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Abstract

We present a new semantical description of non-
monotonic modal logic whose underlying (monotonic)
modal logic S is characterized by a class of cluster-
decomposable Kripke interpretations: it is shown that
S-expansions coincide with the theories of isolated clus-
ters of the canonical model of S.

1 Introduction

Non-monotonic modal logic is intended to simulate the
process of human reasoning by providing a formal-
ism for deriving consistent conclusions from an incom-
plete description of the world. The language of non-
monotonic modal logic contains a modal connective L
(known) and its dual M (consistent), and the logic it-
self is defined syntactically by expansions for a set of
axioms, which are fixpoints of a monotonic (provabil-
ity) operator acting on sets of modal formulas. Loosely
speaking, expansions are obtained by augmenting the
underlying modal logic with the “inference rule” of the
form

“if = is not derivable, then ¢ is possible,” (1)

called possibilitation ((McDermott 1982)), or negative
introspection ((Marek & Truszczynski 1993, p. 224)).

However, the fixpoint approach is not sufficiently
clear because of its circularity /self-reference. This defi-
ciency motivated the minimal model semantics of non-
monotonic logic introduced by Schwarz in (Schwarz
1992). In this semantics the expansions for a set of
axioms A are the theories of the models of A which are
minimal with respect to a certain partial order, called
the preference relation.

Schwarz’s semantical description of expansions ap-
plies to any underlying modal logic that can be char-
acterized by a cluster closed class of Kripke interpreta-
tions, i.e., a class of Kripke interpretations that either
is closed under concatenation with clusters, or consists
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of cluster-decomposable Kripke interpretations and sat-
isfies some natural closure condition.! In particular,
modal logics K, T, and S4 are characterized by classes
of Kripke interpretations possessing the former prop-
erty, and logics S4F, Sw5, and a very important KD45
(that underlies autoepistemic logic) are characterized by
classes of Kripke interpretations possessing the latter.

In this paper we present a non-preferential seman-
tics of non-monotonic modal logic whose underlying
modal logic S is characterized by a class of cluster-
decomposable Kripke interpretations. We show that
S-expansions for a set of axioms A coincide with the
theories of isolated clusters of the canonical S,A-model.
As a consequence of our approach we obtain that au-
toepistemic logic separates (models of) knowledge from
(models of) belief.

The rest of the paper is organized as follows. In the
next section we recall the definition of propositional
non-monotonic modal logic and list some of its basic
properties. Our main result — the canonical model se-
mantics of non-monotonic modal logic is presented in
Section 3. Then in Section 4 we discuss sufficient con-
ditions for an expansion to be the theory of an isolated
cluster of the canonical model. Finally, in Section 5
we apply our semantical description of expansions to
autoepistemic logic.

2 Propositional non-monotonic logic

In this section we recall some basic properties of propo-
sitional monotonic and non-monotonic modal logics.

2.1 Propositional modal logic

We start with the language of classical propositional
logic that contains propositional variables and only two
classical propositional connectives L (a logical constant
falsity) and D (implication). Connectives T (truth),
- (negation), A (conjunction), and Vv (disjunction) are
defined in a usual manner, e.g., ~p is ¢ D L.

1t should be also noted that there is a minimal model
semantics of ground non-monotonic modal logic whose un-
derlying (monotonic) modal logic is characterized by a class
of cluster-decomposable Kripke interpretations, see (Donini,
Nardi, & Rosati 1997).



The language of propositional modal logic is obtained
from the language of classical propositional logic by
extending it with a modal connective L (known). As
usual, the dual connective M (consistent) is defined by
= L—. Formulas not containing L are called ground and
the set of all ground formulas is denoted by GFm.

The modal logic K results from classical propositional
logic? by adding the inference rule

NEC ¢F Ly
called necessitation and the axiom scheme

k L(p D) D (Ly D Ly).

The “classical” modal logics are obtained by adding
to K all instances of some axiom schemes, e.g.,

LoDy
MT
Ly D LLyp
MLy D Ly
MLy D¢
5 MLy D (p D Lyp)
(o A ML) D L(MpV ¢)

Adding t to K results in T, adding 4 to T results
in S4, adding 5 to S4 results in S5, adding w5 to S4
results in Sw5, and adding f to S4 results in S4F, etc.,
see (Marek & Truszczyriski 1993, page 197).

