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Abstract

First Order ID-Logic interprets general first order, non-
monotone, inductive definability by generalizing the well-
founded semantics for logic programs. We show that, for
general (thus perhaps infinite) structures, inference in First
Order ID-Logic is completeΠ1

2 over the natural numbers. We
also prove a Skolem Theorem for the logic: every consistent
formula of First Order ID-Logic has a countable model.

1 Introduction
Many formalisms have been proposed for non-monotonic
reasoning. In search of semantics for logic programming,
a key intuition of some researchers has been that of induc-
tive definitions, as this view obviously applies for many pro-
totypical Horn programs such as transitive closure, mem-
ber, append, etc. In the last few years, the second author
and others have suggested taking this seriously, replacing
formalisms where induction is implicit with one where ex-
plicit inductive definability is in the heart of the formal-
ism. A key step was the realization that, as argued in
(Denecker, Bruynooghe, & Marek 2001), the well-founded
model semantics of logic programming (Van Gelder, Ross,
& Schlipf 1991) correctly formalizes the intuitions underly-
ing different types of inductive definitions, not only mono-
tone but also non-monotone inductive definitions over a
well-founded order, and transfinite and iterated induction.
This led (Denecker 2000; Denecker & Ternovska 2004;
2007) to propose ID-logic, an extension of classical logic
with generalized nonmonotone inductive definitions. Simi-
lar extensions of classical logic with inductive definitions, in
particular fixpoints logics, are used in other areas of Com-
puter Science, but ID-logic differs from these by allowing a
uniform representation of a broader class of inductive defi-
nitions.

To understand a logical formalism, we want to identify
what can be expressed in it, not only in the most natu-
ral circumstances, but also in the most extreme. Here,
in particular, we study the expressivity of First Order ID-
Logic (FO(ID)). In particular, we study ID-logic over arbi-
trary (and thus potentially infinite) structures; the expres-
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sive power of FO(ID) over finite structures has been stud-
ied elsewhere (Mitchell & Ternovska 2005). By compari-
son, we just note that, in the context of finite structures, the
expressive power of FO(ID) is similar to that of first order
logic. For example, for any fixed FO(ID) formulaφ, decid-
ing whether a finite structure for a given vocabularyτ is a
model of a FO(ID) formula is polynomial in the size of the
structure. (That is, the “data complexity” of FO(ID) is poly-
nomial. And, as in first order logic, the so-called “expression
complexity” is EXPTIME.) For a fixed FO(ID) formulaφ in
a vocabularyτ , and forτ ′ ⊆ τ , determining whether a finite
τ ′ structure is the projection (i.e., reduct) of a model ofφ is
in NP and is NP-complete for certain FO(ID) formulas. And
determining whether a formula is satisfiable insomefinite
structure is complete r.e. — just as for first order logic. For
any fixed FO(ID) formulaφ, there is a first order formulaφ′

in a larger language such that, for any finite structureA for
the language ofφ, A |= φ if and only if A can be expanded
to a model ofφ′ (Mitchell & Ternovska 2005). So, in that
sense, FO(ID) is no more expressive than first order logic
over finite structures; FO(ID) provides only convenience in
modeling. Of course, from a practical point of view, this
modeling convenience may be considerable, since express-
ing an inductive definition in FO may amount to explicitly
encoding fixpoint computations in FO. But, this is not a con-
cern in a study of expressive power.

In this paper we consider the expressive power of FO(ID)
over arbitrary structures. In particular, we determine how
undecidable it is to ask whether a FO(ID) theory is satis-
fiable, or whether a FO(ID) theory logically implies a first
order formula. Fairly typically for nonmonotonic logics
(compare the survey in (Schlipf 1995)), the answers turn
out to come from higher order logics and generalized re-
cursion theory. We shall show that these decision problems
are complete-Σ1

2 and complete-Π1
2 over the integers, respec-

tively.

Here, in particular, we consider First Order ID-Logic
(FO(ID)). For completeness, we repeat the formal defini-
tions, with some notational additions allowing condensed
discussion, but we do not repeat any motivating examples
for ID-Logic.



1.1 Standard Logical Formalism
We use standard first-order-logic notation for vocabularies
(languages) and structures. Of particular interest is the struc-
ture of arithmetic,N = 〈N; 0,Succ,+, ·〉, whereN is the set
{0, 1, 2, . . .} of natural numbers. (To simplify notation, here
we write the same symbol for the vocabulary element and its
interpretation, rather than writing0N, etc.) For each natural
numbern, let pnq be the termSuccn(0), which namesn.

Let A = 〈A; . . .〉 be aτ -structure. Let relation symbols
R1, . . . , Rm 6∈ τ , where eachRi is ki-ary. For1 ≤ i ≤
m, let Si ⊆ Aki . ThenA[S1/R1, . . . , Sm/Rm] is theτ ∪
{R1, . . . , Rm}-structure with universeA that interprets all
symbols inτ exactly asA does and interprets eachRi bySi.
We use a similar notation on environments (assignments of
global variables) on formulas: for~a ann-tuple of elements
of A and~x an n − tuple of variables,A |= φ(~a/~x) says
thatφ is satisfied inA in the environment where eachxi is
interpreted byai.

