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Abstract

Severaljustification logicshave evolved, starting with the
logicLP, (Artemov 2001). These can be thought of as explicit
versions of modal logics, or logics of knowledge or belief, in
which the unanalyzed necessity (knowledge, belief) operator
has been replaced with a family of explicit justification terms.
Modal logics come in various strengths. For their correspond-
ing justification logics, differing strength is reflected in dif-
ferent vocabularies. What we show here is that for justifica-
tion logics corresponding to modal logics extendingT, vari-
ous familiar extensions are actually conservative with respect
to each other. Our method of proof is very simple, and gen-
eral enough to handle several justification logics not directly
corresponding to distinct modal logics. Our methods do not,
however, allow us to prove comparable results for justifica-
tion logics corresponding to modal logics that do not extend
T. That is, we are able to handle explicit logics of knowledge,
but not explicit logics of belief. This remains open.

1 Introduction
Let me begin with the obvious. In the sequence of modal
logicsT, S4, S5, each is stronger than the one before. They
have the same vocabulary, so it does not make sense to ask if
each is conservative over its predecessor. But each of these
logics has anexplicitcounterpart. These are logics in which,
instead of formulas of the form�X, we have formulas of
the formt:X, read “t is an explicit justification, or reason,
or proof ofX.” These explicit justifications come equipped
with certain machinery, and there is a small calculus involv-
ing this machinery. The first such logic wasLP, an explicit
counterpart ofS4, introduced by Sergei Artemov in a series
of papers culminating in (Artemov 2001). The syntax for
justification terms inLP allows a ‘bang’ operator,!. Drop-
ping it produces a logic often calledLP(T), an explicit coun-
terpart ofT. Adding an operator? produces a logic often
calledLP(S5), an explicit counterpart ofS5. (All this will
be presented more formally below.) What it means to say
these are explicit counterparts of the well-known modal log-
ics is embodied in theRealization Theorem, a fundamental
result first proved (constructively) forLP by Artemov, see
(Artemov 2001). First a definition, then the theorem.
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Definition 1.1 (Realization) Let X be a modal formula.
An LP realizationof X is a formula in the language ofLP
that results by replacing each occurrence of� with some
explicit justification,t. A realization isnormal if negative
occurrences of� are replaced with distinct variables (which
are always part of the language of explicit justification log-
ics).

Theorem 1.2 (LP Realization Theorem) If X is a theo-
rem ofS4 there is some normal realization ofX that is a
theorem ofLP. Conversely (and much simpler), if some re-
alization ofX is a theorem ofLP thenX is a theorem of
S4.

Here is an example, taken from (Artemov 2001). Ax-
iomatic properties of the various operators will be intro-
duced in the next section, after which the example should
take on more significance. The following is a theorem of
S4:

(�A ∨�B) ⊃ �(�A ∨�B) (1)

And here is a normal realization of (1), provable inLP.

(x:A ∨ y:B) ⊃ (a·!x + b·!y):(x:A ∨ y:B) (2)

In (2) the role of the constants is as follows (see the discus-
sion of the Axiom Necessitation rule in the next section).
Constanta is an unanalyzed justification of the classical ax-
iom x:A ⊃ (x:A ∨ y:B) andb is an unanalyzed justification
of the classical axiomy:B ⊃ (x:A ∨ y:B).

There are analogs of theS4 Realization Theorem con-
nectingLP(T) with T, andLP(S5) with S5. Now, each of
LP(T), LP = LP(S4), andLP(S5) is an extension of its
predecessor, vocabularies are different, and in fact each is a
conservativeextension of its predecessor.

In this paper we will show the conservativity result just
stated, as part of a broader family of similar results. This
will be done using a very simple proof theoretic approach.
Unfortunately, the approach has its limits, so there are open
problems at the end. The present paper had its origins in a
technical report, (Fitting 2007a).

2 Justification Logics
It is reasonable to assume a reader of this paper is familiar
with the ‘standard’ modal logics:K, T, K4, S4, S5. No



other modal logics will be involved here. Justification log-
ics are much less familiar, however, so we first introduce the
language, then the axiomatic characterizations for several of
them. We also introduce a non-standard system of designat-
ing them, which is particularly handy here. Of course we
supply the names that are standard in the literature as well.

