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Abstract

Recent research in nonmonotonic logic programming has fo-
cused on different notions of program equivalence relevant
for program optimization and modular programming. So
far, most results concern the stable-model semantics. How-
ever, other semantics for logic programs are also of interest,
especially the semantics of supported models which, when
properly generalized, is closely related to a prominent non-
monotonic formalism, the autoepistemic logic of Moore. In
this paper, we consider a framework of equivalence notions
for logic programs under the supported (minimal) model-
semantics and provide characterizations for this framework
in both model-theoretic and algebraic terms. We then use
some of our results in order to obtain characterizations of the
equivalence of theories in Moore’s autoepistemic logic.

1 Introduction
The problem of the equivalence of logic programs with re-
spect to the stable-model semantics has received substantial
attention in the answer-set programming research commu-
nity in the past several years (Lifschitz, Pearce, & Valverde
2001; Lin 2002; Turner 2003; Inoue & Sakama 2004; Eiter,
Tompits, & Woltran 2005; Eiter, Fink, & Woltran 2007;
Oikarinen & Janhunen 2006; Oetsch, Tompits, & Woltran
2007; Woltran 2007). In most general terms, the problem
can be stated as follows. Given a classC of logic programs,
we say that programsP andQ areequivalent with respect to
C if for every programR ∈ C, P∪R andQ∪R have the same
stable models. We will sometimes refer to programs inC as
contexts. Clearly, for every classC, the equivalence with re-
spect toC implies the standard nonmonotonic equivalence of
programs, where two programsP andQ arenonmonotoni-
cally equivalent if they have the same stable models. There-
fore, we will refer to these stronger versions of equivalence
collectively ashyperequivalence.

Understanding hyperequivalence is fundamental for the
development of modular answer-set programs and knowl-
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edge bases. The problem is non-trivial due to the nonmono-
tonic nature of the stable-model semantics. IfS is a module
within a larger programT , replacingS with S′ results in
the programT ′ = (T \ S) ∪ S′, which must have the same
meaning (the same stable models) asT . The nonmonotonic
equivalence ofS andS′ does not guarantee it. The equiva-
lence with respect to the class of all programs does. How-
ever, the latter may be a too restrictive approach in certain
application scenarios, in particular if properties of possible
realizations forT are known in advance.

Several notions of hyperequivalence can be obtained by
different restrictions to the context classC. In particular, if
C is unrestricted, that is, any program is a possible context,
we obtainstrongequivalence (Lifschitz, Pearce, & Valverde
2001). If C is the collection of all set of facts, one obtains
uniform equivalence (Eiter, Fink, & Woltran 2007). An-
other direction is to restrict the alphabet over which contexts
are given. Such notions are calledrelativized(with respect
to such an alphabet) and can be combined with strong or
uniform equivalence (Eiter, Fink, & Woltran 2007). In an
even more general setting, we can specify different alpha-
bets for bodies and heads of rules in contexts. This gives
rise to a common view on strong and uniform equivalence
as discussed in (Woltran 2007). A different research di-
rection recently applied to equivalence notions is to com-
pare only some dedicated projected output atoms (see (Eiter,
Tompits, & Woltran 2005; Oikarinen & Janhunen 2006;
Oetsch, Tompits, & Woltran 2007), rather than entire stable
models.

All of these results concern the case when the semantics
of programs is given by stable models.1 In this paper, we ad-
dress the problem of the hyperequivalence of programs with
respect to the other major semantics, that of supported mod-
els (Clark 1978; Apt, Blair, & Walker 1988). We define sev-
eral concepts of hyperequivalence, depending on the class of
programs allowed as contexts. For some of these concepts,
we obtain characterizations in terms of semantic objects that
can be attributed to a program, similar to se-models (Turner
2003) or ue-models (Eiter, Fink, & Woltran 2007). We ex-
tend our characterizations to an abstract algebraic setting of
operators on lattices, following the approach proposed in

1In fact, there is only little work on other semantics, e.g. (Ca-
balaret al. 2006).



(Truszczýnski 2006) as the generalization of hyperequiva-
lence based on the stable-model semantics. We use these
results to derive characterizations of hyperequivalence for
theories in the autoepistemic logic of Moore (Moore 1984;
1985).

While in many respects the problem of hyperequivalence
for the semantics of supported models is simpler than its
counterpart for the stable-model semantics, the situation
changes if we impose additional requirements on supported
models. In the paper, we study one such restriction: the
semantics of supportedminimal models (Zhang & Marek
1989). We obtain some characterizations of the resulting
concept of hyperequivalence, but the picture here is far from
complete.

2 The case of logic programs
We fix a countable infinite setAt of atoms. All programs
we consider here are built of atoms inAt . Let A,B ⊆ At .
By LP(A,B) we denote the class of all disjunctive logic
programsP such thathd(P ) ⊆ A andbd(P ) ⊆ B, that is,
all atoms in the heads of rules inP come fromA, and all
atoms in the bodies of rules inP come fromB.

If r is a logic program rule

a1| . . . |ak ← bd ,

wherek ≥ 1, a shift of r is a normal logic program rule of
the form

ai ← bd ,not a1, . . . ,not ai−1,not ai+1, . . . ,not ak,

wherei = 1, . . . , k. If r is a constraint, the onlyshift of
r is r itself. A program consisting of all shifts of rules in
a programP is theshift of P . We denote it bysh(P ). It is
evident that a setY of atoms is a model ofP if and only if Y
is a model ofsh(P ). It is also known thatY is a supported
model ofP if and only if it is a supported model ofsh(P ).