Form-tuples ~R = 〈R1, . . . , Rm〉, ~S = 〈S1, . . . , Sm〉 of
sets, we write~R ⊆ ~S to mean that eachRi ⊆ Si, and~R ⊂ ~S
to mean in addition that one inclusion is proper. ForS a set
of suchm-tuples,

⋃
S is the the coordinate-by-coordinate

union.
Second Order (SO) Logichas two varieties of vari-

able symbols:first order variables, written x, y, z, x1, . . .,
vary over elements of (the universe of) the structure
being discussed, whilesecond order variables, written
R,S,X, Y, Z,R1, . . ., vary over relations of appropriate ar-
ity on the structure. Second order variables may be quanti-
fied but otherwise have the same syntax as relation symbols
of the vocabulary. It is well-known that second order logic
is “grossly undecidable.”

Second order formulas are classified based on the number
of alternations of second order quantifiers. Formulas with
no second order quantifiers — thus only first order variables
— are defined to be bothΣ1

0 andΠ1
0. A formula isΣ1

k+1 if
it is of the form∃X1 . . .∃Xnφ whereφ is Π1

k; it is Π1
k+1 if

it is of the form∀X1 . . .∀Xnφ whereφ is Σ1
k. This is the

basis for theanalytical hierarchyover the natural numbers
and, with a change at the 0th level, for thepolynomial time
hierarchyover finite structures.

Each formula (first or second order)ϕ in τ with free first
order variables, say~x, defines ann-ary relation in the con-
text of aτ -structureM:

{~a ∈ An : M |= ϕ(~a/~x)}.
A relationX in the domain of structureM is said to beΣ1

k
definablein M if it is definable overM by aΣ1

k formula. A
setX of integers isΣ1

k hard if, for everyΣ1
k setY , there is a

recursive functionfY so that, for all integersy,

y ∈ Y if and only if fY (y) ∈ X.
A set isΣ1

k complete if it is bothΣ1
k definable andΣ1

k hard.
The definitions ofΠ1

k definability, hardness and complete-
ness are analogous. In the context of natural numbers, where
we have recursive bijections fromNn to N (e.g., Gödel num-
bering), ann-ary relation isΣ1

k iff its mapping under this
bijection is aΣ1

k set. It therefore suffices to studyΣ1
k sets

(n = 1).

2 Induction in ID-Logic
Definition 2.1 An ( inductive) definition∆, in a vocabulary
(language)τ , for relationsR1, . . . , Rm 6∈ τ ,1 is a set of
formulas∆ =

{∀~x[R1(~x) ← φ1,1(~x)], · · · , ∀~x[R1(~x) ← φ1,n1(~x)],
∀~x[R2(~x) ← φ2,1(~x)], · · · , ∀~x[R2(~x) ← φ2,n2(~x)],

...
∀~x[Rm(~x) ← φm,1(~x)], · · · , ∀~x[Rm(~x) ← φk,nm

(~x)]}

where:

1. formulas φi,j are in first order formulas ofτ ∪
{R1, . . . , Rm} (we shall sometimes writeφ(~R, ~x) to em-
phasize the extra relation symbols);

2. symbol ← is a new binary symbol —calleddefinitional
implication in ID-logic;

3. for ki the arity of Ri, in each formula
∀~x[Ri(~x) ← φi,j(~x)], ~x is x1x2 . . . xki ; and

4. we writeφi,j(~x) to indicate that the free variables ofφi,j

are among~x.2

The intuition is that these rules inductively define the rela-
tionsR1, . . . , Rm by (simultaneous) induction. Thus, the
individual formulas∀~x[Ri(~x) ← φi,j(~x)] are treated as
closure rules. For anyτ -structureA and all~x in structure
A, whatever the interpretation of theRhs are inA, if φi,j(~x)
is true, then~x must be in (the interpretation of)Ri, and if
noφi,j(~x) is true, then~x must not be inRi. But this is not
a full specification of what an inductive definition means.
The next section defines the formal semantics of inductive
definitions.

In ID-logic, the formulas∀~x[Ri(~x) ← φi,j(~x)] are
calleddefinitional rules, with headRi(~x) andbodyφi,j(~x).
The predicatesR1, . . . , Rm are called the defined predicates
of ∆, and all other symbols are calledopensymbols of∆.

2.1 Positive Inductive Definability
When all occurrences of all defined relation symbolsRi in
all theφh,j ’s arepositive,3 the inductive definition∆ is also
referred to aspositive. In this case, the semantics of induc-
tive definability is standard (see,e.g., (Moschovakis 1974a;
Aczel 1977; Barwise 1975; Immerman 1986; Vardi 1982)).
We quickly summarize it here.

1In (Denecker & Ternovska 2007), the vocabulary of∆ is con-
sidered to be ourτ ∪ {R1, . . . , Rm}. Defining the vocabulary not
to include{R1, . . . , Rm} makes the discussion in this section a bit
more straightforward and also stays closer to the language of some
standard sources on inductive definitions, such as (Moschovakis
1974a; Aczel 1977; Barwise 1975). There is no significant differ-
ence.

2(Denecker & Ternovska 2007) does allow other free variables
to appear in theφi,j ’s. But in FO(ID) these free variables cannot
be quantified, so, for the questions asked in this paper, they can be
treated as constant symbols.

