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Abstract

Complexity theory is a useful tool to study computational is-
sues surrounding the elicitation of preferences, as well as the
strategic manipulation of elections aggregating together pref-
erences of multiple agents. We study here the complexity of
determining when we can terminate eliciting preferences, and
prove that the complexity depends on the elicitation strategy.
We show, for instance, that it may be better from a compu-
tational perspective to elicit all preferences from one agent
at a time than to elicit individual preferences from multiple
agents. We also study the connection between the strategic
manipulation of an election and preference elicitation. We
show that what we can manipulate affects the computational
complexity of manipulation. In particular, we prove that
there are voting rules which are easy to manipulate if we can
change all of an agent’s vote, but computationally intractable
if we can change only some of their preferences. This sug-
gests that, as with preference elicitation, a fine-grained view
of manipulation may be informative. Finally, we study the
connection between predicting the winner of an election and
preference elicitation. Based on this connection, we identify a
voting rule where it is computationally difficult to decide the
probability of a candidate winning given a probability distri-
bution over the votes.

Introduction
In multi-agent systems, a simple mechanism for aggregating
agents’ preferences is to apply a voting rule. Each agent ex-
presses a preference ordering over a set of candidates, and
an election is held to compute the winner. The candidates
can be political representatives, or items of more direct con-
cern to multi-agent systems like schedules, resource alloca-
tions or joint plans. A number of interesting questions can
be asked about such elections. For example, what is a “fair”
way to run such an election? Arrow’s famous impossibility
theorem answers this question negatively. Under some gen-
eral assumptions, every voting rule is “unfair” when we have
more than two candidates. As a second example, how do we
encourage agents to vote truthfully? One mechanism to en-
courage truthful voting is to make it computationally “dif-
ficult” to manipulate the result (Bartholdi, Tovey, & Trick
1989; Bartholdi & Orlin 1991). In this paper, we consider a
number of computational questions surrounding the elicita-
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tion of agents’ preferences as well as the strategic manipu-
lation of elections used to aggregate such preferences.

We first consider preference elicitation. In particular, we
consider how to decide when to stop eliciting preferences
as the winner is guaranteed. Since preference elicitation is
time consuming and costly, and agents may have privacy
concerns about revealing their preferences, we may want to
stop eliciting preferences as soon as the result is fixed. We
show that how we elicit preferences impacts on the compu-
tational complexity of deciding when to stop elicitation. For
instance, we prove that it can be computationally easy to
decide when to terminate eliciting preferences if we elicit
whole votes from agents, but computationally intractable
when we elicit individual preferences. Complexity consider-
ations can thus motivate the choice of an elicitation strategy.

We then consider how to manipulate the result of such
an election. Computational complexity may then be desir-
able as it can provide a barrier to strategic manipulation
(Bartholdi & Orlin 1991; Bartholdi, Tovey, & Trick 1989).
We argue that there is a tension between making manipula-
tion computationally intractable and making it computation-
ally easy to decide when to terminate eliciting preferences.
In addition, we prove that there are voting rules which are
easy to manipulate if we can change all of an agent’s vote,
but computationally intractable if we can change only some
of their preferences. Most existing results about the com-
plexity of manipulation have assumed all of one or more
agents votes can be manipulated. This result suggests that a
more fine-grained view of manipulation may be useful. Fi-
nally, we consider the connection between preference elici-
tation and predicting the probability of a candidate winning.
This permits us to identify voting rules where computing
the probability of a candidate wining is computationally in-
tractable.

Background
We assume there aren agents voting overm possible can-
didates. Aprofile is a set ofn total orders over them can-
didates. Each total order is one agent’svote. A voting rule
is a function mapping a profile onto one candidate, thewin-
ner. We assume that any rule takes polynomial time to ap-
ply. We letN(i, j) be the number of agents preferringi to
j. In the case that the result of the voting rule is a tie be-
tween two or more of the candidates, we assume that the



chair chooses the winner from the tied candidates in a way
that is unfavourable. For instance, when we are consider-
ing if a coalition of agents can strategically manipulate the
election to ensure a particular candidate wins, we assume
that the chair picks this candidate if there is a tie. However,
most of our results go through with other tie-breaking rules.
In addition, to reduce the impact of ties, we assume an odd
number of agents. We consider the following voting rules.