Two disjunctive logic programs (with constraints)P and
Q aresupp-equivalentrelative toLP(A,B) if for every dis-
junctive logic programR ∈ LP(A,B), P ∪ R andQ ∪ R
have the same supported models.

Let P be a normal logic program (with constraints). By
TP we denote the one-step provability operator forP (van
Emden & Kowalski 1976). We note that due to the pres-
ence of constraints,TP may be partial (undefined for some
interpretations). It is well known thatY is a model ofP if
and only if TP (Y ) ⊆ Y (by that we mean thatTP is de-
fined for Y and satisfiesTP (Y ) ⊆ Y ). Similarly, Y is a
supported model ofP if TP (Y ) = Y (by that we mean that
TP is defined forY and satisfiesTP (Y ) = Y ). In the paper,
whenever we writeTP (Y ), it is implied by the context that
TP (Y ) is defined (for instance,TP (Y ) is defined ifY is a
model ofP ).

Given a normal logic program with constraints, sayP ,
and a setA ⊆ At of atoms, we define

ModA(P ) = {Y ⊆ At |Y |= P andY \ TP (Y ) ⊆ A}.

We have the following characterization of the supp-equi-
valence relative toLP(A,B).

Theorem 2.1 LetP andQ be normal logic programs (with
constraints) andA,B ⊆ At . The following conditions are
equivalent

1. P andQ are supp-equivalent relative toLP(A,At)

2. P andQ are supp-equivalent relative toLP(A,B)

3. P andQ are supp-equivalent relative toLP(A, ∅)

4. ModA(P ) = ModA(Q) and for everyY ∈ ModA(P ),
TP (Y ) = TQ(Y ).

Proof: Clearly, (1) implies (2), and (2) implies (3). We will
now show that (3) implies (4). LetY ∈ ModA(P ). It fol-
lows thatY |= P andY \ TP (Y ) ⊆ A. Let us consider
P ∪ (Y \ TP (Y )). Then

TP∪(Y \TP (Y ))(Y ) = TP (Y ) ∪ (Y \ TP (Y )).

SinceY |= P , TP (Y ) ⊆ Y . Thus,TP∪(Y \TP (Y ))(Y ) = Y .
It follows thatY is a supported model ofP ∪ (Y \ TP (Y )).
SinceY \ TP (Y ) ⊆ A, Y is a supported model ofQ∪ (Y \
TP (Y )) and, consequently,

Y = TQ∪(Y \TP (Y ))(Y ) = TQ(Y ) ∪ (Y \ TP (Y )).

It follows that TQ(Y ) ⊆ Y andTP (Y ) ⊆ TQ(Y ). Thus,
Y \TQ(Y ) ⊆ Y \TP (Y ) ⊆ A and so,Y ∈ ModA(Q). The
converse inclusion follows by the symmetry argument.

Next, letY ∈ ModA(P ) (and so,Y ∈ ModA(Q), too).
We have seen thatTP (Y ) ⊆ TQ(Y ). By the symmetry,
TQ(Y ) ⊆ TP (Y ). Thus,TP (Y ) = TQ(Y ).

To show that (4) implies (1), we reason as follows. LetR
be a logic program fromLP(A,At). LetY ∈ Supp(P∪R).
Then,Y ∈ Supp(sh(P ∪ R)) = Supp(P ∪ sh(R)) (we
recall thatP is normal). It follows thatY = TP (Y ) ∪
Tsh(R)(Y ). Thus, TP (Y ) ⊆ Y (that is, Y |= P ) and
Y \ TP (Y ) ⊆ A (becausehd(R) ⊆ A). Thus, Y ∈
ModA(P ) and, by the assumption,TQ(Y ) = TP (Y ). Since
Y = TP (Y ) ∪ Tsh(R)(Y ), Y = TQ(Y ) ∪ Tsh(R)(Y ).
That is, Y ∈ Supp(Q ∪ sh(R)) and, sincesh(Q) = Q,
Y ∈ Supp(sh(Q ∪R)) = Supp(Q ∪R). 2

We point out that the characterization of supp-equivalence
relative toLP(A,B) does not refer to the second alphabet
B. In other words, different equivalence notions coincide
as long as the context allows for the same atoms used in
the heads. Therefore, the same characterization applies to
strong and uniform equivalence.

We proceed by extending our result to the case of disjunc-
tive programs.

Theorem 2.2 Let P and Q be disjunctive logic programs
(with constraints) andA,B ⊆ At . Then,P andQ are supp-
equivalent relative toLP(A,B) if and only if sh(P ) and
sh(Q) are supp-equivalent relative toLP(A,B).

Proof: (1) Let us assumeP andQ are supp-equivalent rela-
tive toLP(A,B). Let R ⊆ A. Then

Supp(sh(P ) ∪R) = Supp(sh(P ∪R))

= Supp(P ∪R) = Supp(Q ∪R)

= Supp(sh(Q ∪R)) = Supp(sh(Q) ∪R).



It follows thatsh(P ) andsh(Q) are supp-equivalent relative
to LP(A, ∅). By Theorem 2.1,sh(P ) andsh(Q) are supp-
equivalent relative toLP(A,B).

