
Exploiting Conjunctive Queries in Description Logic Programs

Thomas Eiter
Thomas Krennwallner

Roman Schindlauer
Institut für Informationssysteme, TU Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,tkren,roman}@kr.tuwien.ac.at

Giovambattista Ianni
Dip. di Matematica, Università della Calabria,

I-87036 Rende (CS), Italy.
ianni@mat.unical.it

Dedicated to Victor Marek
on his 65th birthday

Abstract

We present cq-programs, which enhance nonmonotonic de-
scription logics (dl-) programs by conjunctive queries (CQ)
and union of conjunctive queries (UCQ) over Description
Logics knowledge bases, as well as disjunctive rules. dl-
programs had been proposed as a powerful formalism for in-
tegrating nonmonotonic logic programming and DL-engines
on a clear semantic basis. The new cq-programs have two ad-
vantages. First, they offer increased expressivity by allowing
general (U)CQs in the body. And second, this combination
of rules and ontologies gives rise to strategies for optimizing
calls to the DL-reasoner, by exploiting (U)CQ facilities of
the DL-reasoner. To this end, we discuss some equivalences
which can be exploited for program rewriting and present re-
spective algorithms. Experimental results for a cq-program
prototype show that this can lead to significant performance
improvements.

1 Introduction
Rule formalisms that combine logic programming with
other sources of knowledge, especially terminological
knowledge expressed in Description Logics (DLs), have
gained increasing interest in the past years. This process
was mainly fostered by current efforts in the Semantic Web
development of designing a suitable rules layer on top of
the existing ontology layer. Such couplings between DLs
(in the form of ontologies) and logic programming appear
in different flavors, which roughly can be categorized in
(i) systems with strict semantic integration and (ii) systems
with strict semantic separation, which amounts to coupling
heterogeneous systems (Rosati 2006a; Eiteret al. 2006;
Antoniou et al. 2005; Panet al. 2004). In this paper,
we will concentrate on the latter, considering ontologies as
an external source of information with semantics treated
independently from the logic program. One representa-
tive of this category was presented in (Eiteret al. 2004;
2006), extending the answer-set semantics of logic programs
towards so-calleddl-programs. dl-programs consist of a
DL part L and a rule partP , and allow queries fromP to
L. These queries are facilitated by a special type of atoms,
which also permit to hypothetically enlarge the assertional

Copyright c© 2007, authors listed above. All rights reserved.

part ofL with facts imported from the logic programP , thus
allowing for a bidirectional flow of information.

The types of queries expressible by dl-atoms in (Eiteret
al. 2004; 2006) are concept and role membership queries,
as well as subsumption queries. Since the semantics of logic
programs is usually defined over a domain of explicit in-
dividuals, this approach may fail to derive certain conse-
quences, which are implicitly contained inL. Consider the
following simplified version of an example from (Motik,
Sattler, & Studer 2005):

L =

8

<

:

hates(Cain,Abel), hates(Romulus,Remus),
father(Cain,Adam), father(Abel ,Adam), father ⊑
parent , ∃father .∃father−.{Remus}(Romulus)

9

=

;

P =



BadChild(X)← DL[parent](X, Z),
DL[parent](Y, Z), DL[hates](X, Y)

ff

Apart from the explicit facts,L states that eachfather
is also aparent and that Romulus and Remus have a
common father. The single rule inP specifies that an
individual hating a sibling is aBadChild . From this
dl-program,BadChild(Cain) can be concluded, but not
BadChild(Romulus), though it is implicitly stated that
Romulus andRemus have the same father.

The reason is that, in a dl-program, variables must be in-
stantiated over its Herbrand base (containing the individu-
als inL andP), and thus unnamed individuals, like the fa-
ther of Romulus and Remus, are not considered. In essence,
this means that dl-atoms only allow for building conjunc-
tive queries that areDL-safe in the spirit of (Motik, Sat-
tler, & Studer 2005), which ensures that all variables in the
query can be instantiated to named individuals. While this
was mainly motivated by retaining decidability of the for-
malisms, unsafe conjunctive queries are admissible under
certain conditions (Rosati 2006a). In this vein, we extend
dl-programs by permitting conjunctive queries or unions
thereof, toL as first-class citizens in the language. In our
example, we may use

P ′ = {BadChild(X)← DL

2

4

parent(X, Z),
parent(Y, Z),
hates(X, Y)

3

5(X, Y)},

where the body of the rule is a CQ{parent(X,Z),
parent(Y,Z), hates(X,Y)} to L with distinguished vari-
ablesX andY . Then we shall obtain the desired result, that
BadChild(Romulus) is concluded.

The extension of dl-programs to cq-programs, introduced
in this paper, has some attractive features.

• First and foremost, the expressiveness of the formalism
is increased significantly, since existentially quantifiedand
therefore unnamed individuals can be respected in query an-
swering through the device of (u)cq-atoms.

• In addition, cq-programs have the nice feature that the in-
tegration of rules and the ontology is decidable whenever an-
swering (U)CQs over the ontology (possibly extended with
assertions) is decidable. In particular, recent results onthe
decidability of answering (U)CQs for expressive DLs can
be exploited in this direction (Ortiz de la Fuente, Calvanese,
& Eiter 2006b; 2006a; Glimmet al. 2007). Furthermore,
it also allows to express, via conjunction of cq-atoms and
negated cq-atoms in rule bodies, certain decidable conjunc-
tive queries with negations; note that negation leads quickly
to undecidability (Rosati 2007).