3An occurrence if a relation symbolR in a first order formulaφ
is positiveif, whenφ is converted to negation normal form, that oc-
currence ofR is not in the scope of a¬. Otherwise, the occurrence
of R is negative.



Given aτ -structureA and an inductive definition∆, de-
fine an operatorΓ∆ onm-tuples of relations: For relations
S1, . . . , Sm onA (each relationSi of the same arity as sym-
bolRi), let, for1 ≤ i ≤ m

S′i = {~x ∈ A : A[S1/R1, . . . , Sm/Rm] |=
∨

1≤j≤ni

φi,j(~x)}.

(1)
And letΓ∆(S1, . . . , Sm) = (S′1, . . . , S

′
m) (2)

Since theφi’s are all positive in all theRj ’s, operatorΓ∆ is
monotone in its arguments. So by the Tarski-Knaster theo-
rem, it has a least fixed point, which can be constructed by
induction:

~S0 = (∅, . . . , ∅), ~Sα+1 = Γ∆(~Sα) for α any ordinal,

and~Sλ =
⋃

α<λ

~Sα for λ a limit ordinal.

Denote the least fixed point byA∆ = (RA,∆
1 , . . . , RA,∆

m ).
WheneverA is obvious, write, simply,R∆

i . Each relation
RA,∆

i is said to bepositively inductively definableoverA.
For any positive inductive definition∆, and over any

structureA and for any sequence~a of values for the free
variables ofA, the least ordinalβ where~Sβ = Γ∆(~Sβ) is
called theclosure ordinal of∆ (overA,~a); we denote it by
|∆|A,~a, or simply by|∆|where context makesA and~a clear.
Note that ifκ is an infinite ordinal with more than|A| prede-
cessors (A the domain ofA), then|∆| < κ, simply because
the sequence of~Sα’s is increasing and there are less thanκ
possible tuples to add into the relations.

A key result for this paper is the following:

Theorem 2.1 (Kleene-Spector Theorem)A relationR on
the natural numbers is positively inductively definable over
N if and only if it isΠ1

1 definable overN4.

2.2 Nonpositive Definitions
More complex forms of induction used in mathematics
are inherently non-monotonic. For instance, the standard
definition of the satisfaction relation|= contains the non-
monotonic rule

I |= ¬ϕ if I 6|= ϕ.

As observed in (Denecker, Bruynooghe, & Marek 2001), the
well-founded model semantics of logic programming (Van
Gelder, Ross, & Schlipf 1991) uniformally formalizes the
intuitions underlying different types of inductive definitions,
not only monotone but also non-monotone inductive defini-
tions over a well-founded order, and transfinite and iterated
induction.5 Thus, ID-logic uses the well-founded semantics
for inductive definitions∆ in which theφi’s need not be
positive in all their arguments.

4This result has been generalized to broad classes of countably
infinite structures; see,e.g., (Barwise 1975; Moschovakis 1974a).

5A sort of non-monotonic induction not formalized by the
well-founded model semantics is the “inflationary” induction of
(Moschovakis 1974b).

There are many ways of formalizing the well-founded se-
mantics. For the purposes of this paper, the alternating fixed
point construction of the well-founded semantics for logic
programs (Van Gelder 1993) is well-suited — extended in
the obvious way to the broader class of inductive definitions
defined above. For completeness, we present it here; for
more discussion and many examples, again see (Denecker
& Ternovska 2007).

Definition 2.2 Let ∆ be an inductive definition in vocabu-
lary τ . For i = 1, . . . ,m, let R−i be a new6relation sym-
bol of the same arity asRi. For each definitional rule
∀~x[Ri(~x) ← φi,j(~x)], form rule∀~x[Ri(~x) ← φ̂i,j(~x)]
by replacing eachnegative occurrenceof eachRh in φi,j

withR−h . Let∆̂ be the set of these new definitional rules.

Observe that ∆̂ is a positive inductive definition
of R1, . . . , Rm over A[S1/R

−
1 , . . . , Sm/R

−
m]. Call

its least fixed point,A[S1/R
−
1 , . . . , Sm/R

−
m]∆̂, simply

S∆(S1, . . . , Sm).

The above definition thus defines an operator of tuples of
relations, mapping(S1, . . . , Sm) to S∆(S1, . . . , Sm). It ex-
tends the well-known stable operator of logic programming
(Gelfond & Lifschitz 1991).

Van Gelder’s Intuition for the Alternating Fixed Point
Construction (phrased in the vocabulary of ID-Logic):
Suppose there is a “correct” interpretationRA

i of eachRi.

1. An inductively definable set should have only ele-
ments that are somehow “forced” to be in the set, so
S∆(RA

1 , . . . , R
A
m) should be(RA

1 , . . . , R
A
m).

2. If (S1, . . . , Sm) ⊂ (RA
1 , . . . , R

A
m), then negative literals

¬R−i in rule bodies will be true “too often,” so
S∆(S1, . . . , Sm) ⊇ (RA

1 , . . . , R
A
m).

3. Similarly, if (S1, . . . , Sm) ⊃ (RA
1 , . . . , R

A
m), the negative

subgoals will be true “too seldom,” soS∆(S1, . . . , Sm) ⊆
(RA

1 , . . . , R
A
m).