2.1 Language
We begin with the family ofjustification terms. (These were
calledproof termsin (Artemov 2001), for important reasons
that are not part of our concern here.) Justification terms are
built up fromvariables: x1, x2, . . . ; andconstant symbols:
c1, c2, . . . . They are built up using the followingoperation
symbols: + and·, both binary, and! and?, both unary. These
are used as infix and prefix, respectively.

This is not the place for an elaborate discussion of the in-
tended meaning of these operations. See (Fitting 2007b) for
something of a history of the subject. But here is a brief
outline. The operation· is an application operation. The
intention is, ift is a justification ofX ⊃ Y andu is a justi-
fication ofX thent · u is a justification ofY . The operation
+ combines justifications,t + u justifies whatevert justifies
and also whateveru justifies. ! is a kind of positive verifier,
if t justifiesX then!t justifies the fact thatt justifiesX. And
? is a negative verifier, ift does not justifyX then?t justifies
that fact.

Formulasare built up frompropositional letters: P1, P2,
. . . , and afalsehood constant, ⊥, using⊃, in the usual way,
together with an additional rule of formation,t:X is a for-
mula providedt is a justification term andX is a formula.

We will be interested in sub-languages, and so the follow-
ing notation will be used. IfS is any subset of{+, ·, !, ?}
thenL(S) is that part of the language described above in
which all justification operations come from the setS.

2.2 Axiomatics
Axiom systems for justification logics evolved from one for
LP, either by removing or by adding machinery. To begin
with, here is a list of axioms from which we will pick and
choose; more properly these are axiom schemes.

Classical Axioms: all tautologies
Truth Axioms: t:X ⊃ X

(X ⊃ Y ) ⊃ (t:X ⊃ Y )
t:(X ⊃ Y ) ⊃ (u:X ⊃ Y )

+ Axioms: t:X ⊃ (t + u):X
u:X ⊃ (t + u):X

· Axiom: t:(X ⊃ Y ) ⊃ (u:X ⊃ (t · u):Y )
! Axiom: t:X ⊃!t:t:X
? Axiom: ¬t:X ⊃?t:¬t:X

The Truth Axioms include two that are not standard. The
last two are, in fact, easy consequences of the first Truth Ax-
iom and the other axioms. Likewise, as Classical Axioms we
assume all tautologies though a finite set of schemes would
be sufficient. Both of these peculiarities arise for the same
reason, and have to do with the role of constants inLP. Fur-
ther discussion is postponed until after they have been intro-
duced.

For rules, of course we have the standard one.

Modus Ponens:
X X ⊃ Y

Y

Finally there is a version of the modal necessitation rule,
and here there is some non-uniformity. Constant symbols
are intended to serve as justifications for truths that we can-
not further analyize, but our ability to analyize is dependent
on available machinery. Consequently, we have three differ-
ent versions, about which more will be said below.

Definition 2.1 The following are versions of aConstant Ne-
cessitationrule.

Axiom NecessitationIf X is an axiom andc is a constant,
thenc:X is a theorem.

Iterated Axiom NecessitationIf X is an axiom andc1, c2,
. . . , cn are constants, thenc1:c2:. . . cn:X is theorem.

Theorem NecessitationIf X is a theorem andc1, c2, . . . ,cn

are constants, thenc1:c2:. . . cn:X is theorem.

An important feature of justification logics isinternaliza-
tion: if X is a theorem then for some justification termt,
t :X is a theorem. Typically the termt can be constructed
from a proof ofX, and thus justification logics internalize
their own proof theory. But the construction oft requires a
certain minimal amount of machinery. Axioms themselves
are never the result of elaborate proofs—we simply assume
them. This is embodied in theAxiom Necessitationrule
above, the weakest of the three versions. Suppose we have
this rule and we are working with a justification logic with!
available, that is, we have the! axiom. Then ifX is an axiom
it has a constant justification, so we havec:X, this in turn has
a justification,!c:c:X, this has its justification,!!c:!c:c:X, and
so on. But if! is not part of the machinery we cannot take
this route, and soIterated Axiom Necessitationwill be as-
sumed instead. Finally if we have a really weak justification
logic, not containing·, we lack machinery to analyze any-
thing complex, and theTheorem Necessitationversion will
be assumed—everything provable has a justification, about
which nothing very interesting can be said.