• The availability of CQs opens the possibility to express
joins in different, equivalent ways and therefore to the de-
sign of a module using automatic rewriting techniques. Such
module, starting from a given program(L,P), might pro-
duce an equivalent, yet more efficient, program(L,P ′).

Example 1.1 Both

r : BadParent(Y)← DL[parent](X, Y), DL[hates](Y, X)

and

r′ : BadParent(Y)← DL[parent(X, Y), hates(Y, X)](X, Y)

equivalently single out (not necessarily all) bad parents.
Here, inr the join betweenparent andhates is performed
in the logic program, while inr′ it is performed on the DL-
side.

DL-reasoners including RACER, KAON2, and Pellet in-
creasingly support answering CQ. This can be exploited to
push joins of multiple atoms from the rule part to the DL-
reasoner, or vice versa. Multiple calls to the DL-reasoner are
an inherent bottleneck in evaluating cq-programs. Reducing
the number of calls can significantly improve performance.

Motivated by the last aspect, we then focus on the following
contributions.

• We present a suite of equivalence-preserving transforma-
tion rules, by which rule bodies and rules involving (u)cq-
atoms can be rewritten. Based on these rules, we then de-
scribe algorithms which transform a given cq-programP
into an equivalent, optimized cq-programP ′.

• We report an experimental evaluation of such rewriting
techniques, based on a prototype implementation of cq-
programs usingdlvhex (Eiter et al. 2005) and RACER. It
shows the effectiveness of the techniques, and that signifi-
cant performance increases can be gained. The experimental
results are interesting in their own right, since they shed light
on combining conjunctive query results from a DL-reasoner.

The experimental prototype for cq-programs is ready for
use (see Section 5). To our knowledge, it is currently the
most expressive implementation of a system integrating non-
monotonic rules and ontologies.

2 dl-Atoms with Conjunctive Queries
We assume familiarity with Description Logics (DLs) (cf.
(Baader et al. 2003)), in particularSHIF(D) and
SHOIN (D).1 A DL-KB L is a finite set of axioms in the
respective DL. We denote logical consequence of an axiom
α from L by L |= α.

As in (Eiteret al. 2004; 2006), we assume a function-free
first-order vocabularyΦ of nonempty finite setsC andP of
constant resp. predicate symbols, and a setX of variables.
As usual, aclassical literal(or literal), l, is an atoma or a
negated atom¬a.

Syntax Informally, a cq-program consists of a DL-KBL
and a generalized disjunctive programP , which may involve
queries toL. Roughly, such a query may ask whether a spe-
cific description logic axiom, a conjunction or a union of
conjunctions of DL axioms is entailed byL or not.

A conjunctive query(CQ) q(~X) is an expression{ ~X |

Q1(~X1), . . . , Qn(~Xn)}, where eachQi is a concept or role
expression and each~Xi is a singleton or pair of variables
and individuals, and where~X ⊆

⋃n
i=1

vars(~Xi) are itsdis-
tinguished(or output) variables. Intuitively,q(~X) is a con-
junctionQ1(~X1)∧· · ·∧Qn(~Xn) of concept and role expres-
sions, which is true if all conjuncts are satisfied, and then it
is projected on~X. We will omit ~X if it is clear from the
context.

A union of conjunctive queries(UCQ) q(~X) is a disjunc-
tion

∨m
i=1

qi(~X) of CQsqi(~X). Intuitively, q(~X) is satis-
fied, whenever someqi(~X) is satisfied.

Example 2.1 Regarding our opening example,
cq1(X,Y) = {X,Y | parent(X,Z), parent(Y,Z),
hates(X,Y)} and cq2(X,Y) = {X,Y | father(X,Y),
father(Y,Z)} are CQs with output X,Y , and
ucq(X,Y) = cq1(X,Y) ∨ cq2(X,Y) is a UCQ.

A dl-atomα is in formDL[λ; q](~X), whereλ = S1op1p1,
. . . , Sm opm pm (m ≥ 0) is a list of expressionsSi opi pi

calledinput list, eachSi is either a concept or a role,opi ∈
{⊎, −∪, −∩}, pi is a predicate symbol matching the arity ofSi,
andq is a (U)CQ with output variables~X (in this case,α is
called a (u)cq-atom), or q(~X) is a dl-query. Eachpi is an
input predicate symbol; intuitively, opi = ⊎ increasesSi by
the extension ofpi, while opi = −∪ increases¬Si; opi = −∩
constrainsSi to pi.

Example 2.2 The cq-atom
DL[parent ⊎ p; parent(X, Y), parent(Y, Z)](X, Z)

with outputX,Z extendsL by adding the extension ofp to
the roleparent , and then joinsparent with itself.

A cq-rule r is of the form a1 ∨ · · · ∨ ak ←
b1, . . . , bm,not bm+1, . . . ,not bn, where everyai is a lit-
eral and everybj is either a literal or a dl-atom. We define
H(r) = {a1, . . . , ak} andB(r) = B+(r) ∪ B−(r), where

1We focus on these DLs because they underly OWL-Lite and
OWL-DL. Conceptually, cq-programs can be defined for other DLs
as well.

B+(r) = {b1, . . . , bm} andB−(r) = {bm+1, . . . , bn}. If
B(r) = ∅ andH(r) 6= ∅, thenr is a fact. If H(r) = ∅
andB(r) 6= ∅, thenr is aconstraint. A cq-programKB =
(L,P) consists of a DL-KBL and a finite set of cq-rulesP .

Example 2.3 LetKB = (L,P), whereL is the well-known
wine ontology2 andP is as follows:

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W),

DL[RedWine](R),

DL[locatedIn](W, L),

DL[locatedIn](R, L),

not DL
ˆ

locatedIn(L, L
′)

˜

(L).