For a modal logic S and a set of formulas A, called
(proper) azioms, we define the (monotonic) theory of
A, denoted Thg(A), as Thg(A) = {¢ : A s ¢}. As
usual, we write A Fg ¢, if there exists a sequence of
formulas ¢1,¢2,..., pn = ¢ such that each ¢; is an
axiom from S, or belongs to A, or is obtained from
some of the formulas 1, @2, ..., p;—1 by modus ponens
or necessitation.

The Kripke semantics of propositional modal logic is
defined as follows. A Kripke interpretation is a triple
M = (U, R, I), where U is a non-empty set of possible
worlds, R C U x U is an accessibility relation on U,
and I is an assignment to each world in U of a set of
propositional variables. In what follows we identify a
(ground) propositional interpretation with the set of all
propositional variables it satisfies.

Definition 1 Let 9 = (U, R, I) be a Kripke interpre-
tation and let u € U. We say that the pair (9%, u) sat-
isfies a formula ¢, denoted (9, u) = ¢, if the following
holds.

o If v is a propositional variable p, then (9, u) = ¢ if
and only if p € I(u);

SN N

o (M,u) L

e Mu) = ¢ D ¢ if and only if (M,u) ¥ ¢ or
(M, u) = ¢

e (M,u) = Ly if and only if for every v such that
(u,v) € R, (M,v) [ .

2We assume a standard set of propositional axioms and
the inference rule modus ponens.

The set of all formulas satisfied by (90, u) is called
the theory of (9, ) and is denoted by Th(IM, u).

We say that a Kripke interpretation 90 satisfies a
formula ¢, denoted M = ¢, if and only if for every
u €U, (M,u) E ¢, and we say that M satisfies a set of
formulas A (or is a model of A), denoted M = A, if and
only if 9 = ¢ for every ¢ € A. The set of all formulas
satisfied by 90 is called the theory of 9 and is denoted
by Th(%).

For Proposition 2 below we shall need the following
notation.

Let R be a binary relation on a set U and let i be
a non-negative integer. The binary relation R* on U is
defined by the following induction.

e R° = {(u,u) :u € U}, ie., R®is the diagonal relation
on U, and
o R = {(u,v)

R* and (w,v) € R}.
That is, (u,v) € R if and only if there exists a path (of
edges) of length 4 from u to v.

Let 9t = (U, R, I) be a Kripke interpretation and let
u € U. We denote by IM* the Kripke interpretation
(U*,R*,I"), where U* = {v : (u,v) € Ui;e, R'},® and
R* = R|y~ and I* = I|yu are the restrictions of R and
I on U", respectively.

Proposition 2 Let M = (U,R,I) be a Kripke in-
terpretation and let w € U. Then for a formula ¢,
(M,u) = g if and only i (M, u) = .

The proof is by a straightforward induction on the
formula complexity and is omitted.

for some w € U, (u,w) €

Definition 3 Let C be a class of Kripke interpretations
and let S be a modal logic. We say that S is charac-
terized by C, if the following holds. For every set of
formulas A and every formula ¢, A kg ¢ if and only if
for every Kripke interpretation 9t € C, M = A implies
MmE .t

The logic K is characterized by the class of all Kripke
interpretations. In particular, a set of formulas is con-
sistent if and only if it has a model. The logic K + d is
characterized by the class of all Kripke interpretations
whose accessibility relation has no dead ends®, the logic
K + b is characterized by the class of all Kripke inter-
pretations with a symmetric accessibility relation, and
the logic K+ 5 is characterized by the class of all Kripke
interpretations with a euclidean accessibility relation®,
etc.

Our semantical description of non-monotonic logic
is based on the notion of the canonical model which

3That is, U* consists of all worlds of U which are reach-
able from » by means of R.

4That is, C is sound and complete for S.

5A Kripke interpretations 9 = (U, R, I) has no dead
ends, if for every u € U there exists a v € U such that
(u,v) € R.

A relation R C U x U is euclidean, if for every u, v, w €
U, the containment (u,v), (u,w) € R implies (v,w) € R.



we recall below (see (Marek & Truszczyriski 1993, Sec-
tions 7.2 and 7.3)). In what follows S and A are a modal
logic and a set of formulas, respectively.