Clearly the role of constants has much to do with the
choice of axioms. Say the version of Constant Necessitation
being used is Axiom Necessitation. Then aconstant speci-
ficationC is an assignment of axioms to constants (there is
a similar notion for Iterated Axiom Necessitation). A proof
meets constant specificationC provided that wheneverc:X
is introduced using the Axiom Necessitation rule, thenX is
a formula thatC assigns to constantc. A constant specifica-
tion can be given ahead of time, or created during the course
of a proof. A constant specification isinjective if at most
one formula is associated with each constant. Replacing ax-
ioms with equivalent versions changes the use of constants
in both the Axiom Necessitation and the Interated Axiom
Necessitation rules—it alters the constant specification. It
is not simple to say, then, what it means to have equivalent
axiomatizations of a justification logic—it does not simply
mean they have the same set of theorems. This issue will be
partially addressed below, in Section 4. For the time being,
our adoption of extra Truth Axioms is so that the behavior of
constants is simple to describe, as proofs are manipulated in



the ways we will consider below. Again, Section 4 examines
ways to get rid of this mildly non-standard item.

Now we can properly specify the family of justification
logics we will be considering.

Definition 2.2 Let S be a subset of{+, ·, !, ?}. We define
two justification logics whose language isL(S). They are
denotedK(S) (with K for knowledge) andB(S) (with B
for belief). These have axioms and rules specified as fol-
lows.

1. For axioms, bothK(S) andB(S) have the Classical Ax-
ioms.K(S) assumes the Truth Axioms, whileB(S) does
not. Finally, both assume the+ axiom if + is in S, and
similarly for ·, !, and?.

2. For rules, both haveModus Ponens. If both · and! are in
S, K(S) andB(S) have theAxiom Necessitationrule. If
· is in S but ! is not, both have theIterated Axiom Necessi-
tation rule. Finally, if · is not inS, both have theTheorem
Necessitationrule.

The primary utility of the notation introduced here is that
it makes it very easy to state our main results compactly.
Since our nomenclature is not standard, here are some cor-
respondences with the literature. Besides these logics, there
are others that have been considered in the literature, and
there are also systems that can be characterized in present
terms, for exampleK({!}), that have not been considered in
the literature. (It’s probably not very interesting.)

Standard Name Used Origin Modal
Name Here Version
LP(K) B({+, ·}) (Brezhnev 1999) K
LP−(K) B({·}) (Fitting 2005)
LP(T) K({+, ·}) (Brezhnev 1999) T
LP−(T) K({·}) (Fitting 2005)
LP(K4) B({+, ·, !}) (Brezhnev 1999) K4
LP−(K4) B(·, !}) (Fitting 2005)
LP K({+, ·, !}) (Artemov 2001) S4
LP− K({·, !}) (Fitting 2005)
LP(S5) K({+, ·, !, ?}) (Pacuit 2005) S5

(Rubtsova 2006)

All the logics considered here have two fundamental
properties common to justification logics. Since these will
be needed in Section 4, they are stated now for the record.

Proposition 2.3 (Substitution Closure) For every S ⊆
{+, ·, !, ?}, bothK(S) and B(S) are closed under substi-
tution. That is, ifX is a theorem of one of these logics, and
X ′ is the result of replacing all occurrences of a variablex
with a justification termt, thenX ′ is also a theorem.

The proof for this is standard. It is true for axioms, since
they are specified by axiom schemes. Then one shows it is
true for each line of a proof by induction on proof length.
Generally the constant specification needed for a theorem
and for a substitution instance of it will be different.

Proposition 2.4 (Internalization) For every operator set
S ⊆ {+, ·, !, ?}, bothK(S) andB(S) have the internaliza-
tion property: ifX is a theorem so ist:X for some ground
(that is, variable free) justification termt.

If S contains·, this proposition has a proof due to Arte-
mov, (Artemov 2001). IfS does not contain·, the proposi-
tion defaults to the Theorem Necessitation rule.