Conversely, let us considerR ∈ LP(A,B). Then

Supp(P ∪R) = Supp(sh(P ∪R))

= Supp(sh(P ) ∪ sh(R)) = Supp(sh(Q) ∪ sh(R))

= Supp(sh(Q ∪R)) = Supp(Q ∪R).

Thus, the assertion follows. 2

Corollary 2.3 Let P and Q be disjunctive logic programs
(with constraints) and letA,B ⊆ At . The following condi-
tions are equivalent

1. P andQ are supp equivalent relative toLP(A,At)

2. P andQ are supp equivalent relative toLP(A,B)

3. P andQ are supp equivalent relative toLP(A, ∅)

4. ModA(sh(P )) = ModA(sh(Q)) and for everyY ∈
ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

3 Suppmin-equivalence
Next, we move on to the semantics of supported minimal
models. A setM of atoms is asupported minimal model
(suppminmodel, for short) of a logic programP if it is a
supported model ofP and a minimal model ofP .

As before, letA,B ⊆ At . Two logic programsP and
Q are suppmin-equivalentrelative toLP(A,B) if for ev-
ery programR ∈ LP(A,B), P ∪ R andQ ∪ R have the
same suppmin models. A refinement of the method used in
the previous section provides a characterization of suppmin-
equivalence in the case whenA ⊆ B. Compared to supp-
equivalence the second alphabet,B, has to be taken into con-
sideration now.

Let us defineModB
A(P ) to be the set of all pairs(X,Y )

such that

1. Y ∈ ModA(P )

2. X ⊆ Y |B

3. for everyZ ⊂ Y , if Z|B = X or Z|B = Y |B , then
Z 6|= P .

In this definition and in what follows, expressions such as
Z|B stand forZ ∩B. We have the following result.

Theorem 3.1 Let A,B ⊆ At satisfyA ⊆ B, and letP,Q
be normal programs (with constraints). The following con-
ditions are equivalent

1. P andQ are suppmin-equivalent relative toLP(A,B)

2. ModB
A(P ) = ModB

A(Q) and for every (X,Y ) ∈
ModB

A(P ), TP (Y ) = TQ(Y ).

[(1) implies (2)]: Let us assume that(X,Y ) ∈ ModB
A(P ).

If X = Y |B , we setR′ = Y \ TP (Y ). Otherwise, we fix an
element, sayt ∈ Y |B \X, and define

R′ = {y ← t | y ∈ Y \ TP (Y )}.

Finally, we set

R = R′ ∪ { ← not x |x ∈ X}

∪{← u,not z | u, z ∈ Y |B \X}.

We note thatR ∈ LP(A,B). Indeed, sinceY ∈ ModA(P ),
we haveY \ TP (Y ) ⊆ A. Moreover,Y |B ⊆ B (trivially)
andX ⊆ Y |B ⊆ B (by the definition ofModB

A(P )). Fi-
nally, t, which forms the bodies of rules inR′ if X ⊂ Y |B ,
is also inB. Thus, every atom in the body of a rule inR is
in B. We also note thatY |= R andX |= R.

By a similar argument as that in the proof of Theorem 2.1,
Y is a supported model ofP ∪ R. We will show thatY is a
minimal model ofP ∪R. To this end, let us considerZ ⊆ Y
such thatZ |= P ∪R. SinceZ |= R, X ⊆ Z. We recall that
X ⊆ B. Thus,X ⊆ Z|B ⊆ Y |B . If there areu, z such that
u ∈ Z|B \X andz ∈ Y |B \ Z|B , then the rule← u,not z
belongs toR, which contradicts the assumption thatZ |= R.
Thus, eitherX = Z|B or Z|B = Y |B . Since(X,Y ) ∈
ModB

A(P ), andZ |= P , we obtainZ = Y . It follows that
Y is a minimal model ofP ∪R and so, a supported minimal
model ofP ∪R.

We have thatP and Q are suppmin-equivalent relative
to LP(A,B). Hence,Y is a supported minimal model of
Q ∪ R. As in the proof of Theorem 2.1, we can now show
thatTP (Y ) ⊆ TQ(Y ), andY ∈ ModA(Q). Let Z ⊂ Y be
such thatX = Z|B or Z|B = Y |B . In the first case, since
X |= R, Z|B |= R and, asR contains only atoms from
B, Z |= R. In the second case, sinceY |= R, Y |B |= R
(again, sinceR contains only atoms fromB). Thus,Z|B |=
R. Consequently,Z |= R in that case, too. SinceY is a
minimal model ofQ ∪ R, it follows that Z 6|= Q. Since
Y ∈ ModA(Q) andX ⊆ Y |B , we obtain that(X,Y ) ∈
ModB

A(Q). Hence,ModB
A(P ) ⊆ ModB

A(Q) and, to recall
a property proved earlier, for every(X,Y ) ∈ ModB

A(P ),
TP (Y ) ⊆ TQ(Y ).

By the symmetry argument,ModB
A(Q) ⊆ ModB

A(P ) and
for every (X,Y ) ∈ ModB

A(Q), TQ(Y ) ⊆ TP (Y ). It fol-
lows thatModB

A(Q) = ModB
A(P ) and for every(X,Y ) ∈

ModB
A(P ), TP (Y ) = TQ(Y ).