← visit(X), visit(Y), X 6= Y.

some visit ← visit(X).

← not some visit .

delicate region(W)← visit(L), delicate(W),

DL[locatedIn](W, L).

delicate(W)← DL[hasF lavor](W, wine:Delicate).

Informally, the first rule selects a maximal region in which
both red and white wine grow, and the next three rules make
sure that exactly one such region is picked, by enforcing that
no more than two regions are chosen (second rule) and that
at least one is chosen (third and fourth) rule. The last two
rules single out all the sub-regions of the selected region
producing some delicate wine, i.e., if a wine has a delicate
flavor which is specified by individualwine:Delicate.

Note that the programP exclusively uses instance re-
trieval queries—with one exception in the first rule: the
weakly negated dl-atom is a conjunctive query with only one
query atom, since we have to remove the non-distinguished
variableL′ from the output to keep the rule safe. The pro-
gram will be used throughout the paper for demonstrating
our rewriting methods.

Semantics For any CQq(~X) = { ~X | Q1(~X1), . . . ,

Qn(~Xn)}, let φq(~X) = ∃~Y
∧n

i=1
Qi(~Xi), where~Y are the

variables not in~X, and for any UCQq(~X) =
∨m

i=1
qi(~X),

let φq(~X) =
∨m

i=1
φqi

(~X). Then, for any (U)CQq(~X),
the set of answers ofq(~X) on L is the set of tuples
ans(q(~X), L) = {~c ∈ C|

~X| | L |= φq(~c)}.
Let KB = (L,P) be a cq-program. TheHerbrand baseof

P , denotedHBP , is the set of all ground literals with a stan-
dard predicate symbol that occurs inP and constant symbols
in C. An interpretationI relative toP is a consistent subset
of HBP . We sayI is a modelof l ∈ HBP underL, or I
satisfiesl underL, denotedI |=L l, iff l ∈ I.

A ground dl-atoma = DL[λ;Q](~c) is satisfied w.r.t.I,
denotedI |=L a, if L ∪ λ(I) |= Q(~c), whereλ(I) =
⋃m

i=1
Ai and

• Ai(I) = {Si(~e) | pi(~e) ∈ I}, for opi = ⊎;

• Ai(I) = {¬Si(~e) | pi(~e) ∈ I}, for opi = −∪;

2http://www.w3.org/TR/owl-guide/wine.rdf

• Ai(I) = {¬Si(~e) | pi(~e) ∈ I does not hold}, for opi =
−∩.

Now, given a ground instancea(~c) of a (u)cq-atom
a(~X) = DL[λ; q](~X) (i.e., all variables inq(~X) are re-
placed by constants),I satisfiesa(~c), denotedI |=L a(~c),
if ~c ∈ ans(q(~X), L ∪ λ(I)).

Let r be a ground cq-rule. We define (i)I |=L H(r) iff
there is somea ∈ H(r) such thatI |=L a, (ii) I |=L B(r) iff
I |=L a for all a ∈ B+(r) andI 6|=L a for all a ∈ B−(r),
and (iii) I |=L r iff I |=L H(r) wheneverI |=L B(r).
We say thatI is amodelof a cq-programKB = (L,P), or
I satisfiesKB , denotedI |= KB , iff I |=L r for all r ∈
ground(P). We sayKB is satisfiable(resp.,unsatisfiable)
iff it has some (resp., no) model. The (strong) answer sets
of KB , which amount to particular models ofKB , are then
defined as usual (cf. (Eiteret al. 2004; 2006)).

Example 2.4 The region programKB from Ex. 2.3 has
the following three answer sets (only the positive facts of
predicatesdelicate region and visit are listed, which are
abbreviated bydr resp. v): M1 = {dr(MountadamRies-
ling), v(AustralianRegion), . . .}, M2 = {dr(LaneTannerPin-
otNoir), dr(WhitehallLanePrimavera), v(USRegion), . . .},
and M3 = {dr(StonleighSauvignonBlanc), v(NewZealand-
Region), . . .}.

The semantics for cq-programs without−∩ can be equiv-
alently defined in terms ofHEX-programs (see (Eiteret
al. 2005)).3 Furthermore, many of the properties of dl-
programs are naturally inherited to cq-programs, like the ex-
istence of unique answer set in absence of−∩ andnot , or if
not is used in a stratified way.

The example in the introduction shows that cq-programs
are more expressive than dl-programs in (Eiteret al. 2004;
2006). Furthermore, answer set existence forKB and rea-
soning from the answer sets ofKB is decidable if (U)CQ-
answering onL is decidable, which is feasible for quite ex-
pressive DLs includingSHIQ and fragments ofSHOIN ,
cf. (Ortiz de la Fuente, Calvanese, & Eiter 2006b; 2006a;
Glimm et al. 2007). Rosati’s well-knownDL+log formal-
ism (Rosati 2006b; 2006a), and the more expressive hybrid
MKNF knowledge bases (Motiket al. 2006; Motik & Rosati
2007) are closest in spirit to dl- and cq-programs, since they
support nonmonotonic negation and use constructions from
nonmonotonic logics. However, their expressiveness seems
to be different from dl- and cq-programs. It is reported in
(Motik et al. 2006) that dl-programs (and hence also cq-
programs) can not be captured using MKNF rules. In turn,
the semantics ofDL+log-programs inherently involves de-
ciding containment of CQs in UCQs, which seems to be in-
expressible in cq-programs.

In the remainder of this paper, however, we focus on
equivalence preserving rewritings of (u)cq-atoms, which can
be exploited for program optimization.