Definition 4 A set of formulas I is said to be S,A-
consistent, if for no finite subset T' of T, A kg —1/\¢6F,<p.

Definition 5 Maximal (with respect to inclusion) S, A-
consistent sets of formulas are called S,A-mazimal.

Example 6 Let 9t = (U, R,I) be a model of S that
satisfies A and let u € U. It follows from the definition
of = that Th(9M,u) is S,A-maximal.

Proposition 7 (See (Marek & Truszczynski 1993,
Lemma 7.30, p. 204).) Let T be an S,A-mazimal set of
formulas. Then for each formula ¢, exactly one mem-
ber of {¢,—p} is in T.

To define the S,A-canonical model we need one more
bit of notation. For a set of formulas I' we define the
set of formulas I'~ by

I ={¢:LpeT}.

Definition 8 The S,A-canonical model Mg a4 =

(Us,a,Rs,4,Is,4) is defined as follows.

e Ug, 4 is the set of all S,A-maximal sets of formulas.

o Rs 4= {(u,v) €Us,a xUs a:u" Cu}.

o I3 4(u) is the set of all propositional variables which
belong to w.

Theorem 9 (See (Marek & Truszczynski 1993, The-
orem 7.32, p. 206).) For any formula ¢ and any
u € Us, 4, (Ms, 4,u) E ¢ if and only if ¢ € u.

Remark 10 Let 9 = (U, R,I) be a model of S that
satisfies A and let u,v € U be such that (u,v) € R. It
follows from the definition of | that (Th(M,u))” C
Th(9M,v). This together with Example 6 imply that
M naturally embeds into Mg 4 via

u— Th(OM,u), uelU’

Therefore, Ms, 4 contains all information about A, be-
cause it “includes” all models of S which satisfy A.

For Schwarz’s minimal model semantics of non-
monotonic modal logic in Section 2.3 we shall also need
the following definition.

Definition 11 Kripke interpretations of the form
(U,U x U,I) are called clusters and are denoted by
U, 1).

It can be readily seen that S5 is characterized by the
class of all clusters, (e.g., see (Marek & Truszczyriski
1993, Theorem 7.52, p. 216)).

The following simple lemma motivates Definition 13
below.

"This embedding is, actually, the filtration of 9 through
the set of all modal formulas, see (Hughes & Cresswell 1984,

pp. 136).

Lemma 12 Let M = (U',I') and M" = ({U",I") be
such that

Th(') N GFm = Th(M") N GFm.
Then Th(M') = Th(IM").

The proof of the lemma is by a straightfor-
ward induction on the formula complexity. Alterna-
tively, the lemma immediately follows from (Marek
& Truszczynski 1993, Theorem 8.10, p. 228; Theo-
rem 8.12, p. 229; and Corollary 8.19, p. 233). We leave
the details to the reader.

Definition 13 A cluster 9t = (U, I) is called mazimal,
if for each (ground) propositional interpretation ¢ satis-
fying Th(9) N GFm there is a world u € U such that
v =1I(u).®

For a cluster 9t we denote by [91] the cluster (U, I),
where

e U consists of all propositional interpretations satisfy-
ing Th(OM) N GFm and

e [ is the identity function on U.

By definition, [] is maximal, and, by Lemma 12,
Th([N]) = Th(M).

2.2 Propositional non-monotonic modal
logic

Here we recall the definition of propositional non-
monotonic modal logic based on the McDermott and
Doyle fixpoint equation ((McDermott & Doyle 1980)).
Definition 14 below is an extension to a modal logic S
of McDermott’s original definition ((McDermott 1982))
that only dealt with the classical modal logics T, S4,
or S5. A general form of McDermott’s definition is as
follows.

Definition 14 ((Marek & Truszczyniski 1993, Defini-
tion 9.2, p. 252)) Let A be a set of modal formulas
(axioms) and let S be a modal logic. An S-consistent
set of formulas E is called an S-ezpansion for A if

E=Ths(AU{M¢: E /s ~p}). (2)

That is, S-expansions for A can be thought of as the
“deductive closures” of A in S extended with the possi-
bilitation rule (1).

The following property of expansions immediately
follows from (Marek & Truszczynski 1993, Theo-
rem 8.12; p. 229, and Theorem 9.4, p. 253).

