Hyperequivalence of programs and operators
(Preliminary version)

Mirostaw Truszczynhski
Department of Computer Science
University of Kentucky,
Lexington, KY 40506-0046, USA
mrek@s. uky. edu

Dedicated to Victor Marek
on his 65th birthday

Abstract

Recent research in nonmonotonic logic programming has fo-
cused on different notions of program equivalence relevant
for program optimization and modular programming. So
far, most results concern the stable-model semantics. How-
ever, other semantics for logic programs are also of interest,
especially the semantics of supported models which, when
properly generalized, is closely related to a prominent non-
monotonic formalism, the autoepistemic logic of Moore. In
this paper, we consider a framework of equivalence notions
for logic programs under the supported (minimal) model-
semantics and provide characterizations for this framework
in both model-theoretic and algebraic terms. We then use
some of our results in order to obtain characterizations of the
equivalence of theories in Moore’s autoepistemic logic.

1 Introduction

The problem of the equivalence of logic programs with re-
spect to the stable-model semantics has received sulagtanti
attention in the answer-set programming research commu-
nity in the past several years (Lifschitz, Pearce, & Valeerd
2001; Lin 2002; Turner 2003; Inoue & Sakama 2004, Eiter,
Tompits, & Woltran 2005; Eiter, Fink, & Woltran 2007;
Oikarinen & Janhunen 2006; Oetsch, Tompits, & Woltran
2007; Woltran 2007). In most general terms, the problem
can be stated as follows. Given a cl&ssf logic programs,
we say that programB and(@ areequivalent with respect to
Ciffor every programR € C, PUR and@QUR have the same
stable modelsWe will sometimes refer to programshas
contexts Clearly, for every clas§, the equivalence with re-
spect taC implies the standard nonmonotonic equivalence of
programs, where two progranisand(arenonmonotoni-
cally equivalent if they have the same stable models. There-
fore, we will refer to these stronger versions of equivaéenc
collectively ashyperequivalence

Understanding hyperequivalence is fundamental for the
development of modular answer-set programs and knowl-

*This work was partially supported by the NSF grant IIS-
0325063, the KSEF grant KSEF-1036-RDE-008, and by the Aus-
trian Science Fund (FWF) under grant P18019.

Copyright(©) 2007, authors listed above. All rights reserved.

Stefan Woltran
Institut fur Informationssysteme 184/2
Technische Universit Wien
Favoritenstraf3e 9-11
A-1040 Vienna, Austria
wol t ran@lbai . t uwi en. ac. at

edge bases. The problem is non-trivial due to the nonmono-
tonic nature of the stable-model semanticsS Is a module
within a larger prograni’, replacingS with S’ results in

the progranil” = (T \ S) U S’, which must have the same
meaning (the same stable models)asThe nonmonotonic
equivalence of5 and.S’ does not guarantee it. The equiva-
lence with respect to the class of all programs does. How-
ever, the latter may be a too restrictive approach in certain
application scenarios, in particular if properties of poles
realizations forl" are known in advance.

Several notions of hyperequivalence can be obtained by
different restrictions to the context cla8s In particular, if
C is unrestricted, that is, any program is a possible context,
we obtainstrongequivalence (Lifschitz, Pearce, & Valverde
2001). IfC is the collection of all set of facts, one obtains
uniform equivalence (Eiter, Fink, & Woltran 2007). An-
other direction is to restrict the alphabet over which criste
are given. Such notions are calleglativized (with respect
to such an alphabet) and can be combined with strong or
uniform equivalence (Eiter, Fink, & Woltran 2007). In an
even more general setting, we can specify different alpha-
bets for bodies and heads of rules in contexts. This gives
rise to a common view on strong and uniform equivalence
as discussed in (Woltran 2007). A different research di-
rection recently applied to equivalence notions is to com-
pare only some dedicated projected output atoms (see,(Eiter
Tompits, & Woltran 2005; Oikarinen & Janhunen 2006;
Oetsch, Tompits, & Woltran 2007), rather than entire stable
models.

All of these results concern the case when the semantics
of programs is given by stable modél#n this paper, we ad-
dress the problem of the hyperequivalence of programs with
respect to the other major semantics, that of supported mod-
els (Clark 1978; Apt, Blair, & Walker 1988). We define sev-
eral concepts of hyperequivalence, depending on the dass o
programs allowed as contexts. For some of these concepts,
we obtain characterizations in terms of semantic objeets th
can be attributed to a program, similar to se-models (Turner
2003) or ue-models (Eiter, Fink, & Woltran 2007). We ex-
tend our characterizations to an abstract algebraic getfin
operators on lattices, following the approach proposed in

In fact, there is only little work on other semantics, e.g. (Ca-
balaret al. 2006).

(Truszczyhski 2006) as the generalization of hyperequiva-

Theorem 2.1 Let P and@ be normal logic programs (with

lence based on the stable-model semantics. We use theseconstraints) and4, B C At. The following conditions are

results to derive characterizations of hyperequivalemce f
theories in the autoepistemic logic of Moore (Moore 1984
1985).

equivalent

"1 P and (@ are supp-equivalent relative 6P (A, At)

While in many respects the problem of hyperequivalence 2- I and@Q are supp-equivalent relative 6P (A, B)
for the semantics of supported models is simpler than its 3. P and(@ are supp-equivalent relative 6P (A, 0))

counterpart for the stable-model semantics, the situation 4. 1704 ,(P) = Mod 4(Q) and for everyY € Mod A(P),

changes if we impose additional requirements on supported Tp(Y) = To(Y)
models. In the paper, we study one such restriction: the

semantics of supporteghinimal models (Zhang & Marek

1989). We obtain some characterizations of the resulting

concept of hyperequivalence, but the picture here is fanfro
complete.