[(2) implies (1)]: LetR be a logic program fromLP(A,B),
and letY be a supported minimal model ofP ∪ R. It fol-
lows thatY |= P andY |= R. It also follows thatY is a sup-
ported model ofP∪sh(R), that is,Y = TP (Y )∪Tsh(R)(Y ).
This latter identity shows (in a similar way as in the proof
of Theorem 2.1) thatY \ TP (Y ) ⊆ A. SinceY |= P ,
Y ∈ ModA(P ).

Let us considerZ ⊂ Y such thatZ|B = Y |B . Since
Y |= R, Z |= R. SinceY is a minimal model ofP ∪ R,
Z 6|= P . Thus,(Y |B , Y ) ∈ ModB

A(P ). By the assump-
tion, (Y |B , Y ) ∈ ModB

A(Q) andTP (Y ) = TQ(Y ). Since
Y = TP (Y ) ∪ Tsh(R)(Y ), it follows that Y = TQ(Y ) ∪
Tsh(R)(Y ), that is,Y is a supported model ofQ ∪R.

Let Y ′ ⊂ Y be a model ofQ ∪ R. SinceY ′ |= Q,
(Y ′|B , Y ) /∈ ModB

A(Q). By the assumption,(Y ′|B , Y ) /∈
ModB

A(P ). SinceY ′|B ⊆ Y |B andY ∈ ModA(P ), there is
U ⊂ Y such thatY ′|B = U |B or U |B = Y |B , andU |= P .
Since bothY ′ |= R andY |= R, it follows thatU |= R.
Thus,U |= P ∪R andY is not a minimal model ofP ∪R,
a contradiction. It follows that there is noY ′ ⊂ Y such that
Y ′ |= Q ∪ R. That is,Y is a supported minimal model of



Q ∪R. 2

The proof of Theorem 3.1 implies the following corollary
for disjunctive programs.

Corollary 3.2 Let A,B ⊆ At satisfy A ⊆ B, and let
P,Q be disjunctive programs (with constraints). Then,P
andQ are suppmin-equivalent relative toLP(A,B) if and
only if sh(P ) andsh(Q) are suppmin-equivalent relative to
LP(A,B).

Proof: The argument is similar to that we used to prove The-
orem 2.2. It is based on two facts: the programs used to
prove that (1) implies (2) in Theorem 3.1 are non-disjunctive
(and so, invariant under shift), and the shift operation does
not change supported nor minimal models of a disjunctive
program. 2

Theorem 3.1 implies a more direct characterization.

Corollary 3.3 Let A,B ⊆ At satisfyA ⊆ B, and letP,Q
be disjunctive programs (with constraints). The following
conditions are equivalent

1. P andQ are suppmin-equivalent relative toLP(A,B)

2. ModB
A(sh(P )) = ModB

A(sh(Q)) and for every(X,Y ) ∈
ModB

A(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Finally, we note that in the case whenA = B = At ,
the concepts of suppmin-equivalence and supp-equivalence
coincide.

Corollary 3.4 Let P and Q be disjunctive logic programs
(with constraints). The following conditions are equivalent

1. P andQ are suppmin-equivalent relative toLP(At ,At)

2. P andQ are supp-equivalent relative toLP(At ,At).

Proof: Since the operation of shift does not change models,
minimal models and supported models, it is enough to prove
the assertion under the assumption that bothP andQ are
normal.

[(1) implies (2)]: Let Y be a model ofP . Then,Y is a
supported minimal model ofP ∪ Y . By the assumption,Y
is a supported minimal model ofQ∪Y . In particular,Y is a
model ofQ. By the symmetry argument,P andQ have the
same models.

Let Y be a model ofP (and so ofQ). Clearly Y is a
supported model ofP ∪ (Y \TP (Y ))∪{← not y | y /∈ Y }.
Moreover, it is the only model and so, a minimal model of
that program. Thus,Y is a supported minimal model ofQ∪
(Y \ TP (Y )) ∪ { ← not y | y /∈ Y }. SinceTQ(Y ) ⊆ Y , It
follows thatTP (Y ) ⊆ TQ(Y ). By the symmetry argument,
TQ(Y ) ⊆ TP (Y ). Thus,TP (Y ) = TQ(Y ). By Theorem
2.1,P andQ are supp-equivalent relative toLP(At ,At).
[(2) implies (1)]: Let us consider a logic programR. Since
P andQ are supp-equivalent, they have the same models.
Thus,P ∪ R andQ ∪ R have the same models and, con-
sequently, the same minimal models. By the assumption,
P ∪ R andQ ∪ R have the same supported models. Thus,
P ∪R andQ∪R have the same supported minimal models.
2

We observe that the results of this section do not address
uniform suppmin-equivalence as they do not cover the case
of B = ∅ (except for the trivial subcaseA = B = ∅).

4 Algebraic setting
The approach presented in the previous section extends to an
abstract algebraic setting. The role of programs is played by
non-deterministic operators on a boolean algebra, and mod-
els and supported models of programs are represented by
prefixpoints and fixpoints of the operators, respectively. We
start by introducing formally the concepts we need.

First, we fix a boolean algebra and denote it byL. We
write ⊥ and⊤ for the least and the greatest elements ofL,
and∨, ∧ and− for the binary operations of the algebra. To
simplify notation, we often writeyb for y ∧ b. Finally, we
denote by≤ the partial order relation of the algebra.