3For space reasons, we omit here the technical reasons of this
partial equivalence.

3 Rewriting Rules for (u)cq-Atoms
As shown in Ex. 1.1, in cq-programs we might have dif-
ferent possibilities for defining the same query. Indeed, the
rulesr andr′ there are equivalent over any knowledge base
L. However, the evaluation ofr′ might be implemented by
performing the join betweenparent andhates on the DL
side in a single call to a DL-reasoner, whiler can be evalu-
ated performing the join on the logic program side, over the
results of two calls to the DL-reasoner. In general, making
more calls is more costly, and thusr′ may be preferable from
a computational point of view. Moreover, the size of the re-
sult transferred by the single call in this ruler′ is smaller
than the results of the two calls.

Towards exploiting such rewriting, we present some trans-
formation rules for replacing a rule or a set of rules in a
cq-program with another rule or set of rules, while preserv-
ing the semantics of the program (see Table 1). By means
of (repeated) rule application, we can transform the pro-
gram into another, equivalent program, which we consider
in the next section. Indeed, a rewriting module is con-
ceivable, which rewrites a given cq-program(L,P) into a
refined, equivalent cq-program(L,P ′), which can be evalu-
ated more efficiently. Note that as for rule application, any
ordinary dl-atomDL[λ;Q](~t), where~t is a non-empty list of
terms, is equivalent to the cq-atomDL[λ;Q(~t)](~X), where
~X = vars(~t).

In the rewriting rules, the input listsλ1 and λ2 are as-
sumed to be semantically equivalent (denotedλ1

.
= λ2),

that is, λ1(I) = λ2(I), for every Herbrand interpretation
I. This means thatλ1 andλ2 modify the same concepts and
roles with the same predicates in the same way; this can be
easily recognized (in fact, in linear time). More liberal but
more expensive notions of equivalence, takingL and/orP
into account, might be considered.

Query Pushing (A) By this rule, cq-atomsDL[λ1; cq1](~Y1)

and DL[λ2; cq2](~Y2) in the body of a rule (A1) can be
merged. In rule (A2),cq′1 and cq′2 are constructed by re-
naming variables incq1 andcq2 as follows. Let ~Z1 and ~Z2

be the non-distinguished (i.e., existential) variables ofcq1

andcq2, respectively. Rename eachX ∈ ~Z1 occurring incq2

and eachX ∈ ~Z2 occurring incq1 to a fresh variable. Then
cq′1 ∪ cq′2 is the CQ given by all the atoms in both CQs.

Example 3.1 The rule

a← DL[R1(X, Y), R2(Y, Z)](X), DL[R3(X, Y)](X, Y)

is equivalent to the rule

a← DL[R1(X,Y ′), R2(Y
′, Z), R3(X,Y)](X,Y).

Query Pushing can be similarly done whencq1 andcq2

are UCQs; here, we simply distribute the subqueries and
form a single UCQ.

Variable Elimination (B) Suppose an output variableX of
a cq-atom in a ruler of form (B1a) or (B1b) occurs also
in an atomX = t. Assume thatt is different fromX and
that, in case of form (B1a) the underlying DL-KB is under
Unique Name Assumption (UNA) whenevert is an output

QUERY PUSHING

r : H ← DL[λ1; cq1](~Y1), DL[λ2; cq2](~Y2), B. (A1)

r
′ : H ← DL

ˆ

λ1; cq
′

1 ∪ cq
′

2

˜

(~Y1 ∪ ~Y2), B. (A2)

whereλ1

.
= λ2.

VARIABLE ELIMINATION

r1 : H ← DL[λ1; cq ∪ {X = t}](~Y), B. (B1a)

r2 : H ← DL[λ1; cq](~Y), X = t, B. (B1b)

r
′ : HX/t ←DL

ˆ

λ2; cqX/t

˜

(~Y \ {X} ∪ ω(t)), BX/t. (B2)

whereλ1

.
= λ2, X ∈ ~Y , ·X/t denotes replacement of

variableX by t, andω(t) = {Z} if t is a variableZ and
ω(t) = ∅ otherwise.
INEQUALITY PUSHING

r : H ← DL[λ1; cq](~Y), X 6= t, B. (C1)

r
′ : H ← DL[λ2; cq ∪ {X 6= t}](~Y), B. (C2)

whereλ1

.
= λ2 andX ∈ ~Y . If t is a variable, then also

t ∈ ~Y .
FACT PUSHING

P̄ =



f(~c1), f(~c2), . . . , f(~cl),

H ←DL[λ1; ucq](~Y), f(~Y ′), B.

ff

(D1)

P̄ ′ =



f(~c1), f(~c2), . . . , f(~cl),

H ←DL[λ2; ucq′](~Y), B.

ff

(D2)

whereλ1

.
= λ2, ~cj are ground,~Y ′ ⊆ ~Y , ucq =

∨r
i=1

cqi,

anducq′ =
∨r

i=1

(

∨l
j=1

cqi ∪ { ~Y ′ = ~cj}
)

.

Let H,H ′,Hi be heads,B,B′, Bi be bodies, andr be a
rule of formH ← a(~Y), B.

UNFOLDING

P̄ = {r} ∪ {H ′ ∨ a(~Y ′)← B
′

.} (E1)

P̄ ′ = P̄ ∪ {H ′

θ ∨Hθ ← B
′

θ, Bθ.} (E2)

whereθ is the mgu ofa(~Y) anda(~Y ′) (thusa(~Y θ) =

a(~Y ′θ)).