2 The case of logic programs

We fix a countable infinite seft of atoms. All programs
we consider here are built of atomstt. Let A, B C At.
By LP(A, B) we denote the class of all disjunctive logic
programsP such thathd(P) C A andbd(P) C B, that is,
all atoms in the heads of rules i come fromA, and all
atoms in the bodies of rules iR come fromB.

If is a logic program rule

ayl...lag < bd,

wherek > 1, ashift of r is a normal logic program rule of
the form

a; < bd,notay,...,nota;_1,nota;4+1,...,notag,

wherei = 1,...,k. If r is a constraint, the onlghift of

r is r itself. A program consisting of all shifts of rules in

a programP is theshift of P. We denote it bysh(P). Itis

evident that a sét” of atoms is a model oP if and only if Y’

is a model ofsh(P). Itis also known thal” is a supported

model of P if and only if it is a supported model af.(P).
Two disjunctive logic programs (with constraint8)and

@ aresupp-equivalentelative toLP(A, B) if for every dis-

junctive logic programR € LP(A,B), PURandQ U R

Proof: Clearly, (1) implies (2), and (2) implies (3). We will
now show that (3) implies (4). Lét € Mod 4(P). It fol-
lows thatY = P andY \ Tp(Y) C A. Let us consider
PU (Y \Tp(Y)). Then

Tpuv\rpy)(Y) =Tp(Y)U (Y \ Tp(Y)).

SinceY): P, TP(Y) cY. ThUS,TpU(Y\TP(Y))(Y) =Y.
It follows thatY” is a supported model d? U (Y \ Tp(Y)).
SinceY \ Tr(Y) C A, Y is a supported model @ U (Y \
Tp(Y)) and, consequently,

Y =Touonrro)(Y) = Te(Y) U (Y \ Tp(Y)).

It follows that T (Y) C Y andTp(Y) C Tp(Y). Thus,
Y\To(Y) CY\Tp(Y) C AandsoY € Moda(Q). The
converse inclusion follows by the symmetry argument.

Next, letY € Mod4(P) (and so,Y € Mod 4(Q), t00).
We have seen thdfp(Y) C Tp(Y). By the symmetry,
To(Y) C Tp(Y). Thus,Tr(Y) = To(Y).

To show that (4) implies (1), we reason as follows. Eet
be a logic program frorP (A, At). LetY € Supp(PUR).
Then,Y € Supp(sh(P U R)) = Supp(P U sh(R)) (we
recall thatP is normal). It follows thaty” = Tp(Y) U
Ton(r)(Y). Thus, Tp(Y) C Y (thatis,Y | P) and
Y \Tp(Y) C A (becausehd(R) C A). Thus,Y €
Mod 4(P) and, by the assumptiofiy (Y) = Tp(Y'). Since
Y = Tp(Y) U Tar)(Y), Y = To(Y) U Tan(r)(Y):
That is,Y € Supp(Q U sh(R)) and, sincesh(Q) = Q,
Y € Supp(sh(Q U R)) = Supp(Q U R). a

have the same supported models. We point out that the characterization of supp-equivalence
Let P be a normal logic program (with constraints). By relative toLP (A, B) does not refer to the second alphabet
Tp we denote the one-step provability operator fofvan B. In other words, different equivalence notions coincide
Emden & Kowalski 1976). We note that due to the pres- as long as the context allows for the same atoms used in
ence of constraints» may be partial (undefined for some the heads. Therefore, the same characterization applies to
interpretations). It is well known that is a model ofP if strong and uniform equivalence.
and only if Tp(Y) C Y (by that we mean thdls is de- We proceed by extending our result to the case of disjunc-
fined forY and satisfied’»(Y) C Y). Similarly, Y is a tive programs.
supported model oP if Tp(Y) = Y (by that we mean that
Tp is defined forY” and satisfie§'»(Y) = Y). In the paper,
whenever we writd'p(Y), it is implied by the context that
Tp(Y) is defined (for instanceél’»(Y') is defined ifY is a
model of P).
Given a normal logic program with constraints, sBy
and a setd C At of atoms, we define

ModA(P) ={Y C At |Y = PandY \ Tp(Y) C A}.

Theorem 2.2 Let P and @ be disjunctive logic programs
(with constraints) andi, B C At. Then,P and(Q are supp-
equivalent relative taCP(A, B) if and only if sh(P) and
sh(Q) are supp-equivalent relative 6P (A, B).

Proof: (1) Let us assumB and(@ are supp-equivalent rela-
tiveto LP(A, B). LetR C A. Then
Supp(sh(P) U R) = Supp(sh(P U R))
= Supp(P U R) = Supp(Q U R)
= Supp(sh(QU R)) = Supp(sh(Q) U R).

We have the following characterization of the supp-equi-
valence relative t€P(A, B).

It follows thatsh(P) andsh(Q) are supp-equivalent relative
to LP(A, (). By Theorem 2.1sh(P) andsh(Q) are supp-
equivalent relative t€P (A, B).

Conversely, let us considét € LP(A, B). Then

Supp(P U R) = Supp(sh(P U R))
= Supp(sh(P) U sh(R)) = Supp(sh(Q) U sh(R))
= Supp(sh(Q U R)) = Supp(Q U R).