We call mappings fromL to P(L) non-deterministic op-
erators on L. We denote the set of all non-deterministic
operators onL by NOL. We note that standard determin-
istic (partial) operators onL can be viewed as special non-
deterministic operators onL, namely those that assign to
each element ofL a set with at most one element. We call
this class of such operators inNOL deterministicand de-
note it byDOL. Finally, we denote byCOL the class of
those constant operators inDOL that do not use∅ as their
common value.

For D,E ∈ NOL, we defineD ∨ E to be an operator in
NOL such that for everyy ∈ L,

(D ∨ E)(y) = {u ∨ v |u ∈ D(y), v ∈ E(y)}.

We note that ify is a prefixpoint ofD ∨ E, theny is a pre-
fixpoint of D and ofE.

An elementy ∈ L is a prefixpointof D if there isz ∈
D(y) such thatz ≤ y. An elementy ∈ L is afixpointof D
if y ∈ D(y). If D is deterministic, these definitions coincide
with the standard definitions of prefixpoints and fixpoints of
deterministic operators. Finally, a fixpoint ofD is asuper-
fixpointof D if it is a minimal prefixpoint ofD.

Let O ⊆ NOL. Two operatorsD,E ∈ NOL are fp-
equivalent relative toO if for every operatorF ∈ O, the
operatorsD ∨ F andE ∨ F have the same fixpoints. They
aresfp-equivalent relative toO if for every operatorF ∈ O,
the operatorsD∨F andE∨F have the same super-fixpoints.

We will now investigate fp- and sfp-equivalence relative
to some special classes of operators onL. Let a ∈ L. We
defineNOL(a) to be the class of all operatorsD ∈ NOL

such that for everyy ∈ L and everyz ∈ D(y), z ≤ a.
We defineDOL(a) = DOL ∩ NOL(a), andCOL(a) =
COL∩NOL(a). Finally, fora, b ∈ L, we defineNOL(a, b)
to be the class of all operatorsD ∈ NOL(a) such that for
everyx ∈ L, D(x) = D(xb).

We will now characterize operators that are fp-equivalent
relative toNOL(a). This result generalizes Theorem 2.1
(with one-step provability operators representing programs,
and fixpoints of the one-step provability operators represent-
ing supported models of programs).

To this end, we introduce still more notation. We say that
A ≤a,y B if for everyz ∈ A such thatz ≤ y andy− z ≤ a,
there isz′ ∈ B such thatz ≤ z′ andz′ ≤ y. We define
A =a,y B if A ≤a,y B andB ≤a,y A. Further, for every
D ∈ NOL, we definePF a(D) to consist of all elements
y ∈ L, for which there isz ∈ D(y) such thatz ≤ y and
y − z ≤ a.



Theorem 4.1 LetD,E ∈ NOL be operators onL, a ∈ L,
and letO be a class of operators such thatCOL(a) ⊆ O ⊆
NOL(a). Then, the following conditions are equivalent

1. D andE are fp-equivalent relative toNOL(a)

2. D andE are fp-equivalent relative toO
3. D andE are fp-equivalent relative toCOL(a)

4. PF a(D) = PF a(E), and for everyy ∈ PF a(D),
D(y) =a,y E(y).

Proof: Clearly, (1) implies (2), and (2) implies (3). We will
now show that (3) implies (4).

Let y ∈ PF a(D). It follows that there isz ∈ L such that
z ∈ D(y), z ≤ y and y − z ≤ a. Let us consider the
operatorC such that for everyu ∈ L, C(u) = y − z. Since
y − z ≤ a, C ∈ COL(a).

We havey = z ∨ (y − z). Thus,y ∈ (D ∨ C)(y). By
the assumption,y ∈ (E ∨ C)(y) and, consequently, there
is z′ ∈ E(y) such thaty = z′ ∨ (y − z). It follows that
z′ ≤ y and z ≤ z′. Thus, y − z′ ≤ y − z ≤ a and,
consequently,y ∈ PF a(E). The converse inclusion follows
by the symmetry argument.

Let y ∈ PF a(D), and letz ∈ D(y) be such thatz ≤ y
andy−z ≤ a. For suchz, the argument above demonstrates
the existence ofz′ ∈ E(y) such thatz ≤ z′ andz′ ≤ y.
Thus,D(y) ≤a,y E(y). The converse inequality follows by
the symmetry argument. Thus,D(y) =a,y E(y).

To show that (4) implies (1), we reason as follows. LetF ∈
NOL(a). Let us assume thaty is a fixpoint of (D ∨ F ).
Then, there arez ∈ D(y) andz′ ∈ F (y) such thaty = z∨z′.
It follows that z, z′ ≤ y andy − z ≤ z′. Sincez′ ≤ a
(we recall thatF ∈ NOL(a)), y − z ≤ a. Thus, y ∈
PF a(D) and so,D(y) =a,y E(y). Sincez ≤ y andy−z ≤
a, there isz′′ ∈ E(y) such thatz ≤ z′′ andz′′ ≤ y. It
follows thaty = z′′∨z′ and, consequently,y ∈ (E∨F )(y).
Thus, every fixpoint ofD ∨ F is a fixpoint ofE ∨ F . By
the symmetry argument,D ∨ F andE ∨ F have the same
fixpoints. Consequently,D andF are fp-equivalent relative
toNOL(a). 2

Assuminga = ⊤, we obtain the following corollary con-
cerning the fp-equivalence relative to the class of all opera-
tors and some of its subclasses. In the statement, we use the
notation=y as an abbreviation for=⊤,y. It is easy to see
that A =y B if for every z ∈ A such thatz ≤ y, there is
z′ ∈ B such thatz ≤ z′ andz′ ≤ y, and for everyz ∈ B
such thatz ≤ y, there isz′ ∈ A such thatz ≤ z′ andz′ ≤ y.