Proposition 15 Let A be a set of formulas, S be a
modal logic, and let E be an S-expansion for A. Then
E is the theory of a cluster.

Proposition 16 Let 9N be a cluster satisfying A. Then
Th(9ON) is an S-expansion for A if and only if

Th(9M) = Ths(AU {Mep: M = My}).

8Recall that we identify a propositional interpretation
with the set of all propositional variables it satisfies.



Proof By (2), it suffices to show that for each formula
®,
ME Mo ®3)
if and only if
Th(IM) Vs —p. (4)
By soundness and completeness of the Kripke seman-
tics, (4) is equivalent to —¢ & T'h(9M), which, in turn,
is equivalent to (3), because 9 is a cluster. 1

2.3 The minimal model semantics

This section contains Schwarz’s semantics of proposi-
tional non-monotonic modal logic ((Schwarz 1992)). It
is based on Definitions 17-20 below.

Definition 17 Let 9’ = (U',R',I') and M" =
(U",R",I"Y be Kripke interpretations such that U’ N
U" = 0. The concatenation of M" to M, denoted
M © M, is the Kripke interpretation (U, R, I}, where
e U=U'UU",

e R=R U{U' xU")UR", and

1 . !
e [ is defined by I(u) = { %//((uu)) g Z g g” :

Definition 18 ((Schwarz 1992)) Let 9 = (U, I) and
M = (U',R,I') be a cluster and a Kripke interpreta-
tion, respectively. We say that 90U @901 is preferred over
M, denoted M’ EM C M, if there is a world v’ € U’ and
a ground formula @ such that I'(u') = 6, but 9 = 4.

Definition 19 ((Schwarz 1992)) Let C be a class of
Kripke interpretations. A cluster 9 is called C-minimal
for a set of modal formulas A if 9 = A and for every
Kripke interpretation 9" such that 9V @ M € C and
MeME A, M OM M.

Definition 20 ((Schwarz 1992)) A class C of Kripke
interpretations is called cluster closed if it contains all
clusters and at least one of the two following conditions
is satisfied.

1. For every cluster 9 and every Kripke interpretation
Mel,MoeNMeCl.

2. Every Kripke interpretation in C is of the form 9 ®
M, where M is a cluster. Moreover, for every IM' @
M € C, where M is a cluster, and every cluster I,
M oeNec.

At last, we have arrived at Schwarz’s description of
S-expansions.

Theorem 21 ((Schwarz 1992, Theorem 3.1), see
also (Marek & Truszczyriski 1993, Corollary 9.22,
p- 266).) Let S be a modal logic characterized by a class
C of cluster closed Kripke interpretations and let A be a
set of formulas. A set of formulas E is an S-expansion
for A if and only if there exists a cluster 9N such that
M is C-minimal for A and E = Th(IN).

°In what follows, renaming the interpretations’ worlds,
if necessary, we always assume that their sets of worlds are
disjoint.

3 The canonical model semantics

This section contains the main result of our paper —
the canonical model semantics of non-monotonic modal
logic, see Theorem 24 below. To state the theorem we
need the following definitions.

Definition 22 A connected component M = (U, R, I)
of Mg, 4 is called an isolated cluster,if R=U x U.

Definition 23 (Cf. case 2 of Definition 20
and (Donini, Nardi, & Rosati 1997, Definition 3.11).)
Kripke interpretations of the form 9" ® M, where 90
is a cluster, are called cluster-decomposable, and 90 is
called the final cluster of 9’ © IN.1°

Theorem 24 Let S be a modal logic characterized by
a class of cluster-decomposable Kripke interpretations
and let A be a set of formulas. A set of formulas E is
an S-ezxpansion for A if and only if E is the theory of
an isolated cluster of Mg 4.

The proof proof of the “if” part of the theorem is
presented in Section 3.1 and the proof proof of the “only
if” part is presented in Section 3.2.

3.1 Proof of the “if” part of Theorem 24

Let 9t = (U, I) be an isolated cluster of Mg 4 and as-
sume to the contrary that Th(90) is not an S-expansion
for A. Then, by Proposition 16, there exists a formula
8 € Th(9) such that

AU{Myp: M= Mp} s 6.