Scoring rules: (w1, . . . , wm) is a vector of weights, theith
candidate in a total order scoreswi, and the winner is the
candidate with highest total score. Theplurality rule has
the weight vector(1, 0, . . . , 0), thevetorule has the vector
(1, 1, . . . , 1, 0), whilst theBordarule has the vector(m−
1,m− 2, . . . , 0).

Cup (aka knockout): The winner is the result of a series of
pairwise majority elections between candidates. The cup
is defined by an agenda which is a binary tree with one
candidate labelling each leaf. Each non-leaf is assigned to
the winner of the majority election between the candidates
labelling the children. The candidate labelling the root is
the overall winner. The cup isbalancedif the difference
in the depth of any two leaves is 0 or 1. For instance, a cup
in which the agenda is a complete binary tree is balanced.

Copeland: The candidate with the highest Copeland score
wins. The Copeland score of candidatei is given by:∑

i 6=j(N(i, j) > n
2 ) − (N(i, j) < n

2 ). The Copeland
winner is the candidate that wins the most pairwise elec-
tions. The 2nd order Copeland rule tie-breaks by selecting
the candidate whose defeated competitors have the largest
sum of Copeland scores.

Plurality with runoff: If one candidate has a majority, they
win. Otherwise all but the two candidates with the most
votes are eliminated and the winner is chosen using the
majority rule.

STV: This rule requires up tom− 1 rounds. In each round,
the candidate with the least number of agents ranking
them first is eliminated until one of the remaining can-
didates has a majority.

As in (Conitzer & Sandholm 2002a), we will consider
both weighted and unweighted votes. A vote of integer
weightk can be viewed ask agents who vote identically. Al-
though human elections are often unweighted, the addition
of weights makes voting schemes more general. Weighted
voting systems are also used in a number of real-world
settings like shareholder meetings, and elected assemblies.
Weights are also useful in multi-agent systems where we
have different types of agents.

Weights are interesting from a computational perspective
for several reasons. First, weights can increase computa-
tional complexity. For example, manipulating the Borda
rule is polynomial with unweighted votes (Konczak & Lang
2005) but NP-hard with weighted votes (Piniet al. 2007).
Second, as we argue in detail later, the weighted case in-
forms us about the unweighted case when we have prob-
abilistic information about the votes. For instance, if it is
NP-hard to compute if the election can be manipulated with

weighted votes, then it is NP-hard to compute the probabil-
ity of a candidate winning when there is uncertainty about
how the unweighted votes have been cast (Conitzer & Sand-
holm 2002a). Again, to reduce the impact of ties, we assume
that the sum of weights is odd.

Elicitation
We suppose that not all agents’ preferences are known and
that we are eliciting preferences so as to be able to declare
the winner. We assume we have either anincomplete pro-
file in which one or more of the total orders is only partially
specified (that is, some pairs of candidates are ordered but
others are left unspecified), or apartial votein which some
agents have specified completely their preferences (that is,
their total order over candidates) but other agents’ prefer-
ences are completely unknown. A partial vote is more a
coarse form of uncertainty about the agents’ preferences
than an incomplete profile.

Eliciting preferences takes time and effort. In addition,
agents may be reluctant to reveal all their preferences due to
privacy and other concerns. We therefore often want to stop
elicitation as soon as one candidate has enough support that
they must win regardless of any missing preferences. We
therefore consider the computational complexity of decid-
ing when we can stop eliciting preferences. We introduce
two decision problems. If we elicit complete votes from
each agent (e.g. we ask one agent “How do you rank all
the candidates?”), COARSE ELICITATION OVER is true iff
the winner is determined irrespective of how the remaining
agents vote. On the other hand, if we elicit just individual
preferences (e.g. we ask all agents “Do you prefer Bush to
Gore?”), FINE ELICITATION OVER is true iff the winner is
determined irrespective of how the undeclared preferences
are revealed. Note that in both cases, the missing prefer-
ences are assumed to be transitive.