3 Results
Theorem 3.1 Let S1, S2 ⊆ {+, ·, !, ?} and supposeS1 (
S2. ThenK(S2) is a conservative extension ofK(S1).

The proof for this Theorem shows how to convert proofs
from logic extensions back into proofs in the logic being
extended. It does this by eliminating operator symbols. The
rest of the section is devoted to giving the argument.

Definition 3.2 Let o be one of+, ·, !, or?. If X is a formula
of L({+, ·, !, ?}), by Xo we mean the result of eliminating
all justification terms containingo. More precisely, we have
the following recursive characterization. For propositional
lettersP o = P , and also⊥o = ⊥. Of course(X ⊃ Y )o =
(Xo ⊃ Y o). And finally:

(t:X)o =
{

Xo if o occurs int
t:Xo if o does not occur int

The central part of the proof of Theorem 3.1 is contained
in the following Proposition. Note that its proof is construc-
tive (and simple).

Proposition 3.3 (Operator Elimination) Assume S ⊆
{+, ·, !, ?} and leto be one of the operation symbols inS.
If Z is one of the axioms ofK(S), thenZo is an axiom of
K(S − {o}).

Proof There are several cases and subcases, depending on
choice of axiom and choice of operation symbol. The argu-
ment in each case is straightforward. It might be simpler to
construct your own argument rather than reading mine. Here
are the cases.

Classical Axiom: If Z is a tautology, so isZo.
Truth Axiom: Z is t:X ⊃ X or (X ⊃ Y ) ⊃ (t:X ⊃ Y )

There are two simple subcases
o does not occur int. ThenZo is again a Truth Axiom,

of the same kind.
o occurs int. ThenZo is a Classical Axiom.

Truth Axiom: Z = t:(X ⊃ Y ) ⊃ (u:X ⊃ Y ) Again there
are simple subcases.
o does not occur int or in u. Then Zo is again a Truth

Axiom, of the same kind.
o occurs inu but not int. ThenZo is t : (Xo ⊃ Y o) ⊃

(Xo ⊃ Y o), a different kind of Truth Axiom.
o occurs int but not inu. ThenZo is (Xo ⊃ Y o) ⊃ (u:

Xo ⊃ Y o), again a different kind of Truth Axiom.
o occurs in botht andu. Then Zo is (Xo ⊃ Y o) ⊃

(Xo ⊃ Y o), a Classical Axiom.



+ Axiom: Z = t:X ⊃ (t + u):X The other + axiom is
similar so only this one is considered.

o occurs int. Zo is Xo ⊃ Xo, a Classical Axiom.
o occurs inu but not int. Zo is t:Xo ⊃ Xo, a Truth Ax-

iom.
o occurs in neithert noru, ando is not+. Zo is t:Xo ⊃

(t + u):Xo, another+ axiom.
o occurs in neithert noru, ando is +. Zo is t:Xo ⊃ Xo,

a Truth Axiom.

· Axiom: Z = (t:(X ⊃ Y ) ⊃ (u:X ⊃ (t · u):Y )) The sub-
cases are as follows.
o occurs in botht andu. In this caseZo is (Xo ⊃ Y o) ⊃

(Xo ⊃ Y o), a Classical Axiom.
o occurs inu but not int. ThenZo is t : (Xo ⊃ Y o) ⊃

(Xo ⊃ Y o), an instance of the first Truth Axiom.
o occurs int but not inu. ThenZo is (Xo ⊃ Y o) ⊃ (u:

Xo ⊃ Y o), an instance of the second Truth Axiom.
o occurs in neithert noru, ando is not·. Then Zo is t :

(Xo ⊃ Y o) ⊃ (u :Xo ⊃ (t · u):Y o), an instance of
the· Axiom.

o occurs in neithert noru, ando is ·. Then Zo is t :
(Xo ⊃ Y o) ⊃ (u:Xo ⊃ Y o), an instance of the third
Truth Axiom.

! Axiom: Z = t:X ⊃!t:t:X The cases are as follows.
o occurs int. Zo is Xo ⊃ Xo, a Classical Axiom.
o does not occur int, ando is not!. Zo is t:Xo ⊃!t:t:Xo,

a ! Axiom.
o does not occur int, ando is !. Zo is t :Xo ⊃ t :Xo, a

Classical Axiom.
? Axiom: Z = ¬t:X ⊃?t:¬t:X This case is similar to the!

case.