By completeness, there exists a model M’ = (U', R, U")
of S such that

M = AU{Mp: M= Mo}, (5)

but for some u' € U’, (I, u') |~ 6.

Since M’ satisfies both S and A, Th(M',u') € Us, 4,
see Remark 10. However, Th(9',u') ¢ U, because
0 € Th(M). Thus, we shall arrive at a contradiction
with our assumption that 99t is an isolated cluster of
Mg 4, if we show that Th(I',u') is connected to some
world in U via accessibility relation Rg 4. In fact, we
shall prove that Th(9',u') is connected to each world
ueU.

For the proof assume to the contrary that (u',u) ¢
Rs,a. That is, '~ € u. Hence, for some formula
w, (M, u') = Ly, but ¢ € u. Then, by Proposi-
tion 7, —p € u. Since M is a cluster, by Theorem 9,
M = M~—p. Thus, by (5), (9, u') E M-y, which con-
tradicts our assumption (9, u') = Ly. This completes
the proof of of the “if” part of Theorem 24.

10An axiomatization of the modal logic characterized by
the class of all cluster-decomposable Kripke interpretations
can be found in (Tiomkin & Kaminski 2007).



3.2 Proof of the “only if” part of
Theorem 24

We precede the proof of the “only if” part of Theo-
rem 24 with the following definition and auxiliary lem-
mas.

Definition 25 (Cf. (Marek & Truszczyniski 1993, Def-
inition 11.37, p. 344).) Let M = (U, R, I) be a Kripke
interpretation and let U’ C U. The cluster (U, I|y) is
called a terminal cluster of 9, if it satisfies conditions 1
and 2 below.

1. The restriction of R on U’ is a total relation, i.e.,
U'xU' CR.

2. For every v € U the following holds. If for some
u€eU', (u,v) € R, then v € U'.

Obviously, final clusters (see Definition 23) are ter-
minal. However, terminal clusters are not necessarily
final. This can happen for one of the following reasons.

1. A Kripke interpretation may have more than one ter-
minal cluster.

2. Even if a Kripke interpretation has only one termi-
nal cluster, the former may contain a world not con-
nected to each world of the latter.

Lemma 26 Let S be a modal logic, A be a set of formu-
las, M' = (U',I') be a mazimal cluster satisfying both
S and A, and let U = {Th(M',u') : ' € U'}. Then
M = (U, Is,alu) is a terminal cluster of Mg 4.

Proof Condition 1 of Definition 25 is satisfied by Re-
mark 10.

For the proof of condition 2 of Definition 25, let u =
Th(OM',u') € U and v € Ug 4 be such that (u,v) €
Rs 4, ie., u~ Cv. By the definition of U, we have to
show that for some v' € U’, v = Th(I',v").

First, we observe that

Th(N') C v. (6)

Indeed, let ¢ € Th(M'). Then M’ |= Lp. In particular,
(M, v') = Ly, implying Ly € u, and ¢ € v follows
from v~ C .

Therefore,

Th(M')NGFm CvNGFm =Th(Is a(v)).t* (7)

Since M’ is maximal, it follows from (7) that there is
a world v’ € U’ such that

I'(v') = Is,a(v), (8)

and the proof will be complete if we show that
Th(OM',v'") = v. That is, for each formula ¢, (9, 0") =
@ if and only if ¢ € v. The proof is by induction on the
complexity of .

Basis: The case of L is trivial and the case of a propo-
sitional variable immediately follows from (8) and the
definition of Is 4 (Definition 8).

"1 Of course, by Th(Is 4(v)) we mean the ground theory
of Ig 4(v). Recall that we identify a propositional interpre-
tation with the set of all propositional variables it satisfies.

Induction step: The case of implication is immediate
and is omitted. Let ¢ be of the form Liy and assume
(M',v") E L. Then M |= Lap, because M’ is a clus-
ter, and Lty € v follows from (6).

Conversely, assume Lty € v. Then, by Theorem 9,
(Mg, 4,v) = Ly, implying (Ms 4,u) = ML), because
(u,v) € Rg 4. Applying Theorem 9 one more time,
we see that MLy € u = Th(9',u'). In other words,
(M, u") E M Ly. Since M is a cluster, (M', ') = L,
which completes the proof of the lemma. |

The next lemma deals with the axiom schemes bm
and 5m below.

bm MLMy D My
5m MLMe D LMy

Remark 27 Note that schemes 5m and bm result in
substitution of M ¢ for ¢ in b and 5, respectively, which
motivates our notation.