Definition 1 (COARSE ELICITATION OVER)
Input: a partial vote.
Output: true iff only one candidate can win irrespective

of how the remaining agents vote.

Definition 2 (FINE ELICITATION OVER)
Input: an incomplete profile.
Output: true iff only one candidate can win irrespective

of how the incomplete profile is completed.

Note that it does not change the results in this paper if we
define FINE ELICITATION OVER so that we ask all agents
simultaneously about a particular pair of candidates. How-
ever, we choose a more general definition of fine elicitation
in which we can ask any agent about the ranking of any pair
of candidates.

COARSE ELICITATION OVER and FINE ELICITATION
OVER are in coNP as a polynomial witness for elicitationnot
being over are two completions of the profile in which dif-
ferent candidates win. Since COARSE ELICITATION OVER
is a special case of FINE ELICITATION OVER, it is easy
to see that if FINE ELICITATION OVER is polynomial then
COARSE ELICITATION OVER is too. Similarly, if COARSE



ELICITATION OVER is coNP-complete then FINE ELICITA -
TION OVER is too. However, as we show later, these impli-
cations do not necessarily reverse. For example, there are
voting rules where COARSEELICITATION OVER is polyno-
mial but FINE ELICITATION OVER is coNP-complete.

Our analysis considers two different dimensions that gov-
ern the complexity of terminating elicitation: weighted or
unweighted votes, and a bounded or unbounded number of
candidates.

Unweighted votes
If the number of candidates is bounded, there are only a
polynomial number of effectively different votes. We can
thus enumerate and evaluate all different votes in polynomial
time. Hence computing COARSE ELICITATION OVER and
FINE ELICITATION OVER are both polynomial. A similar
argument was made to show that manipulation of an elec-
tion by a coalition of agents is polynomial when the num-
ber of candidates is bounded (Conitzer & Sandholm 2002a;
Conitzer, Lang, & Sandholm 2003).

Suppose now that the number of candidates is not neces-
sarily bounded. Conitzer and Sandholm prove that COARSE
ELICITATION OVER and FINE ELICITATION OVER are
coNP-complete for STV when votes are unweighted and the
number of candidates is unbounded (Conitzer & Sandholm
2002b). On the other hand, COARSE ELICITATION OVER
and FINE ELICITATION OVER are polynomial for the plu-
rality, Borda, veto and Copeland rules with any number of
candidates (Conitzer & Sandholm 2002b).

Weighted votes
With weighted votes, deciding if elicitation is over can be in-
tractable even when the number of candidates is small. For
example, Conitzer and Sandholm prove that COARSEELIC-
ITATION OVER and FINE ELICITATION OVER are coNP-
complete for STV when votes are weighted and there are
just 4 (or more) candidates (Conitzer & Sandholm 2002b).
However, COARSE ELICITATION OVER and FINE ELICI -
TATION OVER are polynomial for the plurality, Borda, veto
and Copeland with weighted votes and any number of can-
didates (Conitzer & Sandholm 2002b).

We now give our first main result. There are voting rules
where COARSEELICITATION OVER is polynomial but FINE
ELICITATION OVER is intractable. In a companion paper,
we consider how to compute the possible winners of the cup
rule when elicitation is not finished.

Theorem 1 For the cup rule on weighted votes,FINE ELIC-
ITATION OVER is coNP-complete when there are 4 or more
candidates, whilstCOARSE ELICITATION OVER is polyno-
mial irrespective of the number of candidates.