Finally there is very little left to do.

Proof of Theorem 3.1 SupposeS1 ( S2, where both are
subsets of{+, ·, !, ?}. AssumeS2 contains a single opera-
tion symbolo that is missing fromS1. (The case of multiple
operation symbols is handled by iterating the single opera-
tor case.) LetX be a theorem ofK(S2), whereX does not
contain any occurrence ofo. We showX is a theorem of
K(S1).

Consider a proof ofX in K(S2). Replace each line,Z,
of that proof withZo. Each axiom ofK(S2) is replaced
with an axiom ofK(S1), by Proposition 3.3. Applications
of modus ponensturn into other applications ofmodus po-
nens. Also, applications of Constant Necessitation inK(S2)
turn into applications of Constant Necessitation inK(S1),
becauseK(S2) axioms turn intoK(S1) axioms. Thus the
entire proof converts to one inK(S1). Finally, sinceX did
not containo, it is still the last line of the proof, henceX is
provable inK(S1).

4 Embedding and Equivalence
The role of constants in justification logics imposes cer-
tain peculiar complications. For instance considerLP, or

K({+, ·, !}) in present terminology. There is much flexi-
bility possible in its axiomatization. For one thing we need
an underpinning of classical logic, but that could be axiom-
atized in several ways—infinitely many different ways, in
fact. But a choice of axiomatization affects applications of
the Constant Necessitationrule. If, say,X ⊃ X is an ax-
iom, we can concludec:(X ⊃ X) for a constantc. If we
have a different axiomatization of classical logic in which
X ⊃ X is not an axiom, nonetheless it will be a theorem,
but thenConstant Necessitationdoes not apply to it. We
do, however, have the internalization feature to appeal to,
Proposition 2.4: for some justification termt, t:(X ⊃ X)
will be a theorem. In some sense these differences shouldn’t
matter very much—what is basic in one axiomatization (and
so has a constant justification) is subject to proof in the other
(and so has a more complex justification). In this section we
address the issue. Our treatment is not as general as might
be desired. It assumes· and! are present, so the version of
Constant Necessitation used is Axiom Necessitation. And it
assumes aninjectiveconstant specification (defined below)
is used. Some of this can be relaxed, but the technical de-
tails become more complex. What is given here is enough to
‘justify’ the presence of three Truth Axiom schema in Sec-
tion 2.2, instead of the customary single one.

Recall that in this section we are assuming Axiom Neces-
sitation is the version of Constant Necessitation we use.

Definition 4.1 We say one justification logic,J1, embeds in
another, J2, provided there is a mapping from constants of
J1 to justification terms ofJ2 that converts each theorem of
J1 into a theorem ofJ2.

We say two justification logics areequivalentif each em-
beds in the other.

Here is a basic result concerning these notions. As noted
earlier, this is not as general as it might be.

Theorem 4.2 (Embedding)LetJ1 andJ2 be two justifica-
tion logics in the same languageL(S), where{·, !} ⊆ S ⊆
{+, ·, !, ?}. We assume the rules of infererence forJ1 andJ2

aremodus ponensand Axiom Necessitation, as given in Sec-
tion 2.2, but the choice of axioms may be entirely different.
Suppose the following conditions are met.

1. An injective constant specificationC is used for proofs in
J1.

2. J1 is axiomatized using axiom schemes.
3. J2 satisfies Substitution Closure (see Proposition 2.3).
4. J2 satisfies Internalization (see Proposition 2.4).
5. Every axiom ofJ1 is a theorem ofJ2.

ThenJ1 embeds inJ2.