Lemma 28 FEach cluster-decomposable Kripke inter-
pretation satisfies both b and 5m.

Proof Let M = (U, R,I) be a cluster-decomposable
Kripke interpretation, u € U, and let ¢ be a formula
such that (M,u) = MLMy. We have to show that
(M, u) = My and (M, u) = LM .

It follows from (M, u) = MLM ¢ that there is a world
v € U such that (9,v) E LMy. Let (U',I|y/) be the
final cluster of 9. Since {v} x U' C R, there is a
world v' € U’ such that (9,v') | ¢. Thus, for each
world w € U, (M, w) E My, because (w,v') € R. This
implies both (9, u) E My and (M, u) = LM . |

Our last auxiliary lemma is as follows.

Lemma 29 Let S be a modal logic characterized by
a class of cluster-decomposable Kripke interpretations
and let A be a set of formulas. Let M = (U, Is alu) be
a terminal cluster of Mg 4 and let w € Us 4 andv € U
be such that (u,v) € Rs.a. Then M§ 4 F {My: M |
M¢}.12

Proof Let 9 = My. Since 9 is a terminal cluster
of Mg 4, it is also a terminal cluster of Mg 4 and, in
addition,

(M 4)° = M5 4 =M,
because v € U.  Therefore, by Proposition 2,
(M 4,v) E Mo, which, by (Hughes & Cresswell 1996,
Modalities in S5, pp. 59-60) implies

(M 4,v) E LM(LM)"p, n=0,1,..., (9)

where (LM)%p is ¢ and (LM)"*t1p is LM (LM)"p.

Let w € U" and let i be the minimal integer for which
(u,w) € Rg 4. We shall prove by induction on ¢ that
foralln =0,1,..., (Mg 4,w) E M(LM)"p. Then the
lemma will follow with n = 0.

1211 fact, smg 4 is cluster-decomposable and 9t is the final

cluster of g ,, but we do not need this for the proof of
Theorem 24.



Basis: i = 0, i.e., w = u. Then the containment (u,v) €
Rs 4 and (9) imply

(M 4,u) E MLM(LM)"p. n=0,1,....

Then, by bm, (MM 4, u) E M(LM)"p.

Induction step: (u,w) € jo Then there is a world
w; such that (u,w;) € R§ 4 and (w;, w) € Rs 4. By the
induction hypothesis,

(MG 4,wi) |E MLM(ML)"p, n=0,1,....

Then, by 5m, (M 4, w;) = LM(LM)"p, which to-
gether with (w;,w) € Rs,a, implies (Mg 4,w) E
M (LM)™p. This completes the induction step and the
proof of the lemma. |

Proof of the “only if” part of Theorem 24 Let E
be an S-expansion for A. By Proposition 15, there exists
a cluster M’ = (U', I'} such that E = Th(M'). We may
assume that 9’ is maximal, see the construction in the
end of Section 2.1.

Let U = {Th(®',u') : v' € U'}. Then, by Exam-
ple 6, U C Us,a and, by Remark 10, U x U C Rg 4.
That is, 9 = (U, Is a|v) is a cluster. By Theorem 9
and the definition of |=, for each u' € U’

Is A(Th(OM',u')) = I'(u").
Hence, by Lemma 12,
Th(9M) = Th(M') = E.

Therefore, the proof will be complete if we show that
M is an isolated cluster of Mg 4. Since, by Lemma 26,
M is a terminal cluster of Mg 4, it suffices to prove
that for each u € Us 4 and each v € U, (u,v) € Rs 4
implies u € U. By the definition of U, the containment
u € U will follow, if we show that for some v’ € U’, u =
Th(OM',u'). The proof is similar to that of Lemma 26.

First, we observe that

Th(') C u. (10)

Indeed, let § € Th(M'). Since Th(O') is an S-
expansion for A and Th(9M) = Th(M'), by Proposi-
tion 16, AU{M¢ : M = ¢} = 6. Hence, by Lemma 29,
M 4 E 6, and, by Proposition 2, Mg 4 = 6 as well.
Therefore, 8 € u follows from Theorem 9.