Formally, since theR−i ’s occur only negatively in∆̂,
operatorS∆ is anti-monotone, and hence(S∆)2 is mono-
tone. So the intuition gives us, for the “correct” relations
~RA = (RA

1 , . . . , R
A
m) and~∅ = (∅, . . . , ∅):

~∅ ⊆ (S∆)2(~∅) ⊆ (S∆)4(~∅) ⊆ · · · ⊆ ~RA = S∆( ~RA)
⊆ · · · (S∆)5(~∅) ⊆ (S∆)3(~∅) ⊆ S∆(~∅).

(3)
And (S∆)2 has a least fixed point,~S∞, constructible by

transfinite induction:

~S0 = ~∅,
~Sα+1 = (S∆)2(~Sα) (α any ordinal),
~Sλ =

⋃
α<λ

~Sα (λ a limit ordinal),and
~S∞ = the least fixed point.

6By “new” we imply that the symbolsR−i are all distinct and
that none are inτ ∪ {R1, . . . , Rm}.



Using the monotonicity and anti-monotonicity of respec-
tively (S∆)2 andS∆, we can prove a result slightly weaker
than (3):

~∅ ⊆ (S∆)2(~∅) ⊆ (S∆)4(~∅) ⊆ · · · ⊆ ~S∞ ⊆ S∆(~S∞)
⊆ · · · (S∆)5(~∅) ⊆ (S∆)3(~∅) ⊆ S∆(~∅).

Thus, in case~S∞ = S∆(~S∞), we have fully captured the
intuition above.

Definition 2.3 For an inductive definition∆ in τ , any τ
structureA, and ~S∞ as above, ifS∆(~S∞) = ~S∞, we say
definition∆ definesA∆ = ~S∞ = (RA,∆

1 , . . . , RA,∆
m ) induc-

tively; we also say∆ defines eachRA,∆
i inductively. Other-

wise, we say thatA∆ and allRA,∆
i ’s are undefined.

The least ordinalα where~Sα = ~Sα+2 is called theclo-
sure ordinal of∆ (over A,~a); it is denoted|∆|A,~a — or
simply|∆| whenA,~a are clear.

As with positive induction, ifκ is an infinite ordinal with
more than|A| predecessors, then|∆| < κ.

Proposition 2.2 LetA be aτ -structure.

1. If ∆ is a positive inductive definition inτ , then∆ defines
the same relations overA in ID-logic than it does in first
order positive inductive definability.

2. If relationsS1, . . . , Sm are inductively definable in ID-
logic overA, and relationS is inductively definable in
ID-logic over structureA[S1/R1, . . . , Sm/Rm], thenS
is inductively definable in ID-logic overA.

3. The set of relations inductively definable overA in ID-
logic is closed under boolean combinations and projec-
tions.

Proof:
1. Since the inductively defined relations do not occur neg-

atively in ∆, the tupleS∆(S1, . . . , Sm) does not depend
uponS1, . . . , Sm. Hence(S∆)2(~∅) is a fixed point and
equals(S∆)3(~∅).

2. This is a standard consequence of the monotonicity of
(S∆)2 (sometimes referred to as showing that iterated in-
duction is the same as simultaneous induction); compare
the Transitivity Theorem 1.C.3 of (Moschovakis 1974a).
Alternatively, it is also a simple consequence of the ab-
stract stratification theorem 3.11 for non-monotone oper-
ators (Vennekens, Gilis, & Denecker 2006).

3. By part (2), if∆ definesR1, . . . , R4 (andR1, R2 have the
same arity, andR4 has arity> 1), then∆ ∪ { R∪(~x) ←
R1(~x) ∨ R2(~x), R∩(~x) ← R1(~x) ∧ R2(~x), R¬(~x) ←
¬R3(~x), Rπ(~x) ← ∃yR4(~x, y) } defines the desired
union, intersection, complement, and projection.

Observation 2.3 The above proposition shows a key differ-
ence between positive inductive definability and the induc-
tive definability in ID-logic: over many infinite structures,
e.g. the structureN for arithmetic, the class of first or-
der positively inductively definable sets is not closed under
complementation. Thus, over such structures, the inductive
definitions of ID-logic are very different than in first order
positive inductive definability.

On the other hand, Immerman and Vardi proved (Immer-
man 1986; Vardi 1982) proved that, over finite structures,
the class of relations that are (uniformly) positive inductively
definable is closed under complementation.

3 FO(ID)

First Order Inductive Definition Logic (FO(ID)) extends first
order logic with inductive definitions. We merely give the
formal definition here; see (Denecker & Ternovska 2007)
for many motivating examples.

An FO(ID) formula over is defined by adding an addi-
tional base case to the standard inductive rules defining first
order formulas over a vocabularyτ :

• A definition ∆ of predicate symbolsR1, . . . , Rm in τ \
{R1, . . . , Rm} is an FO(ID) formula inτ . ∆ may contain
free variables.

Thus, the construction units of FO(ID) are the atoms and the
definitions, and the logic is closed under conjunction, dis-
junction, negation, existential and universal quantification.
Since rule bodies of definitions are FO, nested definitions
are not allowed in FO(ID), contrary to, e.g., the logic LFP
(Libkin 2004).

Definition 3.1 A FO(ID) theoryT in a vocabularyτ is a set
of FO(ID) sentences inτ .