Thus, the assertion follows. O

Corollary 2.3 Let P and @ be disjunctive logic programs
(with constraints) and letl, B C At. The following condi-
tions are equivalent

1. P and(@ are supp equivalent relative 6P (A, At)

2. P and(@ are supp equivalent relative ©©P(A, B)

3. P andQ are supp equivalent relative 0P (A, §))

4. Mod4(sh(P)) = Moda(sh(Q)) and for everyY e
Mod 4(sh(P)), Tshpy(Y) = Ton) (Y

3 Suppmin-equivalence

Next, we move on to the semantics of supported minimal
models. A setM of atoms is asupported minimal model
(suppminmodel, for short) of a logic prograr® if it is a
supported model aP and a minimal model of.

As before, letA, B C At. Two logic programsP and
@ are suppmin-equivalentelative to LP (A, B) if for ev-
ery programR € LP(A,B), PU R and@ U R have the
same suppmin models. A refinement of the method used in
the previous section provides a characterization of suppmi
equivalence in the case wheh C B. Compared to supp-
equivalence the second alphal#thas to be taken into con-
sideration now.

Let us defineMod® (P) to be the set of all pairéX,Y)
such that

1. YEMOdA(P)
2. X CYl|p

3. foreveryZ C Y, if Z|g
Z W~ P.

In this definition and in what follows, expressions such as

Z|p stand forZ N B. We have the following result.

Theorem 3.1 Let A, B C At satisfyA C B, and letP,Q
be normal programs (with constraints). The following con-
ditions are equivalent

1. P and@ are suppmin-equivalent relative 1&P(A, B)
2. Mod%(P) Mod%(Q) and for every (X,Y)
Mod3(P), Tp(Y) = To(Y).

[(1) implies (2)]: Let us assume thék,Y) € Mod%(P).
f X =Y|g, wesetkR =Y \ Tp(Y). Otherwise, we fix an
element say € Y|g \ X, and define

R ={y—tlyeY\Tp(Y)}
Finally, we set
R=R U{« notzx |z € X}
U{<—u,notz|u,ze€Y|p\ X}

= X orZlg = Y|g, then

S

We note thal? € LP(A, B). Indeed, sinc&” € Mod 4(P),
we haveY \ Tp(Y) C A. Moreover,Y|p C B (trivially)
andX C Y|p C B (by the definition ofMod% (P)). Fi-
nally, ¢, which forms the bodies of rules iR’ if X C Y|,
is also inB. Thus, every atom in the body of a rule ihis
in B. We also note that” = R andX E R.

By a similar argument as that in the proof of Theorem 2.1,
Y is a supported model d? U R. We will show thatY” is a
minimal model ofPU R. To this end, let us considef C Y
suchthatZ = PUR. SinceZ = R, X C Z. We recall that
X C B. Thus,X C Z|g C Y|p. If there areu, z such that
ue Zlp\ X andz € Y|g \ Z|, then the rule— u, not z
belongs taRk, which contradicts the assumption tiat= R.
Thus, eitherX = Z|g or Z|p = Y|p. Since(X,Y) €
Mod5(P), andZ = P, we obtainZ = Y. It follows that
Y is a minimal model of” U R and so, a supported minimal
model of P U R.

We have thatP and Q are suppmin-equivalent relative
to LP(A, B). Hence,Y is a supported minimal model of
@ U R. As in the proof of Theorem 2.1, we can now show
thatTp(Y) C To(Y), andY € Mod4(Q). LetZ C Y be
such thatX = Z|g or Z|g = Y|g. In the first case, since
X E R, Z|p = R and, asR contains only atoms from
B, Z = R. In the second case, sinke|= R, Y|p E R
(again, sincer contains only atoms from®). Thus,Z|z =
R. ConsequentlyZ = R in that case, too. SincF¥ is a
minimal model of@ U R, it follows thatZ = Q. Since
Y € Moda(Q) andX C Y|p, we obtain that X,Y) €
Mod% (Q). Hence,Mod%(P) C Mod%(Q) and, to recall
a property proved earlier, for evetyX,Y) € Mod% (P),
Tp(Y) CTo(Y).

By the symmetry argumenifod’; (Q) € Mod® (P) and
for every (X,Y) € Mod%(Q), To(Y) C Tp(Y). It fol-
lows thatMod5 (Q) = Mod5(P) and for every(X,Y) €
Mod3 (P), Tp(Y) = To(Y).

[(2) implies (1)]: LetR be a logic program fronf P (A, B),
and letY be a supported minimal model éf U R. It fol-
lows thatY” |= P andY = R. Italso follows that” is a sup-
ported model oPUsh(R), thatis,Y = Tp (Y)UT gy (Y).
This latter identity shows (in a similar way as in the proof
of Theorem 2.1) that” \ Tp(Y) C A. SinceY E P,
Y € Mod4(P).

Let us considetZ C Y such thatZ|z = Y|p. Since
Y E R, Z E R. SinceY is a minimal model ofP U R,
Z W P. Thus,(Y|p,Y) € Mod5(P). By the assump-
tion, (Y|5,Y) € Mod%(Q) andTp(Y) = T(Y). Since
Y = Tp(Y) U Ty r)(Y), it follows thatyY = Tp(Y) U
Tonr)(Y), thatis,Y is a supported model @ U R.