Corollary 4.2 LetD,E ∈ NOL be operators onL, andO
a class of operators such thatCOL ⊆ O ⊆ NOL. Then,
the following conditions are equivalent

1. D andE are fp-equivalent relative toNOL

2. D andE are fp-equivalent relative toO
3. D andE are fp-equivalent relative toCOL

4. D andE have the same prefixpoints, and for every prefix-
point ofD, D(y) =y E(y).

Next, we will develop an algebraic counterpart of our
characterization of suppmin-equivalence. To this end, for
D ∈ NOL, and for a, b ∈ L, with a ≤ b, we define

PF b
a(D) to be the set of all pairs(x, y), x, y ∈ L, such

that (we recall thatuv stands foru ∧ v):

1. y ∈ PF a(D)

2. x ≤ yb

3. for everyz < y, if zb = x or zb = yb, thenz is not a
prefixpoint ofD.

Theorem 4.3 Let a, b ∈ L be such thata ≤ b, and let
D,E ∈ NOL. The following conditions are equivalent

1. D andE are sfp-equivalent relative toNOL(a, b)

2. PF b
a(D) = PF b

a(E), and for every(x, y) ∈ PF b
a(D),

D(y) =a,y E(y).

[(1) implies (2)]: Let us assume that(x, y) ∈ PF b
a(D). In

particular, it follows thaty ∈ PF a(D), that is, there isu ∈
D(y) such thatu ≤ y andy − u ≤ a.

In the proof, we will use three auxiliary operators,A1, A2

andA3. They are defined as follows. Ifyb − x ≤ z, we
defineA1(z) = {y − u}; otherwise, we setA1(z) = {⊥}.
For A2, we defineA2(z) = {⊥}, if x ≤ z, andA2(z) = ∅,
otherwise. Finally, forA3, we setA3(z) = {⊥}, if (yb−x)∧
z = ⊥ or (yb − x)− z = ⊥. Otherwise, we setA3(z) = ∅.

We now define

F = A1 ∨A2 ∨A3.

We note thatF ∈ NOL(a, b). Indeed, we observe that for
everyz ∈ L, F (z) equalsy − u, ⊥ or ∅. Sincey − u ≤ a,
for everyv ∈ F (z), v ≤ a. Thus,F ∈ NOL(a). Next, if
F (z) = ∅, thenA2(z) = ∅ or A3(z) = ∅. In the first case,
x 6≤ z and so,x 6≤ zb. Thus,A2(zb) = ∅. In the second case,
(yb − x)∧ z 6= ⊥ and(yb − x)− z 6= ⊥. Sinceyb − x ≤ b,
it follows that (yb − x) ∧ zb 6= ⊥ and(yb − x) − zb 6= ⊥.
Thus,A3(zb) = ∅. In each case,F (zb) = ∅ = F (z).

If F (z) 6= ∅, thenx ≤ z, and (yb − x) ∧ z = ⊥ or
(yb − x) − z = ⊥. Sincex ≤ yb ≤ b, x ≤ zb. Moreover,
sinceyb − x ≤ b, (yb − x) ∧ zb = ⊥ or (yb − x) − zb =
⊥. Thus,F (zb) 6= ∅. It follows that F (z) = A1(z) and
F (zb) = A1(zb). Sinceyb − x ≤ b, yb − x ≤ z if and only
yb − x ≤ zb. Thus,A1(z) = A1(zb) and, consequently,
F (z) = F (zb).

By a similar argument as that in the proof of Theorem 4.1,
y is a fixpoint ofD ∪ F . Let us consider a prefixpointz of
D ∨ F such thatz ≤ y. In particular, it follows thatF (z) 6=
∅. SinceF ∈ NOL(a, b), F (z) = F (zb). Thus,A2(zb) =
A3(zb) = ⊥. Consequently,x ≤ zb, and(yb − x) ∧ zb = ⊥
or (yb−x)− zb = ⊥. Sincex ≤ zb ≤ yb, the first condition
implieszb = x, and the other one,yb = zb. We recall that
(x, y) ∈ PFB

A(D). If z < y, thenz is not a prefixpoint ofD,
a contradiction. Thus,z = y. It follows thaty is a minimal
prefixpoint ofD ∨ F and so, a super-fixpoint ofD ∨ F .

From the assumption, it follows thaty is super-fixpoint of
E ∨ F . In particular, we have thaty ∈ (E ∨ F )(y). Since
yb − x ≤ yb ≤ y, it follows thatF (y) = A1(y) = {y − u}.
Thus, y = v ∨ (y − u), for somev ∈ E(y). It follows
thatv ≤ y andy − v ≤ y − u ≤ a. Thus,y ∈ PF a(E).
Moreover,u is an arbitrary element fromD(y) such that
u ≤ y andy − u ≤ a. Sinceu ≤ v (asy − v ≤ y − u and
u, v ≤ y), it follows thatD(y) ≤a,y E(y).