Proof: Theorem 69 in (Conitzer 2006) shows that manipu-
lation of the cup rule by a coalition of agents with weighted
votes is polynomial. It follows immediately that COARSE
ELICITATION OVER is polynomial. To show that FINE
ELICITATION OVER is NP-hard with 4 candidates, consider
the cup in whichA playsB, the winner then playsC, and the
winner of this match goes forward to a final match against

D1. We will reduce number partitioning to deciding if elic-
itation is over for this cup rule given a particular incom-
plete profile. Suppose we have a bag of integers,ki with
sum 2k and we wish to decide if they can be partitioned
into two bags, each with sumk. We construct an incom-
plete profile in which the following weighted votes are com-
pletely fixed: 1 vote for C > D > B > A of weight
1, 1 voteC > D > A > B of weight 2k − 1, and 1
vote D > B > C > A of weight 2k − 1. For the first
number,k1 in the bag of integers, we have a fixed vote for
D > B > A > C of weight2k1. For each other number,ki

wherei > 1, we have an incomplete vote of weight2ki in
whichA > C is fixed but the rest of the vote is unspecified.
We are sureA beatsC in the final result by 1 vote whatever
happens. Similarly, we are also sure thatD beatsA, andD
beatsB. Thus, the only winners of the cup rule areD or
C. If in all the incomplete votes we haveD > C, thenD
will win overall. We now show thatC can win iff there is a
partition of equal weight. Suppose there is such a partition
and that the incomplete votes corresponding to one partition
haveB > A > C whilst the incomplete votes correspond-
ing to the other partition haveA > B > C. Thus,B beatsA
overall, andC beatsB. We suppose also that enough of the
incomplete votes haveC > D for C to beatD. HenceC is
the winner of the cup rule andD does not win. On the other
hand, supposeC wins. This can only happen ifB beatsA,
C then beatsB andC finally beatsD. If A beatsB in the
first round,A will beat C in the second round and then go
out toD. ForC to beatB, at least half the weight of incom-
plete votes must rankC aboveB. Similarly, for B to beat
A, at least half the weight of incomplete votes must rankB
aboveA. Since all votes rankA aboveC, B cannot be both
aboveA and belowC. Thus precisely half the weight of
incomplete votes ranksB aboveA and half ranksC above
B. Hence, we have a partition of equal weight. Therefore,
bothC andD can win iff there is a partition of equal weight.
That is, elicitation is not over iff there is a partition of equal
weight.

We may therefore prefer to elicit whole votes as opposed
to individual preferences from agents since we can then
easily decide when to terminate elicitation. Computational
complexity can thus motivate the choice of an elicitation
strategy. We suggest that such complexity analysis may be
useful to study other aspects of elicitation (e.g. how to ask
only those preferences that can decide the winner, or how
to decide the winner with as few questions as possible). We
note that for the cup rule with just 3 or fewer candidates, it
is polynomial to decide if elicitation is over.

Theorem 2 For the cup rule on weighted votes,COARSE
ELICITATION OVER and FINE ELICITATION OVER are
both polynomial with 3 or fewer candidates.

1Note that this particular cup tournament is not balanced. The
proof can be adapted to use a balanced binary tree by introducing
an additional candidateE that first plays againstD, and placing
E at the bottom of each vote. Whilst this will show that deciding
if preference elicitation can be terminated is coNP-complete for
balanced cups with 5 candidates, it leaves open the complexity for
balanced cups with just 4 candidates.



Proof: For 2 candidates, the cup rule degenerates to the
majority rule, and FINE ELICITATION OVER degenerates to
COARSE ELICITATION OVER. In this case, elicitation can
be terminated iff a majority in weight of votes prefer one
candidate.

For 3 candidates, without loss of generality, we consider
the cup in whichA playsB, the winner then playsC. Sup-
pose we have an incomplete profile over these three candi-
dates. ForA to win, they must beatB andC in pairwise
elections. We do not care about the ordering betweenB and
C since ifA wins,B andC do not meet. Thus, we complete
the profile placingA aboveB andC wherever possible, and
orderingB and C as we wish. To see ifB can win, we
complete the profile in an analogous fashion. Finally, forC
to win they must beat the winner ofA andB. We there-
fore consider two completions of the profile: one in which
C is placed aboveA, andA aboveB wherever possible, and
the second in whichC is placed aboveB, andB aboveA
wherever possible. In total, we have just four completions to
consider. These can be tested in polynomial time. Eliciting
preferences can be terminated iff the same candidate wins in
each case. Thus, FINE ELICITATION OVER is polynomial.
Given a partial vote, we complete the profile in a similar way
to test COARSEELICITATION OVER.