Let Y/ C Y be a model of@ U R. SinceY’ E Q,
(Y'|B,Y) ¢ Mod5(Q). By the assumption(Y’|z,Y) ¢
Mod® (P). SinceY’|3 C Y|z andY € Mod 4(P), there is
U cCYsuchthat’|z = U|gorU|g = Y|p,andU E P.
Since bothY” = R andY = R, it follows thatU = R.
Thus,U = P U R andY is not a minimal model of U R,
a contradiction. It follows that there is 16’ C Y such that
Y’ E QU R. Thatis,Y is a supported minimal model of

QUR. a

The proof of Theorem 3.1 implies the following corollary
for disjunctive programs.

Corollary 3.2 Let A,B C At satisfyA C B, and let
P, Q be disjunctive programs (with constraints). Then,
and @ are suppmin-equivalent relative #6P(A, B) if and
only if sh(P) and sh(Q) are suppmin-equivalent relative to
LP(A, B).
Proof: The argument is similar to that we used to prove The-
orem 2.2. It is based on two facts: the programs used to
prove that (1) implies (2) in Theorem 3.1 are non-disjurectiv
(and so, invariant under shift), and the shift operationsdoe
not change supported nor minimal models of a disjunctive
program. a
Theorem 3.1 implies a more direct characterization.

Corollary 3.3 Let A, B C At satisfyA C B, and letP, Q
be disjunctive programs (with constraints). The following
conditions are equivalent

1. P and(@ are suppmin-equivalent relative &P (A, B)
2. Mod% (sh(P)) = Mod% (sh(Q)) and for every(X,Y) €
Mod 3 (sh(P)), Tu(p)(Y) = Tun(gy(Y)-
Finally, we note that in the case wheh = B = At,

the concepts of suppmin-equivalence and supp-equivalence

coincide.

Corollary 3.4 Let P and @ be disjunctive logic programs
(with constraints). The following conditions are equivale

1. P and(@ are suppmin-equivalent relative &P (At, At)
2. P and(@ are supp-equivalent relative 6P (At, At).

Proof: Since the operation of shift does not change models,
minimal models and supported models, it is enough to prove
the assertion under the assumption that bBtand @ are
normal.

[(Q) implies (2)]: LetY be a model ofP. Then,Y is a
supported minimal model aP U Y. By the assumptiony”

is a supported minimal model gfU Y. In particularY is a
model of@. By the symmetry argumenE, and@ have the
same models.

Let Y be a model ofP (and so of@Q). ClearlyY is a
supported model adP U (Y \Tp(Y))U{ «— noty |y ¢ Y}.
Moreover, it is the only model and so, a minimal model of
that program. Thusy is a supported minimal model ¢f U
Y \Tp(Y))U{ < noty |y ¢ Y}. SinceTp(Y) CY, It
follows thatTp(Y) C T (Y). By the symmetry argument,
To(Y) C Tp(Y). Thus,Tp(Y) = T(Y). By Theorem
2.1, P and(@ are supp-equivalent relative 8P (At, At).

[(2) implies (1)]: Let us consider a logic prograf Since

P and @ are supp-equivalent, they have the same models.
Thus, P U R and@ U R have the same models and, con-
sequently, the same minimal models. By the assumption,
P U R and@ U R have the same supported models. Thus,
P U R andQ U R have the same supported minimal models.
O

4 Algebraic setting

The approach presented in the previous section extends to an
abstract algebraic setting. The role of programs is played b
non-deterministic operators on a boolean algebra, and mod-
els and supported models of programs are represented by
prefixpoints and fixpoints of the operators, respectivelg. W
start by introducing formally the concepts we need.

First, we fix a boolean algebra and denote it/hy We
write | andT for the least and the greatest elementd.pf
andv, A and— for the binary operations of the algebra. To
simplify notation, we often writgy, for y A b. Finally, we
denote by< the partial order relation of the algebra.

We call mappings fronL to P (L) non-deterministic op-
eratorson L. We denote the set of all non-deterministic
operators orl. by NOp. We note that standard determin-
istic (partial) operators ol can be viewed as special non-
deterministic operators of, namely those that assign to
each element of, a set with at most one element. We call
this class of such operators O, deterministicand de-
note it by DOy. Finally, we denote by¥ O, the class of
those constant operators 0, that do not usd) as their
common value.

ForD,E € NOy, we defineD Vv E to be an operator in
NOy, such that for every € L,

(DVE)(y) ={uVwv|ue D(y),veEy)}

We note that ify is a prefixpoint ofD v FE, theny is a pre-
fixpoint of D and of E.

An elementy € L is aprefixpointof D if there isz €
D(y) such that: < y. An elementy € L is afixpointof D
if y € D(y). If D is deterministic, these definitions coincide
with the standard definitions of prefixpoints and fixpoints of
deterministic operators. Finally, a fixpoint &f is asuper-
fixpointof D if it is a minimal prefixpoint ofD.

Let O C NOy. Two operatorsD, E € NOj arefp-
equivalent relative ta? if for every operatorF' € O, the
operatorsD vV F andE Vv F have the same fixpoints. They
aresfp-equivalent relative t@ if for every operato' € O,
the operator® Vv F andE'V I have the same super-fixpoints.

We will now investigate fp- and sfp-equivalence relative
to some special classes of operatorsionLeta € L. We
defineN'Op (a) to be the class of all operatofs € NOp,
such that for everyy € L and everyz € D(y), z < a.
We defineDOr(a) = DO N NOp(a), andCOyr(a) =
COLNNOL(a). Finally, fora,b € L, we defineN Oy (a, b)
to be the class of all operatof$ € N'Oy(a) such that for
everyx € L, D(x) = D(xp).