Let z < y be such thatx = zb or zb = yb. In the first
case, it is easy to see thatx ≤ z and(yb−x)∧z = ⊥. Thus,
F (z) = A1(z). If yb−x 6≤ z, thenF (z) = {⊥} and so,z is
a prefixpoint ofF . So, let us assume thatyb − x ≤ z. Since
x = zb, it follows thatyb = x andF (z) = {y − u}. We
recall thaty − u ≤ a ≤ b. Thus,y − u ≤ yb = x = zb ≤ z.
Hence,z is a prefixpoint ofF in this case, too.

Let us now assume the second possibility,zb = yb. It
is easy to check thatA2(yb) = {⊥} andA3(yb) = {⊥}.
Sincex ≤ yb, F (zb) = F (yb) = A1(yb) = {y − u}. We
recall thaty − u ≤ a ≤ b. Thus,y − u ≤ yb = zb ≤ z.
SinceF ∈ NOL(a, b), F (z) = F (zb). It follows thatz s a
prefixpoint ofF , also in this case.

Sincey is a minimal prefixpoint ofE ∪ F andz < y, it
follows thatz is not a prefixpoint ofE. Sincey ∈ PF a(E)

andx ≤ yb, (x, y) ∈ PF b
a(E). Hence,PF b

a(D) ⊆ PF b
a(E)

and, to recall a property proved earlier,D(y) ≤a,y E(y).

By the symmetry argument,PF b
a(E) ⊆ PF b

a(D) and
for every (x, y) ∈ PF b

a(E), E(y) ≤a,y D(y). It follows
thatPF b

a(E) = PF b
a(D) and for every(x, y) ∈ PF b

a(D),
D(y) =a,y E(y).

[(2) implies (1)]: LetF ∈ NOL(a, b), and lety be a super-
fixpoint of D ∨ F . It follows that there arew ∈ D(y) and
v ∈ F (y) such thatw ∨ v = y. SinceF ∈ NOL(a, b),
v ≤ a. Thus,w ≤ y andy − w ≤ a. Consequently,y ∈
PF a(D).

Let us considerz < y such thatzb = yb. SinceF ∈
NOL(a, b), F (yb) = F (y). Thus,v ∈ F (yb) = F (zb).
Sincev ≤ a ≤ b andv ≤ y, v ≤ yb = zb. By the assump-
tion thatF ∈ NOL(a, b), v ∈ F (z). Sincev ≤ zb ≤ z, z is
a prefixpoint ofF . We recall thaty is a minimal prefixpoint
of D ∨ F . It follows thatz is not a prefixpoint ofD. Thus,
(yb, y) ∈ PF b

a(D). By the assumption,(yb, y) ∈ PF b
a(E)

and D(y) =a,y E(y). Sincew ∈ D(y), w ≤ y and
y−w ≤ a, there isw ∈ E(y) such thatw ≤ w′ andw′ ≤ y.
It follows thaty = w′∨v and so,y ∈ E(y)∨F (y). In other
words,y is a fixpoint ofE ∨ F .

Let y′ < y be a prefixpoint ofE ∨ F . Sincey′ is a
prefixpoint ofE, (y′

b, y) /∈ PF b
a(E). By the assumption,

(y′
b, y) /∈ PF b

a(D). Sincey′
b ≤ yb andy ∈ PF a(D), there

is u < y such thaty′
b = ub or ub = yb, andu is a prefixpoint

of D. Sincea ≤ b, F ∈ NOL(a, b), and bothy′ andy are
prefixpoints ofF , it follows thaty′

b andyb are prefixpoints
of F . Sincey′

b = ub or ub = yb, ub is a prefixpoint ofF .
Thus, there isu′ ∈ F (ub) such thatu′ ≤ ub. By the assump-
tion thatF ∈ NOL(a, b), F (u) = F (ub). Thus,u′ ∈ F (u)
andu′ ≤ ub ≤ u. That is,u is a prefixpoint ofF and so, of
D ∨ F , contrary to the minimality ofy.

It follows that there is noy′ < y such thaty′ is a pre-
fixpoint of E ∨ F . That is,y is a super-fixpoint ofE ∨ F .
2

As in the case of logic programs, we have the following
corollary.

Corollary 4.4 Let D,E ∈ NOL. ThenD andE are sfp-
equivalent relative toNOL if and only ifD andE are fp-
equivalent relative toNOL.

Specializing these results to the case whenL is the
boolean algebra of all subsets ofAt (interpretations) andD
and E are one-step provability operators for normal logic
programsP andQ (considered as non-deterministic opera-
tors), we obtain as corollaries Theorems 2.1 and 3.1. Indeed,
models of a normal logic program with constraints, sayP ,
are precisely prefixpoints ofTP , and supported models ofP
are precisely fixpoints ofTP . Moreover, the class of con-
stant operators on that algebra with values in a setA is con-
tained in the classLP(A,At). Similarly, operatorsA1, A2

andA3 used in the proof of Theorem 4.3, in the case of the
algebra of subsets ofAt , belong to the classLP(A,B).

5 Autoepistemic logic

Autoepistemic logic is one of the classical nonmonotonic
systems. It is a modal nonmonotonic logic introduced in
(Moore 1984; 1985). The main motivation was to develop
a nonmonotonic logic of belief sets of agents with perfect
introspection capabilities. The goal was to correct serious
shortcomings of an earlier attempt at the development of a
modal nonmonotonic system (McDermott & Doyle 1980),
that was ultimately established to be flawed.