Therefore,

Th(M')NGFm Cun GFm = Th(Is a(u)).t? (11)

Since M’ is maximal, it follows from (11) that there
is a world u' € U’ such that

I'(w') = Is,a(w), (12)

and the proof will be complete if we show that
Th(O',u") = u. That s, for each formula ¢, (I, u') |=

*Recall that by Th(Is 4(v)) we mean the ground theory
of Ig 4(v).

o if and only if ¢ € u. The proof is by induction on the
complexity of .

Basis: The case of L is trivial and the case of a propo-
sitional variable immediately follows from (12) and the
definition of Is 4 (Definition 8).

Induction step: The case of implication is immediate
and is omitted. Let ¢ be of the form Li and assume
(M, u") = Lyp. Then M’ |= Ly, because M’ is a clus-
ter, and Ly € u follows from (10).

Conversely, let Ly € wu. Then, by Theorem 9,
(Mg 4,u) = L. Assume to the contrary that
Ly ¢ Th(OM',u'). Then, by Proposition 7, M- €
Th(OM,u'). Since M’ is a cluster, M’ = M—p. Then,
by (10) and Theorem 9, (Mg, 4,u) E M—p, in con-
tradiction with (95 4,u) = L. This completes the
induction step and the proof of the “only if” part of
the theorem. |

4 Remarks on the proof of Theorem 24

Note that the assumption that S is characterized by
a cluster-decomposable class of Kripke interpretations
was not used in the proof of the “if” part of Theorem 24
at all, and in the proof of the “only if” part of the
theorem we used only the schemes b and 5m (which,
by Lemma, 28, belong to S). This naturally leads to the
following questions.

e Is K + bm + 5m characterized by a class of cluster-
decomposable Kripke interpretations (cf. (Tiomkin &
Kaminski 2007))?

e What is the weakest modal logic S such that for a set
of axioms A, the S-expansions for A are exactly the
theories of the isolated clusters of Mg 4?7

A negative answer to the first question would
strengthen Theorem 24 by replacing its prerequi-
site that S is characterized by a class of cluster-
decomposable Kripke interpretations with bm,5m € S,
and the second question (for which we have no answer)
is of interest for an obvious reason.

A trivial example below shows that indeed, K +
bm + 5m is not characterized by a class of cluster-
decomposable Kripke interpretations.

Example 30 Obviously, K + bm + 5m + L1 is con-
sistent, because it is satisfied by any Kripke interpreta-
tion with the empty accessibility relation.!* However,
no cluster-decomposable Kripke interpretation satisfies
K+ bm + 5m + L1, because all cluster-decomposable
Kripke interpretations satisfy d which is the negation
of L1L.

Example 30 does not provide any hint on a possible
strengthening of Theorem 24, because all expansions
contain d. Also, by Theorem 31 below, non-monotonic
K+ bm + 5m and K + bm + 5m + d are equivalent.

Theories containing L | are trivial: in such theories all
formulas of the form Ly are true, and all formulas of the
form M are false. Theories containing L1 are called Ver,
see (Hughes & Cresswell 1996, pp. 66 and 108).



Theorem 31 Let S be a modal logic and let A be a set
of formulas. A set of formulas E is an S-expansion for
A if and only if E is an (S + d)-expansion for A.

Proof The “only if” part of the theorem is a particu-
lar case of (Marek & Truszczynski 1993, Theorem 9.6,
p- 256), and for the proof of the “if” part we proceed
as follows.

Let E be an (S + d)-expansion for 4, i.e.,

E =Thsia(AU{My: Elfsia ~p}).  (13)
We have to show that
E=Ths(AU{M¢: E /s =¢}).
It follows from (13) that E contains d, which implies

{Mo: EVsa o} ={My:El/s —p}.  (14)
In addition, since E is (S + d)-consistent, E tg =T,
implying
de{My: Els —p}. (15)
Therefore,
E = Thgia(AU{My: E Wsiqa ~¢})

= Thsia(AU{My: E /s ~p})

= Ths(AU{Myp: E Vs ~p}),
where the second equality follows from (14) and the last
equality follows from (15).