COMPLETE UNFOLDING

P = Q ∪ {r} ∪ { ri : Hi ∨ a(~Yi)←Bi.} (F1)

P
′ = (P \ {r}) ∪ { r′i : Hiθi ∨Hθi ←Biθi, Bθi.} (F2)

where1 ≤ i ≤ l, Q has no rules of formr, ri, noa(~Z) ∈

Hi is unifiable witha(~Y), andθi is the mgu ofa(~Y) and
a(~Yi) (thusa(~Y θi) = a(~Yiθi)).

Table 1: Equivalences (H = a1∨ · · · ∨ ak; B = b1, . . . , bm,
not bm+1, . . . , not bn)

variable. Then, we can eliminateX from r as follows. Stan-
dardize the non-output variables of cq-atoms apart from the
other variables inr, and replace uniformlyX with t in cq,
B, andH; let cqX/t, BX/t, andHX/t denote the respective

results. RemoveX from the output ~Y and, if t is a vari-
ableZ, addZ to them; the resulting ruler′, in (B2) is then

equivalent to the ruler1 in (B1a) or to the ruler2 in (B1b).
By repeated application of this rule, we may eliminate mul-
tiple output variables of a cq-atom. Note that variablesX in
equalitiesX = t not occurring in any output list can always
be eliminated by simple replacement.

Example 3.2 The rules
r : a(X, Y)← DL[R(X, Z), C(Y), X = Y](X, Y), b(Y)

and
r′ : a(Y, Y)← DL[R(Y, Z), C(Y)](Y), b(Y)

have the same outcome on every DL-KBL. Here,r′ should
be preferred due to the lower arity of its cq-atom. Similarly,
the rule

a(X, Y)← DL[R(X, Z), C(Y), Y = c](X, Y), b(Y)

can be simplified to the rule
a(X, c)← DL[R(X, Z), C(c)](X), b(c).

Inequality Pushing (C) If the DL-engine is used under the
UNA and supports inequalities in the query language, we
can easily rewrite rules with inequality (6=) in the body by
pushing it to the cq-query. A rule of form (C1) can be re-
placed by (C2).

Example 3.3 Consider the rule
big(M)←DL[Wine](W1), DL[Wine](W2), W1 6= W2,

DL[hasMaker](W1, M), DL[hasMaker](W2, M).

Here, we want to know all wineries producing at least two
different wines. We can rewrite above rule, by Query and
Inequality Pushing, to the rule

big(M)← DL

2

6

4

Wine(W1),Wine(W2),
W1 6= W2,

hasMaker(W1, M),
hasMaker(W2, M)

3

7

5
(M, W1, W2).

A similar rule works for a ucq-atomDL[λ;ucq](~Y) in
place ofDL[λ; cq](~Y). In that case, we have to add{X 6= t}
to eachcqi in ucq =

∨m
i=1

cqi.

Fact Pushing (D) Suppose we have a program with “selec-
tion predicates,” i.e., facts which serve to select a specific
property in a rule. We can push such facts into a ucq-atom
and remove the selection atom from the rule body.

Example 3.4 Consider the programP , where we only want
to know the children ofjoe andjill:

P =



f(joe). f(jill).
fchild(Y)← DL[isFatherOf](X, Y), f(X).

ff

We may rewrite the program to a more compact one with the
help of ucq-atoms:

f(joe). f(jill).

fchild(Y)← DL

2

6

6

4



isFatherOf (X, Y),
X = joe

ff

W



isFatherOf (X, Y),
X = jill

ff

3

7

7

5

(X, Y).

Such a rewriting makes sense in situations were
isFatherOf has many values and thus would lead to query,
while uselessly, for all known father-child relationships.

The programP̄ in (D1) can be rewritten tōP ′ in (D2). In
general, a cq-programP such thatP̄ ⊆ P andf does not
occur in heads of rules inP \P̄ can be rewritten to(P \P̄)∪
P̄ ′.

Unfolding (E) and Complete Unfolding (F) Unfolding
rules is a standard method for partial evaluation of ordinary
disjunctive logic programs under answer set semantics, cf.
(Sakama & Seki 1997). It can be also applied in the context
of cq-programs, with no special adaptation. After folding
rules with (u)cq-atoms in their body into other rules, subse-
quent Query Pushing might be applied. In this way, infer-
ence propagation can be shortcut.

The following results state that the above rewritings pre-
serve equivalence. LetP ≡L Q denote that(L,P) and
(L,Q) have the same answer sets.

Theorem 3.5 Let r andr′ be rules of form(Θ1) and(Θ2),
respectively,Θ ∈ {A,B,C}. Let (L,P) be a cq-program
with r ∈ P . Then,P ≡L (P \ {r}) ∪ {r′}.

Theorem 3.6 Let P̄ and P̄ ′ be rule sets of form(Θ1) and
(Θ2), respectively,Θ ∈ {D,E}. Let (L,P) be a cq-
program such thatP̄ ⊆ P . Then,P̄ ≡L P̄ ′ and P ≡L

(P \ P̄) ∪ P̄ ′.

Theorem 3.7 Let P and P ′ be rule sets of form(F1) and
(F2). Then,P ≡L P ′.

4 Rewriting Algorithms
Based on the results above, we describe algorithms which
combine them into a single module for optimizing cq-
programs. The optimization process takes several steps. In
each step, a special rewriting algorithm works on the result
handed over by the preceding step. Note that, in general,
some of the rewriting rules might eliminate some predicate
name from a given program. This might not be desired if
such predicate names play the role of output predicates. In-
deed, it is usual that a programP contains auxiliary rules
conceived for importing knowledge from an ontology, or to
compute intermediate results, while important information,
from the user point of view, is carried by output predicates.
We introduce thus a setF of filter predicates which are ex-
plicitly preserved from possible elimination.