The semantics of autoepistemic theories is given by the
concept of an expansion (Moore 1984). As with other non-
monotonic systems, the question of hyperequivalence of
modal theories in autoepistemic logic arises naturally. In
this section we will address this question, exploiting our al-
gebraic characterization of hyperequivalence of operators,
and a well-known fact that expansions of a modal theory are
in one-to-one correspondence with fixpoints of an operator
on a boolean algebra.

We start with some preliminaries. We will consider the
language of a propositional modal logic generated by a set
of atomsAt (possibly infinite), standard boolean connec-
tives (including 0-ary connectives⊤ and⊥) and one modal
operatorK. We will denote this language byLK

At
and its

modal-free part byLAt . As At is fixed, typically, we will
omit an explicit references toAt .

We denote byCn the operator of propositional conse-
quence, which we apply to subsets ofLAt . By B we denote
the well-known boolean algebra consisting of all theories
contained inL that are closed under propositional conse-
quence. TheCn(∅) (the set of all tautologies) andL play the
roles of⊥ and⊤ in this algebra. GivenU, V ∈ B, the join⊔
is defined byU⊔V = Cn(U∪V ), and the meet⊓ is defined
by U ⊓ V = U ∩ V . Finally, the maximal theoryW ⊆ L
closed under consequence and such thatU ⊓W = Cn(∅),
is the complement ofU .

Let F ∈ B and letϕ ∈ LK
At

. We define the formulaϕF

by induction as follows:

1. ϕF = ϕ, if ϕ ∈ LAt

2. (¬ϕ)F = ¬ϕF , other boolean connectives are handled in
a similar standard way

3. (Kϕ)F = ⊤, if ϕ ∈ F ; (Kϕ)F = ⊥, otherwise.

It is evident thatϕF ∈ L.



Let T ⊆ LK
At

and letF ⊆ LK
At

be closed under proposi-
tional consequence. We define

AT (F ) = Cn({ϕF |ϕ ∈ T}).

Clearly,AT is a deterministic operator onB. It is straight-
forward to represent it as a nondeterministic operator onB
and view it as an element ofNOB.

A theoryF ⊆ LAt is anexpansionof T if F = AT (F ),
that is, a fixpoint ofAT . To be precise, more commonly
expansions are defined as stable expansions of such propo-
sitional theoriesF (cf. (Marek & Truszczýnski 1993;
Denecker, Marek, & Truszczyński 2003)). However, as
there is a one-to-one correspondence between the concepts,
in this paper we regard as an expansion its propositional
“generator”.

Two theoriesU, V ⊆ LK areexpansion-equivalentrel-
ative to a classT of theories if for every theoryW ∈ T ,
U ∪ W andV ∪ W have the same expansions. Since ex-
pansions of a theory are defined as fixpoints of an operator
on a boolean algebra, we will now use the results from the
previous section to characterize the concept of expansion-
equivalence.

We denote byTmf the class of modal-free theoriesT that
are closed under propositional consequence. We observe
that the class of operatorsAT given by theoriesT ∈ Tmf

contains all constant operators onB. Next, we note that
U ∪W andV ∪W have the same expansions if and only
if AU∪W and AV ∪W have the same expansions. More-
over, AU∪W = AU ⊔ AV andAV ∪W = AV ⊔ AV . Fi-
nally, sinceAU and AV are deterministic, we note that
AU (Y ) =Y AV (Y ) if and only if AU (Y ) = AV (Y ). Thus,
applying Corollary 4.2, we get the following result.

Theorem 5.1 Let U, V ⊆ LK and letT be a class of theo-
ries such thatTmf ⊆ T . Then, the following conditions are
equivalent:

1. U andV are fp-equivalent relative to the class of all the-
ories

2. U andV are fp-equivalent relative toT
3. U andV are fp-equivalent relative toTmf

4. AU andAV have the same prefixpoints, and for every pre-
fixpointY of AU , AU (Y ) = AV (Y ).

6 Conclusions
Our results extend the concept of hyperequivalence to two
other major semantics of logic programs: the supported-
model semantics and the suppmin-model semantics. Our
results for the semantics of suppmin models are only par-
tial. The case when the restrictiona ≤ b is weakened or
dropped altogether remains open.

There are other variants of Theorem 4.3 concerned with
sfp-equivalence relative to other classes of operators than
NOL(a, b). However, the results we have obtained so far
are too weak to imply characterizations for the relativized
hyperequivalence of autoepistemic theories under the se-
mantics of expansions that are in the same time minimal
models. This is one of the topics we are currently pursu-
ing. It will receive a more complete treatment in the final
version of the paper.

Our results can be phrased in an algebraic setting of non-
deterministic operators on boolean algebras. In the case,
when the operators are deterministic (but possibly partial)
we obtain in this way a generalization of our results for
normal logic programs with constraints. The generalization
exploits the property that there is a direct match between
fixpoints of deterministic (partial) operators and supported
models of normal programs with constraints, based on the
one-step provability operator of a program. However, our
results are insufficient to be viewed as a generalization of
the case of disjunctive logic programs with constraints. The
reason is that there is no similar direct match between fix-
points of non-deterministic operators and supported models
of disjunctive logic programs with constraints. Finding an
algebraic characterization of hyperequivalence for the dis-
junctive case is another open problem.

The results we obtained for logic programs can be used to
establish the complexity of problems to decide hyperequiv-
alence with respect to particular program classes. This topic
is the subject of an ongoing work and the results will be pre-
sented in another paper.
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