Definition 3.2 The satisfaction relation — denoted|=[ID]

— of FO(ID) is defined by the same structural rules defining
satisfaction|= of FO, augmented with one extra base rule:

• for a structureA interpretingτ and all free variables of
∆, let A′ be the reduct ofA to τ ′ = τ \ {R1, . . . , Rn}.
We defineA |= ∆ if (A′)∆ exists and eachRA′,∆

i is equal
toRA

i (the interpretation ofRi in A).

Example 3.1 Let ∆1,∆2 be two inductive definitions of
the same set{R1, . . . , Rm} of relations. A structureA =
〈A; . . . , RA

1 , . . . , R
A
m〉 is a model of∆1 ∧ ∆2 if and only

if RA
1 . . . R

A
m are the relations defined by∆1 and also are

the relations defined by∆2 — so, in particular, only if it
turns out that the relations defined by∆1 and ∆2 over
A′ = 〈A; . . .〉 are the same.

For T a theory of FO(ID) andφ an FO(ID) sentence,T
logically impliesφ — written T |=[ID] φ — if φ is true in
every model ofT . Note that, just as in first order logic, for
φ a sentence of FO(ID),T |=[ID] φ if and only if T ∪ {¬φ}
is unsatisfiable.7

4 Inference in FO(ID) is Π1
2 over Arithmetic

Our proof below isheavilydependent upon (i) formalization
of model theory in the universeV of sets (with relation∈),
and (ii) results in ordinal recursion theory.

7Note that a definitional ruleφ is not an FO(ID) sentence, such
thatT |=[ID] φ is not defined.



4.1 Background in Set Theory
In this paper we use several results about definability in set
theory. We summarize them here and in the next section.
(Proofs of theorems can be found in, for example, (Barwise
1975).)

The vocabulary of set theory is{∈}; the usual axioms
are the Zermelo-Fraenkel (ZF) axioms plus the Axiom of
Choice (AC). It is assumed that there is a real universe of
sets, calledV , and that it satisfies ZF+AC. When we talk
about definability in set theory, we talk about definability in
V , not in arbitrary models of ZF+AC.

An {∈}-formula is∆0 if it is built up from atomic formu-
las using only boolean connectives andbounded quantifica-
tion: ∃x ∈ y φ (defined to be∃x(x ∈ y ∧ φ)) and∀x ∈ y φ
(defined to be∀x(x ∈ y → φ)). A formula isΣ1 if it is of
the form∃x1, . . . , xkφ whereφ is ∆0. An important result
(provable even in a fairly weak set theory such as KPU) is
that ifψ1, ψ2 areΣ1 formulas andx, y are any variable sym-
bols, then(ψ1 ∨ ψ2), (ψ1 ∧ ψ2), ∃x ∈ y ψ1, and∀x ∈ y ψ1

are equivalent toΣ1 formulas.
Recall that, for a set theorist, objects such as structures,

formulas and tuples are all special kinds of sets. For ex-
ample, a structureA = 〈A,RA

1 , . . . , R
A
k 〉 for a vocabu-

lary τ = {R1, . . . , Rm} can be represented as a tuple
〈A, {〈n1, R

A
1 〉, . . . , 〈nk, R

A
k 〉}〉 with ni the G̈odel-number

of symbolRi. And τ -formulas may be represented, for ex-
ample, by their G̈odel numbers. The standard inductive def-
inition of satisfaction is by an induction that can be captured
by a straightforwardΣ1 formula:

Theorem 4.1 There is aΣ1 formulaχSat(`, s, f, x, v) of set
theory such that,

V |= χSat(τ/`,A/s, φ/f, ~x/x,~a/v) if and only if

• τ is a finite language,
• A is a τ -structure,
• φ is (the G̈odel number of) a first order formula ofτ ,
• for some natural numbern, ~x is then-tuple of all free

variable symbols ofφ, and~a is ann-tuple of elements of
A, and
• A |= φ(~a/~x).

A set or classS of sets istransitiveif whenever anyx ∈ S
andy ∈ x, y ∈ S. A (von Neumann)ordinal is a set that
is transitive and linearly ordered by relation∈. The class
of ordinals is also linearly ordered by∈, and the axioms of
ZF prove that this is a well-ordering inV . On ordinalsα, β,
α < β meansα ∈ β, andα = β+1 meansα = β∪{β}. (By
compactness, there are “non-standard” models of ZF+AC,
where the “ordinals” are not well-ordered, but that is not a
concern here; we are working overV .)

It is obvious than when aΣ1
1 formula ∃X1 . . .∃Xkψ

(with free variables~x) uniformly defines relationsSA in
τ -structuresA, then these relationsSA can be defined uni-
formly in V by aΣ1 formula:

SA = {~a ∈ An : V |= ∃Y1 . . .∃Yk

(χSat(τ ′/l,A[Y1/X1, . . . , Yk/Xk]/s, ψ/f, ~x/x,~a/v))}
whereτ ′ = τ∪{X1, . . . , Xk}, i.e., the symbolsX1, . . . , Xn

are now treated as predicate constants.

But the converse fails:

Example 4.1 (Well-known) Supposeτ contains binary re-
lationG.