We will now characterize operators that are fp-equivalent
relative toAN’Oy (a). This result generalizes Theorem 2.1
(with one-step provability operators representing progra
and fixpoints of the one-step provability operators represe
ing supported models of programs).

To this end, we introduce still more notation. We say that
A <, Bifforeveryz € Asuchthat < yandy—z < a,
there isz’ € B such thatz < 2’ andz’ < y. We define
A=,, Bif A<L,, BandB <,, A. Further, for every

We observe that the results of this section do not address D € NO;, we definePF,(D) to consist of all elements
uniform suppmin-equivalence as they do not cover the case y € L, for which there isz € D(y) such that: < y and

of B = () (except for the trivial subcasé = B = ().

y—z<a.

Theorem 4.1 Let D, E € NO, be operators o, a € L,
and letO be a class of operators such tha®(a) C O C
NOp(a). Then, the following conditions are equivalent

1. D and F are fp-equivalent relative td/ Oy (a)

D and FE are fp-equivalent relative t®

D and E are fp-equivalent relative t60,(a)

PF.(D) = PF,(E), and for everyy € PF,(D),
D(y) =ay E(y).

Proof: Clearly, (1) implies (2), and (2) implies (3). We will
now show that (3) implies (4).

Lety € PF,(D). It follows that there is: € L such that
z € D(y), z < yandy — z < a. Let us consider the
operatorC' such that for every, € L, C(u) = y — z. Since
y—z<a,C€COL(a).

We havey = z V (y — z). Thus,y € (D V C)(y). By
the assumptiony € (E Vv C)(y) and, consequently, there
isz € E(y) suchthaty = 2z’ vV (y — z). It follows that
Z < yandz < 2. Thus,y — 2z < y — 2z < a and,
consequentlyy € PF,(E). The converse inclusion follows
by the symmetry argument.

Lety € PF,(D), and letz € D(y) be such that < y
andy — z < a. For suchz, the argument above demonstrates
the existence of’ € E(y) such that: < 2’ andz’ < y.
Thus,D(y) <., E(y). The converse inequality follows by
the symmetry argument. ThuB(y) =, E(y).

To show that (4) implies (1), we reason as follows. Eet
NOp(a). Letus assume thatis a fixpoint of (D V F).
Then, there are € D(y) andz’ € F(y) suchthay = zVvz'.
It follows thatz,z’ < y andy — 2z < 2. Sincez’ < a
(we recall thatF € NOp(a)), y — 2 < a. Thus,y €
PF,(D)andsoD(y) =, E(y). Sincez < yandy —z <
a, there isz”’” € E(y) such thatz < 2’ andz” < y. It
follows thaty = 2" v 2z’ and, consequently, € (E'V F)(y).
Thus, every fixpoint ofD Vv F'is a fixpoint of £ vV F. By
the symmetry argumenf) v F andE Vv F' have the same
fixpoints. Consequently) andF" are fp-equivalent relative
to NOL((I) O
Assuminga = T, we obtain the following corollary con-
cerning the fp-equivalence relative to the class of all aper

2.
3.
4.

PF®(D) to be the set of all pairéz,y), z,y € L, such
that (we recall that:,, stands for A v):

1. y € PF,(D)
2.z2<y

3. for everyz < y, if 2z, = x or z, = y, thenz is not a
prefixpoint of D.

Theorem 4.3 Leta,b € L be such thata < b, and let
D, E € NOg. The following conditions are equivalent

1. D and F are sfp-equivalent relative t& O (a, b)
2. PFY(D) = PF"(E), and for every(z,y) € PF’(D),
D(y) “a,y E(y)

[(1) implies (2)]: Let us assume thét,y) € PF2(D). In
particular, it follows thaty € PF,(D), that is, there is €
D(y) such that, < y andy — u < a.

In the proof, we will use three auxiliary operatoss,, A
and A3;. They are defined as follows. if, — z < z, we
defineA;(z) = {y — u}; otherwise, we seti; (z) = {L}.
For Ay, we defineds(z) = {L}, if x < 2, andAs(z) = 0,
otherwise. Finally, fords, we setd3(2) = { L}, if (yp—2)A
z=lor(y, —z) —z = L. Otherwise, we sefi3(z) = 0.

We now define

F=A VAV As.

We note that?’ € NOp(a,b). Indeed, we observe that for
everyz € L, F(z) equalsy — u, L or{). Sincey —u < a,
for everyv € F(z), v < a. Thus,F € NOg(a). Next, if
F(z) = 0, thenAs(z) = 0 or A3(z) = 0. In the first case,
xz £ zandsog £ z,. Thus,As(z,) = 0. Inthe second case,
(yp —x) ANz # Land(y, —x) — 2z # L. Sincey, —x < b,

it follows that (y, —) A 2z, # L and(yp — x) — 25 # L.
Thus,As(z,) = (0. In each casel(z,) = 0 = F(z).