The first step performs unfolding, taking in account the
content ofF . That is, only literals with a predicate fromF
are kept.

Algorithm 1 uses the functionfactpush(P) for Fact Push-
ing. This function tries to turn a programP into a more ef-
ficient one by merging rules according to the equivalences
in Section 3. The algorithm also combines filtering and un-
folding usingunfold(a, r, r′), which takes two rulesr andr′

and returns the unfolding ofr′ with r w.r.t. a literala. Note
thatdo unfold(a, r, r′, P) is a generic function for deciding
whether the unfolding of a ruler in r′ w.r.t. a given program
P and a literala can be done (or is worth being done); this
may be carried out, e.g., using a cost model (as we will see
later in this Section).do unfold may also use, e.g., an inter-
nal counter for the numbers of iterations or rule unfoldings,
and return false if a threshold is exceeded. Also complete

Algorithm 1: merge(P, F): Merge cq-rules in program
P w.r.t. F

Input: ProgramP , Filter F = {p1, . . . , pn}
Result: Unfolded programP
repeat1

P l = P = factpush(P)2

C = {a, a′ | ∃ r, r′ ∈ P : a′ ∈ H(r′), a ∈3

B+(r), anda′ unifiable witha}
if C 6= ∅ then4

choosea ∈ C5

P ′ = ∅6

RH = {r ∈ P | a unifies witha′ ∈ H(r)}7

RB = {r ∈ P | a unifies witha′ ∈ B+(r)}8

stopunfold= true9

forall rB ∈ RB do10

forall rH ∈ RH do11

if do unfold(a, rH , rB , P) then12

stopunfold= false13

addrH andunfold(a, rH , rB) to P ′14

if | {b ∈ H(rH) such thatb unifies15

with a} | > 1 then addrB to P ′

else16

addrH andrB to P ′17

end18

end19

end20

P = P ′ ∪ (P \ (RB ∪RH))21

end22

until P l = P or stopunfold is true23

return filter(P, F)24

unfolding cannot take place if more than one atom in the
head ofr′ can unify witha. The functionfilter(P, F) elim-
inates rules which have no influence on the filtered output.
Such rules are those of formH ← B whereH is nonempty
and has no predicate fromF and no literala unifiable either
(i) with some literal in the body of a rule fromP , or (ii) with
some literal in a disjunctive rule head inP , or (iii) with the
opposite of some literal in a rule head inP .

Theorem 4.1 For a cq-program(L,P) and filterF , P ≡L

merge(P, F) w.r.t. F .

After the unfolding process, we can use Algorithm 2 for
optimizing all the different kinds of queries inP . Here,
push(a1, a2) takes any combination of two dl-, cq-, and
ucq-atoms and generates an optimized (u)cq-atom. Similar
to do unfold in Algorithm 1, do push(a1, a2) is a generic
function to decide whether the Query Pushing should take
place, i.e., it checks compatibility of the input lists of the
atoms and decides whether pushing ofa1 anda2 should be
done.

The last part in this algorithm eliminates variables in
the output of dl-, cq-, and ucq-atoms according to Variable
Elimination.

Theorem 4.2 For every cq-program (L,P), P ≡L

RuleOptimizer(P).

Algorithm 2: RuleOptimizer(P): Optimize the bodies
of all cq-rules inP

foreach r ∈ P such thatB+(r) 6= ∅ do1

chooseb ∈ B+(r)2

B+(r) = BodyOptimizer(b,B+(r) \ {b}, ∅, ∅)3

forall a = DL[λ; cq](~Y) in B+(r) s.t.X = t in cq4

or B+(r) do
if X /∈ ~Y then5

r = H(r)← DL
[

λ; cqX/t

]

(~Y),
B+(r) \ {a},not B−(r)6

else7

r = H(r)X/t ←

DL
[

λ; cqX/t

]

(~Y \ {X} ∪ ω(t)),
(B+(r) \ {a})X/t,not B−(r)X/t8

end9

end10

end11

return P12

Algorithm 3: BodyOptimizer(o,B,C,O): Push queries
in bodyB wrt. o

Input: atomo, bodyB, carryC, and optimized bodyO
Result: pushed optimized bodyB
if B 6= ∅ then1

chooseb ∈ B2

if do push(o, b) then3

o = push(o, b)4

else5

C = C ∪ {b}6

end7

if |B| > 1 then8

return BodyOptimizer(o,B \ {b}, C,O)9

else if |C| 6= ∅ then10

choosec ∈ C11

return BodyOptimizer(c, C \ {c}, ∅, O ∪ {o})12

end13

end14

return O ∪ {o}15

Example 4.3 Let us reconsider the region program on the
wine ontology in Ex. 2.3. Using the optimization methods
for cq-programs we obtain fromP an equivalent program
P ′, where the first rule inP is replaced by
visit(L) ∨ ¬visit(L)←

DL

»

WhiteWine(W1), RedWine(W2),
locatedIn(W1, L), locatedIn(W2, L)

–

(W1, W2, L),

not DL[locatedIn(L, L′)](L),

and the second last rule inP is replaced by
delicate region(W)← visit(L),

DL

»

hasF lavor(W, wine:Delicate),
locatedIn(W, L)

–

(W, L).

The dl-queries in the first rule were pushed into a single CQ.
Furthermore, the rule definingdelicate was folded into the

last rule, and subsequently Query Pushing was applied to it.