Condorcet winner
TheCondorcet winneris the candidate who beats all others
in pairwise elections. Unfortunately, not all elections have
a Condorcet winner. However, many authorities from the
Marquis de Condorcet onwards have argued that, if the Con-
dorcet winner exists, they should be elected. Several voting
rules including the Copeland rule elect the Condorcet win-
ner if they exist. Such rules are calledCondorcet consistent.

We consider here the complexity of deciding if we have
elicited enough preferences to identify the Condorcet win-
ner. There are three possible situations: the Condorcet win-
ner is guaranteed whatever the remaining preferences, there
cannot now be a Condorcet winner, or it still depends on the
un-elicited preferences whether there is a Condorcet winner
or not. We therefore define the following function problem.

Definition 3 (CONDORCET WINNER FIXED)
Input: an incomplete profile.
Output: “true” if one candidate is the Condorcet win-

ner win irrespective of how the profile is completed, “false”
if there cannot now be Condorcet winner and “not deter-
mined” otherwise.

A nice property is that CONDORCETWINNER FIXED can
be decided in polynomial time.

Theorem 3 CONDORCETWINNER FIXED is polynomial to
compute for weighted votes and any number of candidates.

Proof: For each candidate, we check if agents with at least
half the weight in votes have specified a preference for this
candidate over any other candidate. If there exists such a
candidate, then they must be the Condorcet winner. Other-
wise, for each candidate, we check if agents with at least
half the weight in votes have specified a preference for some
other candidate. If this is the case for every candidate, then

there cannot be a Condorcet winner. If neither of the above
tests holds, then it is not yet determined if there is or is not a
Condorcet winner.

Hence, if we are only interested in the Condorcet winner,
we can easily determine if we can terminate eliciting prefer-
ences. It does not matter (as it did with the cup rule) if we
elicit whole votes or individual preferences.

Single peaked preferences
Agent’s preferences may have a limited form. One com-
mon restriction is to single peaked votes. In this situation,
candidates can be placed in a left to right order and each
agent’s preference decreases with distance from their peak.
For example, an agent’s preference over the price of an ob-
ject tends to depend on the distance from their optimal price.
Knowing that unspecified preferences are single peaked may
make elicitation easier (Conitzer 2007). We consider here
the computational complexity of deciding when to terminate
preference elicitation when preferences are guaranteed to be
single peaked. We introduce the following decision prob-
lem.

Definition 4 (FINE SP ELICITATION OVER)
Input: an incomplete profile which can be completed to

give a single peaked profile with respect to a given total or-
dering on candidates.

Output: true iff only one candidate can win irrespective
of how the profile is completed, provided that the completion
is single peaked with respect to the given ordering.

An interesting open question is to consider what happens
when profiles are guaranteed to be single peaked, but we
are not told the ordering along which preferences are single
peaked. Adding the assumption that preferences are single
peaked may change the complexity of deciding when pref-
erence elicitation can be terminated. For instance, it is now
polynomial to decide if we can terminate elicitation with the
cup rule.

Theorem 4 For the cup rule with weighted votes,FINE SP
ELICITATION OVER is polynomial.

Proof: If preferences are single peaked, there is always a
Condorcet winner (themediancandidate who beats all oth-
ers in pairwise comparisons) (Black 1948). The cup rule
will elect this candidate. By Theorem 3, it is polynomial to
decide if the Condorcet winner is fixed.

On the other hand, there are voting rules where it re-
mains computationally difficult to decide if preference elici-
tation can be terminated when votes are assumed to be single
peaked.

Theorem 5 For the STV rule with 3 or more candidates
and weighted votes,FINE SP ELICITATION OVER is coNP-
complete.

