  xsar,,(f) =
3¢, sxroup) (4, s, f,0,0) clearly satisfies the first property.

It is also routine to show that if(oo) = xsar,(¢/f)
theng is indeed satisfiable.

So now suppose is satisfiable — s& = xsar, s/ f)-
Recall that we represented formulas in set theory with their
Godel numbers. By the generalization of the Schoen-
field Absoluteness Theorenl, = Xgar,, (/7). Since
oo is a stable ordinal (and thus also infinitd){cy) =

XSATp (¢/ 1) |

Corollary 4.9 (Skolem Theorem for FO(ID)) For ¢ a for-
mula of FO(ID), if¢ has a model, it has a countab{&nite
or countably infinite)nodel.

Proof: By Corollary 4.8, if¢ is satisfiableg is satisfiable
in L(op). And all elements of (o) are countable. i

Theorem 4.10 (a) Satisfiability of FO(ID) formulas is3
over. (b) For FO(ID) formulase, v, determining whether

1 logically impliesy is T13 over<.

Proof: (a) is a consequence of Theorem 4.4 and Corol-
lary 4.8. (b) follows immediately. |

defined. There is a finite FO(ID) theoffy; whose models
(or rather, their reducts to{0, <, Succ+,-}) are just the
isomorphic copies dft. And all definitional rules iy, are
positive. For example, takBy, to be Peano’s theory in which
the induction schema is replaced by

Va(N(x) « z =0),
Vel (@) A { Va(N{e) — Sy L Sucely) A N(s)) }
All models 2t of Peano’s axioms (with or with-
out the induction schema) have a “standard part”
{03,717 rn r3n® 1 which is isomorphic tot.
The positive inductive definition definds as this set. So
Va N (z) asserts that every element is in the standard model,
as desired. |

Observation 5.1 (Relativized Kleene-Spector Theorem)
There are a recursive functiofi from formulase(X,Y, x)
to Y-positive formulas ¢/(X,Y,z) and a recursive
function g from formulas ¢(X,Y,z) to integers ¢9,
such that, for alln € N and all setsX C N, for
A={72]Y(2) « ¢/(X.Y.2)]}

NX/X] VY (X, Y, z)[n/z]
if and only if
(n,9%) € YT/XIA

Proof (sketch): The proof is a straightforward modifica-
tion of the proof of Moschovakis’ generalization §8A of
(Moschovakis 1974a). The observations are merely that (i)
the proof there constructs a formula explicity — and thus
recursively — frome, and (ii) the extra relatiodX may be
just carried along as a parameter. 1

Theorem 5.2 (a) Determining whether a finite FO(ID) the-
ory is satisfiable isxi-hard over 91. (b) Determining
whetherT" =;p; ¢, for T'a FO(ID) theory andy) FO(ID)
formula, isITi-hard overt.

Proof: As usual, (a) implies (b). We show (a) even in
the special case where the FO(ID) formula is of the form
1 A A wherey is first order andA is a single positive (in-
ductive) definition. We continue to use the notations from
above. We use that fact that, when an (inductive) defini-
tion is positive, the inductively defined relations always ex-
ist. LetA = {Vz[Y(2) « ¢/(X,Y,2)]}.

N E3IXVY (X, Y,n)
if and only if
X C N((n,¢?) € YIX/X].A



if and only if
T UAU{Y (("n™,"¢97)} is satisfiable in ID-Logic. I

An interesting observation is that, although the expressive

power of the well-founded induction of FO(ID) is, in gen-
eral, greater than that of first order positive induction, the
complexity of determining satisfiability for FO[ID] is the
same as it is for first order logic plus just positive inductive
definability.

6 Open Problem: Expressive Power
Well-founded Induction 91

Here we have discussed the expressive power of FO(ID). A

related issue is the expressive power of just well-founded in-
ductive definitions — as interpreted in FO(ID) (see Subsec-
tion 2.2) — over particular structures. The classical structure
to consider if. So what relations are definable using well-
founded induction ovedt? Since FO(ID)’s inductive defini-
tions include all positive inductive definitions, it follows by
the Kleene-Spector Theorem that HY} relations ordt are

so definable. It follows easily from Theorem 5.2 that all so
definable relations arH} over . But neither thelj- nor

I13-definable relations are closed under complementation, so

the sets definable using just FO(ID)’s nhonmonotonic induc-
tion are strictly in between the two. We pose this question
for further research.
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