Consequently, to eliminate the degenerate case of Ex-
ample 30, the first question should be restated as fol-
lows.

e Is K+bm+5m+d characterized by a class of cluster-
decomposable Kripke interpretations (cf. (Tiomkin &
Kaminski 2007))?

This seems to be a difficult question to which we have
no clue.

We conclude this section with two examples which
show that bm and 5m are independent in K + d.'®

Example 32 Consider a Kripke interpretation 97t de-
picted below.

-p p -p

That is, 9 = (U, R, I), where
o U = {u,v,w},
e R={(u,v),(v,u), (v,w),(w,v)},
e I(u) = I(w) = 0, and I(v) = {p}.
Since R has no dead ends, 9 = d, and, since R is
symmetric, 91 |= b. Therefore, by Remark 27, M |

bm. In addition, (9, u) = MLMp, because (M,v) =
LMp, However, (M, u) = LMp. Hence, M [~ 5m.

15Semantical characterizations of bm and 5m can be
found in ((in collaboration with Dana Scott) 1977, p. 67).

Example 33 Consider a Kripke interpretation 9t de-
picted below.

-p -p p

O~

That is, 9 = (U, R, I), where

o U = {u,v,w},
o R={(u,v)} U{v,w}?
o I[(u)=1I(v) =0, and I(w) = {p}.

Note that ({v,w}, I|{y,}) is the only terminal clus-
ter of M. However, ({v,w}, I|{y,w}) is not a final clus-
ter, because (u,w) ¢ R (cf. the note following Defini-
tion 25).

Since R has no dead ends, 9 | d, and, since, ob-
viously, R is euclidean, 9t = 5. Therefore, by Re-
mark 27, M = 5m. In addition, (9,v) = LMp,
implying (M, u) = MLMp. However, (M, u) E Mp.
Hence, I (= bm.

5 Autoepistemic logic:
knowledge vs. belief

In this section we apply Theorem 24 to autoepistemic
logic ((Moore 1987)) to show that autoepistemic expan-
sions separate knowledge from belief in KD45-canonical
models. First we recall some basic facts about the logic
of belief KD45 and its relationship to autoepistemic
logic.

The modal logic KD45 results in adding to K the
schemes d, 4, and 5. It is well-known that, for a set
of proper axioms A, the connected components of the
canonical KD45,4-model Mkpas, 4 are of the form

m=(U,UxU,I), (16)

where U, is a non-empty subset of U. That is, (U, I|y.)
is the final cluster of 91 and each world in U \ U, can
see the whole cluster (U,, I|y.), but nothing more. A
Kripke interpretation 9t of the form (16) will be called
a KD45-model.

The distinction between knowledge and belief in a
Kripke interpretation 99t is as follows. A formula ¢
is known in M, if M = ¢, whereas ¢ is believed in IN,
if M L.

Since in clusters satisfiability of Ly implies satisfiabil-
ity of ¢, in the theory of a cluster the modal connective
L should be naturally interpreted as known, see (Voor-
braak 1990; Schwarz 1992).'¢ This is in contrast with
the theory of a KD45-model, because in KD45-models
belief does not necessarily imply knowledge. In par-
ticular, an agent may believe something that does not
hold in its own world. Consequently, in the theory of
a proper (non-cluster) KD45-model L should be (also

16Cf. (Stalnaker 1993; Moore 1985; 1987; Konolige 1988),
where L, for no reason, is interpreted as believed.



naturally) interpreted as believed, cf. (Voorbraak 1990).
Namely, an agent in each world of an KD45-model be-
lieves in what is satisfied by the model’s final cluster.
In particular, the belief set of an agent is the same in
all worlds.

We shall use an equivalent definition of autoepis-
temic expansions given by (Shvarts 1990, Proposi-
tion 2.1) (see also (Marek & Truszczyriski 1993, Corol-
lary 10.44, p. 313)) according to which autoepistemic
expansions coincide with KD45-expansions. Note that
even though, autoepistemic expansions are based on be-
liefs of an agent, they are theories of clusters which cor-
respond to knowledge.

Now, applying the above discussion to canonical
KD45-models, we see that its isolated clusters reflect
knowledge, whereas the other connected components,
which are proper KD45 models, reflect belief. Thus, by
Theorem 24, autoepistemic expansions for a set of for-
mulas A coincide with the theories of the “knowledge”
components of Mkpas, 4.
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