If F(z2) # 0, thenz < 2z, and(y, —z) Az = L or
(yp —x) — 2z = L. Sincex < y, < b, & < z,. Moreover,
sincey, —x < b, (yp —2) Az = Lor(yy —z) — 2 =
1. Thus,F(zp) # 0. It follows that F(z) = A;(z) and
F(zy) = A1(2). Sinceyy, —x < b,y — x < z if and only
ypy — x < 2. Thus,A;(z) = A;(z) and, consequently,
F(z) = F(z).

tors and some of its subclasses. In the statement, we use the By a similar argument as that in the proof of Theorem 4.1,

notation=,, as an abbreviation foer ,. It is easy to see
that A =, B if for every z € A such thatz < y, there is
z' € Bsuchthat: < 2/ andz’ < y, and for every: € B
such that < y, thereisz’ € A suchthat < 2z’ andz’ < y.

Corollary 4.2 LetD, E € NOjy, be operators orl,, and©O

a class of operators such th&®; € O C NOy. Then,
the following conditions are equivalent

1. D andE are fp-equivalent relative t&/O,

D and FE are fp-equivalent relative t®

D and F are fp-equivalent relative t60,

D and E' have the same prefixpoints, and for every prefix-
point of D, D(y) =, E(y).

Next, we will develop an algebraic counterpart of our
characterization of suppmin-equivalence. To this end, for
D ¢ NOy, and fora,b € L, with a < b, we define

2.
3.
4.

y is a fixpoint of D U F'. Let us consider a prefixpointof
DV F such that < y. In particular, it follows thatF'(z) #
(. SinceF € NOp(a,b), F(z) = F(z). Thus,As(z,) =
Asz(z) = L. Consequentlyy < z, and(yp —) A zp = L
or (yp —x) — 2z, = L. Sincex < z, < y, the first condition
implies z;, = x, and the other oney, = z,. We recall that
(z,y) € PFE(D). If z < y, thenz is not a prefixpoint oD,
a contradiction. Thus; = y. It follows thaty is a minimal
prefixpoint of D v F' and so, a super-fixpoint dd v F'.

From the assumption, it follows thatis super-fixpoint of
E Vv F. In particular, we have that € (E V F)(y). Since
y —x <y <y, itfollowsthatF(y) = A;(y) = {y — u}.
Thus,y = v V (y — u), for somev € E(y). It follows
thatv < yandy —v <y —u < a. Thus,y € PF,(E).
Moreover,« is an arbitrary element fronb(y) such that
u<yandy —u < a. Sinceu < v (asy —v <y —u and
u,v < y), it follows thatD(y) <., E(y).

Let z < y be such thatt = z, or z; = ;. In the first
case, itis easy to see tha zand(y, —x) Az = L. Thus,
F(z)=A1(2). fyp—x £ z, thenF(z) = {L} and soz is
a prefixpoint ofF'. So, let us assume thgs — = < 2. Since
x = z, it follows thaty, = z andF(z) = {y — u}. We
recallthaty —u < a <b. Thus,y —u <y, =2 = 2z < z.
Hence,z is a prefixpoint ofF in this case, too.

Let us now assume the second possibility,= ;. It
is easy to check thatlz(y,) = {L} and As(y,) = {L}.
Sincex < yp, F(2) = F(y) = A1(w) = {y — u}. We
recall thaty — u < a < b. Thus,y —u <y, = 2, < 2.
SinceF € NOy(a,b), F(z) = F(z). It follows thatz s a
prefixpoint of F, also in this case.

Sincey is a minimal prefixpoint oft' U F' andz < y, it
follows thatz is not a prefixpoint off. Sincey € PF,(E)
andz < v, (x,y) € PF(E). Hence,PF" (D) C PF:(E)
and, to recall a property proved earliér(y) <, , E(y).

By the symmetry argument?’F’(E) C PF®(D) and
for every (z,y) € PF(E), E(y) <., D(y). It follows
that PF?(E) = PF®(D) and for every(z,y) € PF’(D),
D(y) =ay E(y).

[(2) implies (1)]: LetF' € NOp(a,b), and lety be a super-
fixpoint of D v F. It follows that there arev € D(y) and
v € F(y) such thatw V v = y. SinceF € NOg(a,b),
v < a. Thus,w < y andy — w < a. Consequentlyy €
PF,(D).

Let us consider < y such thatz, = y;,. SincelF €
NOL(a.b), F(y) = F(y). Thus,v € F(y) = F(z,).
Sincev < a < bandv < y,v < y, = 2. By the assump-
tion thatF' € NOL(a,b),v € F(z). Sincev < z, < z, z is
a prefixpoint of F'. We recall thaty is a minimal prefixpoint
of D Vv F. It follows thatz is not a prefixpoint ofD. Thus,
(ys,y) € PF"(D). By the assumptionys,,y) € PF%(E)
and D(y) =q, E(y). Sincew € D(y), w < y and
y—w < a, thereisw € E(y) such thatw < w’" andw’ < y.
It follows thaty = w’ Vv and soy € E(y)V F(y). In other
words,y is a fixpoint of £V F.

Let 4/ < y be a prefixpoint ofE V F. Sincey’ is a
prefixpoint of E, (y;,y) ¢ PF(E). By the assumption,
(ys,y) ¢ PF°(D). Sincey, < y, andy € PF,(D), there
isu < y such that;, = u; or u, = y,, andu is a prefixpoint
of D. Sincea < b, F € NOf(a,b), and bothy’ andy are
prefixpoints ofF, it follows thaty; andy, are prefixpoints
of F. Sincey; = uy, Or up, = yp, uyp iS @ prefixpoint ofF.
Thus, there is’ € F(up) suchthat’ < ug. By the assump-
tion thatF € NOp(a,b), F(u) = F(up). Thus,u’ € F(u)
andu’ < u, < u. Thatis,u is a prefixpoint ofF’ and so, of
D Vv F, contrary to the minimality of;.