Cost Based Query Pushing The functionsdo unfold and
do push in Alg. 1 and 3 determine whether we can benefit
from unfolding or query pushing. Given the input parame-
ters, they should know whether doing the operation leads to
a “better” program in terms of evaluation time, size of the
program, arity of (u)cq-atoms, data transmission time, etc.

In the database area, cost estimations are based on a cost
model, which usually has information about the size of a
database and its relations, an estimate of the selectivity of
joins and selections, the cost of the data transfer, etc. In our
setting, similar knowledge can be used to determine the cost
for pushed queries.

Another useful strategy is to exploit knowledge about
presence of functional properties in L. A propertyR is func-
tional, if for all individualsx, y1, y2 it holds thatR(x, y1) ∧
R(x, y2)→ y1 = y2, i.e.,x is a key inR.

Example 4.4 The fact that every person has only one
mother may be stated by the functional propertyhasMother ,
expressed by the axiom⊤ ⊑ ≤ 1.hasMother . The follow-
ing rule retrieves all mothers of men:

r : a(Y)← DL[hasMother](X, Y), DL[Man](X).

After application of Query Pushing, we obtain the rule

r′ : a(Y)← DL[hasMother(X, Y),Man(X)](X, Y).

In r we get two answers with size|hasMother |+ |Man|,
while in r′ we retrieve at most|Man| tuples. Pushing would
be even more effective if the concept was very selective, e.g.,
if we hadNobel Laureate instead ofMan.

5 Experimental Results
In this section, we provide experimental results for the rule
transformations and the performance gain obtained by ap-
plying the various optimization techniques. We have tested
the rule transformations using the prototype implementation
of the DL-plugin fordlvhex,4 a logic programming engine
featuring higher-order syntax and external atoms (see (Eiter
et al. 2005)), which uses RACER 1.9 as DL-reasoner (cf.
(Haarslev & M̈oller 2001)). To our knowledge, this is cur-
rently the only implemented system for such a coupling of
nonmonotonic logic programs and Description Logics.

The tests were done on a P4 3GHz PC with 1GB RAM
under Linux 2.6. As an ontology benchmark, we used the
testsuite described in (Motik & Sattler 2006). The exper-
iments covered particular query rewritings and version of
the region program (Ex. 2.3) with the optimizations applied.
We report only part of the results, which are shown in Fig. 1.
Missing entries mean memory exhaustion during evaluation.

In most of the tested programs, the performance boost
using the aforementioned optimization techniques was sub-
stantial. Due to the size of the respective ontologies, in
some cases the DL-engines failed to evaluate the original
dl-queries, while the optimized programs did terminate with
the correct result.

4http://www.kr.tuwien.ac.at/research/
dlvhex/

VICODI program: (Fact Pushing)

Pv =



c(vicodi:Economics), c(vicodi:Social),
v(X)← DL[hasCategory](X, Y), c(Y)

ff

SEMINTEC query: (Query Pushing)

Ps2
=

8

>

>

>

<

>

>

>

:

s2(X, Y, Z)← DL[Man](X),
DL[isCreditCard](Y, X),
DL[Gold](Y),
DL[livesIn](X, Z),
DL[Region](Z)

9

>

>

>

=

>

>

>

;

SEMINTEC costs: (Query Pushing, Functional Property)

Pl = {l(X, Y)← DL[hasLoan](X, Y), DL[Finished](Y)}

hasLoan is an inverse functional property and|hasLoan| =
682(n + 1), |Finished | = 234(n + 1), wheren is obtained
from the ontology instanceSEMINTEC n.
LUBM faculty: (Query Pushing, Inequality Pushing, Vari-
able Elimination)

Pf =

8

>

>

>

>

>

<

>

>

>

>

>

:

f(X, Y)← DL[Faculty](X), D1 = D2,
DL[Faculty](Y), U1 6= U2,
DL[doctoralDegreeFrom](X, U1),
DL[worksFor](X, D1),
DL[doctoralDegreeFrom](Y, U2),
DL[worksFor](Y, D2).

9

>

>

>

>

>

=

>

>

>

>

>

;

Table 2: Some test queries

In detail, for the region program, we used the ontologies
wine 0 through wine9. As can be seen from the first graph
in Fig. 1, there is a significant speedup, and in case of wine9
only the optimized program could be evaluated. Most of the
computation time was spent by RACER. We note that the
result of the join in the first rule had only size linear in the
number of top regionsL; a higher performance gain may be
expected for ontologies with larger joins.

The VICODI test series revealed the power of Fact Push-
ing (see the second graph in Fig. 1). While the unoptimized
VICODI program (Table 2) could be evaluated only with on-
tologiesVICODI 0 and VICODI 1, all ontologiesVICODI 0
up to VICODI 4 could be handled with the optimized pro-
gram.

The SEMINTEC tests dealt with Query Pushing for single
rules. The rule inPs2

is from one of the benchmark queries
in (Motik & Sattler 2006), whilePl tests the performance
increase when pushing a query to a functional property (see
Table 2). In both cases, we performed the tests on the ontolo-
gies SEMINTEC 0 up to SEMINTEC 4. As shown in Fig. 1
(third graph) the evaluation speedup was significant. We
could complete the evaluations ofPs2

on all SEMINTEC on-
tologies only with the optimization. The performance gain
for Pl is in line with the constant join selectivity.

In the LUBM test setup, we used the LUBM Data Gener-
ator5 to create the Department ontologies for University 1.
We then created 15 ontologies out of this setup, where each
ontologyLUBM n has Department 1 up to Departmentn in
the ABox. The test queryPf (Fig. 1, last graph) showed a
drastic performance improvement.