1. There is noΣ1
1 formula ∃ ~Xφ(x, y) uniformally defining

the transitive closure ofG in all τ -structuresA. This
follows directly from compactness for first order logic.
Indeed, assume towards contradiction thatΣ1

1 formula
∃ ~Xφ expresses the transitive closure ofG. Consider the
infinite theoryΨ = {¬G(a, b),¬∃x0 . . .∃xn(G(a, x0) ∧
. . . ∧ G(xn, b)) : n ∈ N}, wherea, b are constants not
appearing in∃ ~Xφ. Clearly,Ψ∪{∃ ~Xφ(a, b)} is unsatisfi-
able, and so isΨ ∪ {φ(a, b)}. By compactness of FO, the
latter theory should have a finite unsatisfiable subset, and
this is clearly not the case.

2. But there is aΣ1 formulaψ(s, x, y) of set theorywhere
V |= ψ(A/s, d/x, d′/y) if and only if (d, d′) is in the
transitive closure ofGA. The formula is — in mixed
formal notation and English —

∃f, α( (α is a natural number) ∧ (f : α+ 1→A)∧
f(0) = x ∧ f(α) = y∧
∀n ∈ α(G(f(n), f(n+ 1)))

)

Theorem 4.2 There is aΣ1 formulaχposInd(`, s, d, x, v, r)
of set theory where

V |= χposInd(τ/`,A/s,∆/d,~v/x,~a/v, 〈S1, . . . , Sm〉/r)

if and only if

1. τ is a finite language,

2. A is a τ structure,

3. ∆ is a positive inductive definition of some relations
R1, . . . , Rm 6∈ τ , withm the length of〈S1, . . . , Sm〉, and
with free variables~x = x1, . . . , xn,

4. the arity of eachSi is the same as ofRi and~a is ann-
tuple of elements ofA (for n as above), and

5. 〈S1, . . . , Sm〉 = A∆, where the environment binds each
vi to ai.

For a proof of the above, again see,e.g., (Barwise 1975).
(And the same approach is used in our proof of Lemma 4.6.)
There is aΣ1 formula that identifies the list of symbolsRi

and their arities from the syntactic form of∆.

4.2 Background in Constructibility and Ordinal
Recursion Theory

Gödel proved the relative consistency of the axiom of choice
and the continuum hypothesis using a smaller class of sets,
the class of constructible sets, calledL. The constructible
sets are constructed by transfinite induction over all ordinals
α ∈ V ; L(α) is the set of sets thus constructed before stage
α. EachL(α), as well asL, is transitive.

Theorem 4.3 (absoluteness of∆0 and persistence ofΣ1)
LetS be a transitive set or class of sets. For any∆0 formula



φ(~x), and for any vector~s of appropriate length and of
elements ofS,

S |= φ(~s/~x) if and only ifV |= φ(~s/~x).

For anyΣ1 formulaφ(~x), and for any vector~s of appropri-
ate length and of elements ofS,

if S |= φ(~s/~x) thenV |= φ(~s/~x).

An ordinalσ is stableif, for everyΣ1 formulaφ with free
variables among~x, and for every~a ∈ L(σ), L |= φ[~a/~x]
if and only if L(σ) |= φ[~a/~x] — i.e., in standard notation,
L(σ) ≺1 L. There are countable stable ordinals. The least
one is calledσ0. It is not difficult to show that the structure
N ∈ L(σ0), which makesL(σ0) suitable to study expressive
power in the context ofN.

Theorem 4.4 A relationR on the natural numbers isΣ1
2

definable onN if and only if it is Σ1-definable onL(σ0).

Theorem 4.5 (Schoenfield Absoluteness Theorem)Every
Σ1 sentence(i.e.,formula with no free variables) of set
theory true inV is also true inL.

It is an easy generalization to show that, ifθ(x) is a Σ1

formula whose only free variable isx, and ifn is an integer,
if V |= θ(n/x) thenL |= θ(n/x).

4.3 Inference in FO(ID) isΠ1
2 over N

Lemma 4.6 There is aΣ1 formula

∃α, δ, F, π, d̂, w(θwfInd(α, δ, F, π, d̂, `, s, d, x, v, r, w))

of set theory whereθwfInd is ∆0 and

V |= θwfInd(τ/`,A/s,∆/d, ~x/x,~a/v, 〈S1, . . . , Sm〉/r, u/w)

if and only if

1. τ is a finite language,
2. A is a τ structure,
3. ∆ is a definition of some relationsR1, . . . , Rm 6∈ τ , with
m the length of〈S1, . . . , Sm〉, and with free variables~x
equal to somex1, . . . , xn,

4. the arities of eachSi is the same as ofRi and~a is an
n-tuple of elements ofA (for n as above), and,

5. in the notation of formula 2.2,〈S1, . . . , Sm〉 is the least
fixed point of(S∆)2.

Proof:
The constructions for parts (1-4) are fairly standard, so

we omit them; see,e.g., the proof of our Theorem 4.1 in
(Barwise 1975).

Theorem 4.2 shows that positive induction isΣ1 defin-
able, say by formula∃~yθ(`, s, d, x, v, r, ~y). The alternating
fixed point construction is by induction, where each stage
of the induction uses positive inductive definition. To cap-
ture the inner induction we useχposInd; to capture the outer
induction, we use a functionF with domain an ordinalα
(where, in light of earlier remarks, we could chooseα to be
any infinite ordinal with> |A| predecessors).