It follows that there is nq/ < y such thaty’ is a pre-
fixpoint of £ v F. That is,y is a super-fixpoint o2 v F.

O

As in the case of logic programs, we have the following

corollary.

Corollary 4.4 Let D,E € NOy. ThenD and E are sfp-
equivalent relative toV'Oy, if and only if D and E are fp-
equivalent relative toVOy,.

Specializing these results to the case whens the
boolean algebra of all subsets 4f (interpretations) and
and E are one-step provability operators for normal logic
programsP and@ (considered as non-deterministic opera-
tors), we obtain as corollaries Theorems 2.1 and 3.1. Indeed
models of a normal logic program with constraints, g3y
are precisely prefixpoints dfp, and supported models &f
are precisely fixpoints of . Moreover, the class of con-
stant operators on that algebra with values in asistcon-
tained in the clas€P (A, At). Similarly, operatorsd, A
and A3 used in the proof of Theorem 4.3, in the case of the
algebra of subsets oft, belong to the clas§P(A, B).

5 Autoepistemic logic

Autoepistemic logic is one of the classical nhonmonotonic
systems. It is a modal nonmonotonic logic introduced in
(Moore 1984; 1985). The main motivation was to develop
a nonmonotonic logic of belief sets of agents with perfect
introspection capabilities. The goal was to correct seriou
shortcomings of an earlier attempt at the development of a
modal nonmonotonic system (McDermott & Doyle 1980),
that was ultimately established to be flawed.

The semantics of autoepistemic theories is given by the
concept of an expansion (Moore 1984). As with other non-
monotonic systems, the question of hyperequivalence of
modal theories in autoepistemic logic arises naturally. In
this section we will address this question, exploiting dur a
gebraic characterization of hyperequivalence of opesator
and a well-known fact that expansions of a modal theory are
in one-to-one correspondence with fixpoints of an operator
on a boolean algebra.

We start with some preliminaries. We will consider the
language of a propositional modal logic generated by a set
of atoms At (possibly infinite), standard boolean connec-
tives (including O-ary connectives and L) and one modal
operatorK. We will denote this language bg%, and its
modal-free part by 4;. As At is fixed, typically, we will
omit an explicit references tdt.

We denote byCn the operator of propositional conse-
quence, which we apply to subsetsdbf,. By B we denote
the well-known boolean algebra consisting of all theories
contained inL that are closed under propositional conse-
quence. Th&'n () (the set of all tautologies) anfiplay the
roles of L andT in this algebra. Givew, V' € B, the joinL
is defined by LV = Cn(UUV), and the meet is defined
by UnV = U NV. Finally, the maximal theory¥ C L
closed under consequence and suchthatW = Cn(0),
is the complement df.

Let F € B and lety € £%,. We define the formula r
by induction as follows:

1L yor=gpifpeLa

2. (-¢)r = —pr, other boolean connectives are handled in
a similar standard way

3. (Kp)p =T,ifpe F; (Ky)r =1, otherwise.
Itis evident thatpr € L.

LetT C L%, and letF’ C £, be closed under proposi-
tional consequence. We define

Ap(F) = Cn({er | € TY).

Clearly, A7 is a deterministic operator ofi. It is straight-
forward to represent it as a nondeterministic operatoBBon
and view it as an element ¢f O.

Atheory F' C L4, is anexpansiorof T if F' = Ap(F),
that is, a fixpoint ofAz. To be precise, more commonly

Our results can be phrased in an algebraic setting of non-
deterministic operators on boolean algebras. In the case,
when the operators are deterministic (but possibly partial
we obtain in this way a generalization of our results for
normal logic programs with constraints. The generalizatio
exploits the property that there is a direct match between
fixpoints of deterministic (partial) operators and supedrt
models of normal programs with constraints, based on the
one-step provability operator of a program. However, our

expansions are defined as stable expansions of such proporesults are insufficient to be viewed as a generalization of
sitional theoriest’ (cf. (Marek & Truszczyski 1993; the case of disjunctive logic programs with constraintse Th
Denecker, Marek, & Truszchgki 2003)). However, as reason is that there is no similar direct match between fix-
there is a one-to-one correspondence between the conceptspoints of non-deterministic operators and supported nsodel
in this paper we regard as an expansion its propositional of disjunctive logic programs with constraints. Finding an
“generator”. algebraic characterization of hyperequivalence for ttee di
Two theoriesU, V. C L* are expansion-equivalenel- junctive case is another open problem.

ative to a clasg of theories if for every theoryV € 7, The results we obtained for logic programs can be used to
UUW andV UW have the same expansions. Since ex- establish the complexity of problems to decide hyperequiv-
pansions of a theory are defined as fixpoints of an operator alence with respect to particular program classes. This top
on a boolean algebra, we will now use the results from the s the subject of an ongoing work and the results will be pre-

previous section to characterize the concept of expansion-
equivalence.
We denote by7,, s the class of modal-free theorigsthat

are closed under propositional consequence. We observe

that the class of operator$r given by theories” € 7,
contains all constant operators #h Next, we note that
UUW andV U W have the same expansions if and only
if Ayuw and Ay have the same expansions. More-
over, Ayuw = Ay U Ay andAyvuw = Ay U Ay. Fi-
nally, since Ay and Ay are deterministic, we note that
Ay(Y) =y Ay(Y)ifandonly if Ay (Y) = Ay (Y). Thus,
applying Corollary 4.2, we get the following result.
Theorem 5.1 LetU,V C £X and letT be a class of theo-
ries such thatZ,,; C 7. Then, the following conditions are
equivalent:

1. U andV are fp-equivalent relative to the class of all the-
ories

U andV are fp-equivalent relative t@

U andV are fp-equivalent relative t@,, s

Ay and Ay have the same prefixpoints, and for every pre-
fixpointY of Ay, Ay (Y) = Ay (Y).