5http://swat.cse.lehigh.edu/projects/lubm/

 1

 10

 100

 1000

 10000

9876543210

ev
al

ua
tio

n
tim

e
/ s

ec
s

region program (Full Program Optimization)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 0

 10

 20

 30

 40

 50

 60

 70

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

vicodi program (Fact Pushing)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 10

 100

 1000

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

semintec queries (Query Pushing)

semintec: unoptimized
semintec: optimized

semintec cost: unoptimized
semintec cost: optimized

 0

 50

 100

 150

 200

 250

 300

151413121110987654321

ev
al

ua
tio

n
tim

e
/ s

ec
s

LUBM Faculty, University 1 Dept. 1-n
 (Query & Inequality Pushing, Variable Elimination)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

Figure 1: Evaluation time for the examples.

6 Conclusion
We presented cq-programs, which extend dl-programs
in (Eiter et al. 2004; 2006) with conjunctive queries (CQs)
and unions of conjunctive queries (UCQs), to a Description
Logic (DL) knowledge base. Such programs have higher ex-

pressiveness than dl-programs and retain decidability of rea-
soning as long as answering CQs resp. UCQs is decidable.
As we have explored in this paper, CQs and UCQs can also
be exploited for program optimization. By pushing CQs to
the highly optimized DL-reasoner, significant speedups can
be gained, and in some cases evaluation is only feasible in
that way.

The results are promising and suggest to further this path
of optimization. To this end, refined strategies implement-
ing the testsdo unfold anddo push are desirable, as well
as further rewriting rules. In particular, an elaborated cost
model for query answering would be interesting. However,
given the continuing improvements on DL-reasoners, such a
model had to be revised more frequently.

Future work will be to compare to realizations of cq-
programs based on other DL-engines which host CQs, such
as Pellet and KAON2, and to enlarge and refine the rewriting
techniques.

References
Antoniou, G.; Daḿasio, C. V.; Grosof, B.; Horrocks, I.;
Kifer, M.; Maluszynski, J.; and Patel-Schneider, P. F. 2005.
Combining Rules and Ontologies: A survey. Technical
Report IST506779/Link̈oping/I3-D3/D/PU/a1, Link̈oping
University.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P.F.; eds.: The Description Logic Hand-
book.: Theory, Implementation and Applications. Cam-
bridge University Press (2003)
Eiter, T.; Lukasiewicz, T.; Schindlauer, R.; and Tompits,
H. 2004. Combining Answer Set Programming with De-
scription Logics for the Semantic Web. InProc. KR-2004,
141–151.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A Uniform Integration of Higher-Order Reasoning and Ex-
ternal Evaluations in Answer Set Programming. InProc.
IJCAI 2005, 90–97. Morgan Kaufmann.
Eiter, T.; Ianni, G.; Polleres, A.; Schindlauer, R.; and Tom-
pits, H. 2006. Reasoning with Rules and Ontologies.
In Reasoning Web, Summer School 2006, number 4126 in
LNCS, 93–127. Springer.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007.
Conjunctive Query Answering for the Description Logic
SHIQ. In Proc. IJCAI’07.
Haarslev, V.; and M̈oller, R. 2001. RACER System De-
scription. InProc. IJCAR-01, volume 2083 ofLNAI, 701–
705. Springer-Verlag.
Motik, B.; Horrocks, I.; Rosati, R.; and Sattler, U.: Can
OWL and Logic Programming Live Together Happily Ever
After? In: Proc. ISWC-2006. LNCS 4273, Springer (2006)
501–514
Motik, B.; and Rosati, R.: A Faithful Integration of De-
scription Logics with Logic Programming. In: Proc. IJCAI
2007, AAAI Press/IJCAI (2007) 477–482
Motik, B.; and Sattler, U. 2006. A Comparison of Rea-
soning Techniques for Querying Large Description Logic

ABoxes. InProc. LPAR 2006, volume 4246 ofLNCS, 227–
241. Springer.
Motik, B.; Sattler, U.; and Studer, R. 2005. Query Answer-
ing for OWL-DL with Rules. Journal of Web Semantics
3(1):41–60.
Ortiz de la Fuente, M.; Calvanese, D.; and Eiter, T. 2006a.
Characterizing Data Complexity for Conjunctive Query
Answering in Expressive Description Logics. InProc.
AAAI ’06. AAAI Press.
Ortiz de la Fuente, M.; Calvanese, D.; and Eiter, T. 2006b.
Data Complexity of Answering Unions of Conjunctive
Queries in SHIQ. InProc. DL2006, number 189 in CEUR
Workshop Proceedings, 62–73.
Pan, J. Z.; Franconi, E.; Tessaris, S.; Stamou, G.; Tzou-
varas, V.; Serafini, L.; Horrocks, I. R.; and Glimm, B.
2004. Specification of Coordination of Rule and Ontology
Languages. Project Deliverable D2.5.1, KnowledgeWeb
NoE.
Rosati, R. 2006a. Integrating Ontologies and Rules:
Semantic and Computational Issues. InReasoning Web,
Summer School 2006, number 4126 in LNCS, 128–151.
Springer.
Rosati, R. 2006b.DL+log: Tight Integration of Descrip-
tion Logics and Disjunctive Datalog. InProceedings of
the Tenth International Conference on Principles of Knowl-
edge Representation and Reasoning(KR 2006), 68–78.
AAAI Press.
Rosati, R. 2007. The Limits of Querying Ontologies.
In Proc. ICDT 2007, volume 4353 ofLNCS, 164–178.
Springer.
Sakama, C.; and Seki, H. 1997. Partial Deduction in Dis-
junctive Logic Programming.Journal of Logic Program-
ming32(3):229–245.