Proof We must create a mapping from constants ofL(S) to
terms. Ifc is a constant that the constant specificationC does
not assign anyJ1 axiom to, we simply mapc to itself. Now
supposeC does assignJ1 axiom A to c; we specify which
term t the constantc maps to. SinceC is injective, this ax-
iom A is uniquely determined byc. Still, complications can
arise due to the fact thatA may contain an occurrence of



c itself. If this happens,c is said to beself-referential, and
it was shown in (Kuznets 2006) that such self-referentiality
is essential. (Thanks to Sergei Artemov for suggestions on
how to handle this.) Supposec1(= c), c2, . . . ,cn are all the
constants occurring inA (in some standard order). For sim-
plicity we write A(c, c2, . . . , cn) for A. Let x1, x2, . . . , xn

be distinct variables not occurring inA (again in some stan-
dard order). SinceA is an axiom ofJ1, which is axiomatized
using axiom schemes, thenA(x1, x2, . . . , xn) will also be
an axiom. Then by hypothesis,A(x1, x2, . . . , xn) is a the-
orem ofJ2. SinceJ2 satisfies Internalization, there is some
ground justification termt such thatt:A(x1, x2, . . . , xn) is
a theorem ofJ2, if there is more than one such term, say
we choose the first in some standard enumeration. Now, we
map the constantc to the justification termt.

For each constantc, let c′ be the term that was assigned
to c above. For each formulaZ in the languageL(S), let Z ′

be the formula that results when each constantc is replaced
by the justification termc′.

SupposeZ1, Z2, . . . ,Zn is a proof in the logicJ1, meet-
ing constant specificationC. The sequenceZ ′

1, Z ′
2, . . . , Z ′

n
is not, itself, a proof inJ2, but each item in it is a the-
orem of J2. This has a straightforward proof by induc-
tion. If Zi is an axiom ofJ1, sinceJ1 is axiomatized by
schemes,Z ′

i will also be an axiom, and hence a theorem
of J2 by hypothesis 5. IfZi follows from earlier termsZj

andZj ⊃ Zi by modus ponens, Z ′
i also follows fromZ ′

j

and(Zj ⊃ Zi)′ = (Z ′
j ⊃ Z ′

i) by modus ponens. Finally
we have the Axiom Necessitation case. SupposeZi is c:A
whereA is aJ1 axiom. SayA = A(c, c2, . . . , cn), where all
the constants ofA are explicitly displayed. Ifx1, x2, . . . ,xn

are variables not occurring inA, as above, there is a ground
termt = c′ such thatt:A(x1, x2, . . . , xn) is a theorem ofJ2.
SinceJ2 satisfies Internalization,t:A(c′, c′2, . . . , c

′
n) is also

a theorem, and this isc′:A′ = [c:A]′ = Z ′
i.

It now follows that ifX is any theorem ofJ1 thenX ′ will
be a theorem ofJ2.

Usually in the literature, the Truth Axiom is given by a
single schema:t : X ⊃ X. We assumed two additional
schemas:(X ⊃ Y ) ⊃ (t :X ⊃ Y ) and t : (X ⊃ Y ) ⊃
(u:X ⊃ Y ). It is an easy consequence of Theorem 4.2 that,
for anyS with {·, !} ⊆ S, if we had axiomatizedK(S) with
the usual single Truth schema instead of the way we did, the
resulting logic would have been equivalent to the version
we used, in the sense of Definition 4.1. Similarly we could
have used “enough” tautologies instead of taking all of them
as Classical Axioms, and that would have given equivalent
logics as well. We made the choices we did because then
the manipulations involved in the proof of Proposition 3.3
always turned axioms into axioms, and hence the behavior
of Constant Necessitation was simple to describe.

5 Conclusion
The main thing left undone is quite obvious: there is
no analog of Theorem 3.1 for logics of belief instead of
knowledge—of the formB(S) instead ofK(S). The meth-
ods of proof used here clearly do not extend to explicit logics
of belief. Many of the cases involved in the proof of Propo-

sition 3.3 yield an instance of a Truth Axiom. Without the
Truth Axioms, present methods cannot succeed. Nonethe-
less, either a belief analog of Theorem 3.1 holds, or it does
not. A result either way would be of interest. The desirable
conjecture is that it holds, but a proof is left to others.

One other item was left unfinished, but it is of lesser im-
portance. Theorem 4.2 needed the presence of both· and
!. Producing a version not needing! is straightforward, but
a bit messy to state. A version without· probably has lit-
tle intrinsic interest. Also, giving an appropriate version (if
there is one) not requiring aninjectiveconstant specification
is still a problem. But this too is left to others.
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