2.
3.
4.

6 Conclusions

Our results extend the concept of hyperequivalence to two
other major semantics of logic programs: the supported-
model semantics and the suppmin-model semantics. Our
results for the semantics of suppmin models are only par-
tial. The case when the restrictian < b is weakened or
dropped altogether remains open.

There are other variants of Theorem 4.3 concerned with
sfp-equivalence relative to other classes of operatons tha
NOg(a,b). However, the results we have obtained so far
are too weak to imply characterizations for the relativized
hyperequivalence of autoepistemic theories under the se-
mantics of expansions that are in the same time minimal
models. This is one of the topics we are currently pursu-
ing. It will receive a more complete treatment in the final
version of the paper.

sented in another paper.

References

Apt, K.; Blair, H.; and Walker, A. 1988. Towards a theory of
declarative knowledge. In Minker, J., eBqundations of deduc-
tive databases and logic programming9—-142. Morgan Kauf-
mann.

Cabalar, P.; Odintsov, S. P.; Pearce, D.; and Valverde, A. 2006.
Analysing and extending well-founded and partial stable seman-
tics using partial equilibrium logic. In Etalle, S., and Truszczyn-
ski, M., eds.,Proceedings of the 22nd International Conference
(ICLP 2006) volume 4079 o£ NCS 346-360. Springer.

Clark, K. 1978. Negation as failure. In Gallaire, H., and Minker,
J., eds.Logic and data base®New York-London: Plenum Press.
293-322.

Denecker, M.; Marek, V.; and Truszdzgki, M. 2003. Uniform
semantic treatment of default and autoepistemic logietficial
Intelligence Journall43:79-122.

Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical character-
izations and complexity of equivalences in answer set program-
ming. ACM Transactions on Computational Lo@¢3). 53 pages.

Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution cor-
respondences in answer-set programmingPrisceedings of the
19th International Joint Conference on Artificial Intelligence (13-
CAI 2005) 97-102. Morgan Kaufmann.

Inoue, K., and Sakama, C. 2004. Equivalence of logic programs
under updates. IRroceedings of the 9th European Conference
on Logics in Atrtificial Intelligence (JELIA-O4)olume 3229 of
Lecture Notes in Computer Sciendd4-186. Springer.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly equiv-
alent logic programsACM Transactions on Computational Logic
2(4):526-541.

Lin, F. 2002. Reducing strong equivalence of logic programs to
entailment in classical propositional logic. Rroceedings of the
8th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 200R®)organ Kaufmann.

Marek, W., and TruszcZski, M. 1993. Nonmonotonic Logic;
Context-Dependent ReasonirBerlin: Springer.

McDermott, D., and Doyle, J. 1980. Nonmonotonic logiAr-
tificial Intelligence13(1-2):41-72.

Moore, R. 1984. Possible-world semantics for autoepistemic
logic. In Proceedings of the Workshop on Non-Monotonic Rea-
soning 344-354. Reprinted in: M. Ginsberg, eReadings on
Nonmonotonic Reasoningages 137-142, Morgan Kaufmann,
1990.

Moore, R. 1985. Semantical considerations on nonmonotonic
logic. Artificial Intelligence25(1):75-94.

Oetsch, J.; Tompits, H.; and Woltran, S. 2007. Facts do not
Cease to Exist Because They are Ignored: Relativised Uniform
Equivalence with Answer-Set Projection. Rioceedings of the
22nd National Conference on Atrtificial Intelligence (AAAI-2Q07)
458-464. AAAI Press.

Oikarinen, E., and Janhunen, T. 2006. Modular Equivalence for
Normal Logic Programs. IfProceedings of the 17th European
Conference on Artificial Intelligend&ECAI 200§, 412—416. 10S
Press.

Truszczyiski, M. 2006. Strong and uniform equivalence of non-
monotonic theories — an algebraic approach. In Doherty, P.; My-
lopoulos, J.; and Welty, C., ed®2roceedings of the 10th Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR 2006389-399. AAAI Press.

Turner, H. 2003. Strong equivalence made easy: nested expres-
sions and weight constraint3heory and Practice of Logic Pro-
gramming3:609-622.

van Emden, M., and Kowalski, R. 1976. The semantics of pred-
icate logic as a programming languagdournal of the ACM
23(4):733-742.

Woltran, S. 2007. A Common View on Strong, Uniform, and
Other Notions of Equivalence in Answer-Set Programming. In
Pearce, D.; Polleres, A.; Valverde, A.; and Woltran, S., d&®;
ceedings of the 1st Workshop Correspondence and Equivalence
for Nonmonotonic Theories (CENT'Q7A)olume 265 of CEUR
Workshop Proceedingé3—-24. CEUR-WS.org.

Zhang, A., and Marek, W. 1989. On the classification and exis-
tence of structures in default logic. EPIA 89 (Lisbon, 1989)
volume 390 ofLecture Notes in Computer ScienckE29-140.
Berlin-New York: Springer.