For each ordinalβ in its domain,F (β) wil be an ordered
pair

〈A[S1/R
−
1 , . . . , Sm/R

−
m], ~y〉, (4)

where each inductively defined predicateRi has been split
into positive occurrencesRi and negative occurrencesR−i as
in Definition 2.2 — and~y will be witnesses for existensial
quantifiers, as noted below. Below, let
• F (β)A beA[S1/s

−
1 , . . . , Sm/s

−
m],

• F (β)(i) be theSi in F (β), and
• F (β)(~y) be the~y of F (β).
Formally, we can replace mention of them below with∆0

formulas involvingF (β).
Our formula is

∃α, δ, F, π, d̂
( π is a parsing function witnessing thatφ defines~r
∧ d̂ is constructed fromd as in Definition 2.2
∧ α, δ are ordinals∧ (δ + 2 < α)
∧ F is a function with domainα
∧ ∀β < α(F (β) is of the form of (4))
∧ F (δ) = F (δ + 2) (so a fixpoint has been reached)
∧ 〈F (δ)(1), . . . , F (δ)(m)〉 ⊆
〈F (δ + 1)(1), . . . , F (δ + 1)(m)〉

∧
∧

1≤i≤m F (0)(i) = ∅
∧ ∀β < α(β is a successor ordinal→

θ(`, F (β − 1)A, d̂, x, v,
〈F (β)(1), . . . , F (β)(m)〉, F (β)(~y))

∧ ∀β < α(β is a limit ordinal →∧
1≤i≤m F (β)(i) =

⋃
γ<β(F (γ)(i) ∩ F (γ + 1)(i))

∧
∧

1≤i≤m ∀~x(~x ∈ ri ↔ ~x ∈ F (δ)(i))
)

It is fairly clear that the formula “says” thatF encodes the
stages of the alternating fixed point construction and that
F (δ) is a fixed point of(S∆)2. But there are really two
fixed points achieved this way,~S∞ andS∆(~S∞). As noted
earlier,~S∞ ⊆ S∆(~S∞), so the line following the fixed point
conditionF (δ) = F (δ + 2) states thatF (δ) gives the in-
tended one. For a limit ordinalβ, we should express that the
F (β)(i)’s are the limit of earlier lower approximations. For
eachγ < β, the intersectionF (γ)(i) ∩ F (γ + 1)(i) is the
lower approximation of the pairSγ,i, Sγ+1,i.

It can be shown that each of the conjuncts following the
initial ∃α, δ, F, ~r, z is expressible with a∆0 formula. It can
be shown that replacement/reflection axioms of ZF show
that the functionF itself exists (indeed, this is basically just
the standard proof that in set theory one can do definition by
recursion).

Theorem 4.7 There is aΣ1 formulaχFO(ID)(`, s, f, x, v)
of set theory where

V |= χFO(ID)(τ/`,A/s, φ/f, ~x/x,~a/v) if and only if

1. τ is a finite language,
2. A is a τ structure,
3. φ is a formula of FO(ID) with free variables~x,
4. ~a is a tuple of elements ofA, of the same length as~x, and



5. A |= φ(~a/~x).
Proof (sketch):

This construction repeats the standard construction used
for Theorem 4.1. First use existensial quantification to pro-
duce the parseπ for φ. The construction is now by induction
on the nodes the parse tree. The only new step for ID-logic is
to handle the base case of definitions. In fact, there are two
new base cases. Indeed, we assume that the formula is in
negation normal form, so that the only negative occurrences
of inductive definitions∆ are in the form¬∆. We cannot
express thatA |= ¬∆(~a/~x) through¬(A |= ∆(~a/~x)) since
then, theΣ1 formula expressingA |= ∆(~a/~x) would appear
under negation, andΣ1 formulas are not closed under nega-
tion. Fortunately, we can say thatA |= ¬∆(~a/~x) by aΣ1

formula, and this is our second base case.
SayA |= ∆(~a/~x) by writing

∃p, l′, s′, α, δ, F, π, d̂, r
( p is the tuple of defined predicates of∆
∧ `′ = ` \ p ∧ s′ = the reduct ofA to l′

∧ θwfInd(α, δ, F, π, d̂, `′, s′,∆/d, ~x/x,~a/v, r)
∧

∧
1≤i≤m F (δ)(i) = F (δ + 1)(i) ∧

∧
1≤i≤m pA

i = ri
).

SayA |= ¬∆(~a/~x) by writing

∃p, l′, s′, α, δ, F, π, d̂, r
( p is the tuple of defined predicates of∆
∧ `′ = ` \ p ∧ s′ = the reduct ofA to l′

∧ θwfInd(α, δ, F, π, d̂, `′, s′,∆/d, ~x/x,~a/v, r)
∧

∨
1≤i≤m F (δ)(i) 6= F (δ + 1)(i) ∨

∨
1≤i≤m pA

i 6= ri
).

Corollary 4.8 There is aΣ1 formulaχSATID
(f) of set the-

ory so that a FO(ID) sentenceφ is satisfiable if and only
if V |= χSATID

(φ/f), and φ is satisfiable if and only if
L(σ0) |= χSATID

(φ/f).
Proof: The formula χSATID

(f) =
∃`, sχFO(ID)(`, s, f, ∅, ∅) clearly satisfies the first property.
It is also routine to show that ifL(σ0) |= χSATID

(φ/f)
thenφ is indeed satisfiable.

So now supposeφ is satisfiable — soV |= χSATID(φ/f).
Recall that we represented formulas in set theory with their
Gödel numbers. By the generalization of the Schoen-
field Absoluteness Theorem,L |= χSATID(φ/f). Since
σ0 is a stable ordinal (and thus also infinite),L(σ0) |=
χSATID

(φ/f).

Corollary 4.9 (Skolem Theorem for FO(ID)) For φ a for-
mula of FO(ID), ifφ has a model, it has a countable(finite
or countably infinite)model.

Proof: By Corollary 4.8, ifφ is satisfiable,φ is satisfiable
in L(σ0). And all elements ofL(σ0) are countable.

Theorem 4.10 (a) Satisfiability of FO(ID) formulas isΣ1
2

overN. (b) For FO(ID) formulasφ, ψ, determining whether
ψ logically impliesψ is Π1

2 overN.

Proof: (a) is a consequence of Theorem 4.4 and Corol-
lary 4.8. (b) follows immediately.

5 Inference in FO(ID) is Π1
2-hard over

Arithmetic
We show here that determining whetherT |=[ID] φ, forT an
FO(ID) theory andφ first order, isΠ1

2-hard (over arithmetic),
even in the special case where∆ is a system ofpositivein-
ductive definitions.

Example 5.1 Letτ be the usual language{0, <,Succ,+, ·}
for arithmetic, plus one unary relationS to be inductively
defined. There is a finite FO(ID) theoryTN whose models
(or rather, their reducts to{0, <,Succ,+, ·}) are just the
isomorphic copies ofN. And all definitional rules inTN are
positive. For example, takeTN to be Peano’s theory in which
the induction schema is replaced by

∀xN(x) ∧
{
∀x(N(x)← x = 0),
∀x(N(x)← ∃y(x = Succ(y) ∧N(y)))

}
All models A of Peano’s axioms (with or with-
out the induction schema) have a “standard part”
{0A, p1qA, p2qA, p3qA, . . .}, which is isomorphic toN.
The positive inductive definition definesN as this set. So
∀xN(x) asserts that every element is in the standard model,
as desired.

Observation 5.1 (Relativized Kleene-Spector Theorem)
There are a recursive functionf from formulasφ(X,Y, x)
to Y -positive formulas φf (X,Y, z) and a recursive
function g from formulas φ(X,Y, x) to integers φg,
such that, for alln ∈ N and all setsX ⊆ N, for
∆ = {∀z[Y (z) ← φf (X,Y, z)]},

N[X/X] |= ∀Y φ(X,Y, x)[n/x]

if and only if

〈n, φg〉 ∈ Y N[X/X],∆

Proof (sketch): The proof is a straightforward modifica-
tion of the proof of Moschovakis’ generalization in§8A of
(Moschovakis 1974a). The observations are merely that (i)
the proof there constructs a formula explicitly — and thus
recursively — fromφ, and (ii) the extra relationX may be
just carried along as a parameter.

Theorem 5.2 (a) Determining whether a finite FO(ID) the-
ory is satisfiable isΣ1

2-hard over N. (b) Determining
whetherT |=[ID] ψ, for T a FO(ID) theory andψ FO(ID)
formula, isΠ1

2-hard overN.

Proof: As usual, (a) implies (b). We show (a) even in
the special case where the FO(ID) formula is of the form
ψ ∧∆ whereψ is first order and∆ is a single positive (in-
ductive) definition. We continue to use the notations from
above. We use that fact that, when an (inductive) defini-
tion is positive, the inductively defined relations always ex-
ist. Let∆ = {∀z[Y (z) ← φf (X,Y, z)]}.

N |= ∃X∀Y φ(X,Y, n)

if and only if

∃X ⊆ N(〈n, φg〉 ∈ Y N[X/X],∆



if and only if

TN ∪∆ ∪ {Y (〈pnq, pφgq〉)} is satisfiable in ID-Logic.

An interesting observation is that, although the expressive
power of the well-founded induction of FO(ID) is, in gen-
eral, greater than that of first order positive induction, the
complexity of determining satisfiability for FO[ID] is the
same as it is for first order logic plus just positive inductive
definability.

6 Open Problem: Expressive Power
Well-founded Induction N

Here we have discussed the expressive power of FO(ID). A
related issue is the expressive power of just well-founded in-
ductive definitions — as interpreted in FO(ID) (see Subsec-
tion 2.2) — over particular structures. The classical structure
to consider isN. So what relations are definable using well-
founded induction overN? Since FO(ID)’s inductive defini-
tions include all positive inductive definitions, it follows by
the Kleene-Spector Theorem that allΠ1

1 relations onN are
so definable. It follows easily from Theorem 5.2 that all so
definable relations areΠ1

2 overN. But neither theΠ1
1- nor

Π1
2-definable relations are closed under complementation, so

the sets definable using just FO(ID)’s nonmonotonic induc-
tion are strictly in between the two. We pose this question
for further research.
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