Proof: We use a reduction from number partitioning similar
to that used to prove that STV is hard to manipulate strate-
gically with weighted votes (Conitzer, Sandholm, & Lang
2007). The partial vote used in this reduction was not sin-
gle peaked. However, it can be modified to be single peaked
with a small change. Suppose we have a bag ofn numbers,



{ki} where
∑n

i=1 ki = 2k. The 3 candidates areA, B and
C. We suppose agents’ preferences are single peaked when
candidates are ordered alphabetically. We construct an in-
complete profile as follows. One agent with weight6k − 1
votesB > C > A, a second agent with weight4k votes
A > B > C, and a third agent also with weight4k votes
C > B > A. There aren other agents, each with a weight
2ki and unspecified preferences. Suppose there is a perfect
partition. Then, we can have2k weight of votes puttingA
at the peak, and the other2k weight of votes puttingC at
the peak. In this case, the STV rule eliminatesB in the first
round (asB has just6k − 1 weight of votes, and the other
two candidates have6k), and then electsC. Hence, there is
a completion in whichC is a winner if there is a perfect par-
tition. Suppose there is not a perfect partition. Then either
A, B or C will receive less than2k weight of votes from the
final n agents. In the first case,A is eliminated by the first
round of STV andB goes on to win. In the second case,
eitherA or C is eliminated by the first round. IfA is elimi-
nated,B then wins. IfC is eliminated,B also wins. Finally,
in the third case,C is eliminated andB wins. HenceB or
C can be the winner iff there is a perfect partition. Thus,
voting is not yet over iff there is a perfect partition.

Note that plurality with runoff for 3 candidates is equiva-
lent to STV. It follows therefore that FINE SP ELICITATION
OVER is NP-hard for plurality with runoff. With other rules
like plurality, Borda and veto, FINE SP ELICITATION OVER
is polynomial for weighted votes with any number of candi-
dates.

Strategic manipulation
A closely related problem to deciding if elicitation can be
terminated is the problem that agents may try to vote strate-
gically. That is, agents may try to manipulate the result by
ranking the candidates in some orderdifferent to their true
preferences. This is undesirable for several reasons includ-
ing, for instance, that a socially less preferred candidate may
win. The Gibbard-Satterthwaite theorem demonstrates that
any “non-dictatorial” voting rule is vulnerable to such ma-
nipulation when there are three or more candidates (Gibbard
1973; Satterthwaite 1975). A voting rule is dictatorial if one
of the agents dictates the result no matter how the others
vote. Unfortunately, the manipulability of voting rules is
especially problematic for multi-agent systems. Such sys-
tems may have significant computational power with which
to look for manipulations. In addition, agents may follow
fixed voting strategies, making them more prone to manipu-
lation.

We define COALITION MANIPULATION as the problem
of deciding if a coalition of agents can ensure a particular
candidate wins.

Definition 5 (COALITION MANIPULATION)
Input: a candidate, a profile and a subset of agents
Output: true iff the subset of agents can change their

votes to ensure the candidate wins.

The complexity of manipulation by a coalition of agents
is closely related to the complexity of deciding if preference
elicitation can be terminated. In particular, if a voting rule is

polynomial to manipulate by a coalition then it is also poly-
nomial to decide when to terminate eliciting whole votes.
Dually, if it is NP-hard to decide when to terminate eliciting
whole votes then it is also NP-hard for a coalition to ma-
nipulate the result. Unfortunately, this may create a tension
since we want it to be computationally hard to manipulate
an election but computationally easy to decide when to ter-
minate elicitation. The next example illustrates this tension.

Consider manipulating an election when the voting rule
elects the Condorcet winner. We define COALITION MA-
NIPULATION of the Condorcet winner as the problem of de-
ciding if a coalition of agents can ensure that a particular
candidate is the Condorcet winner.

Theorem 6 COALITION MANIPULATION of the Condorcet
winner is polynomial with weighted votes and any number
of candidates.

Proof: The coalition of agents simply places the chosen
candidate first in their total orders.

Hence, whilst it may be easy to decide when to termi-
nate eliciting preferences when electing the Condorcet win-
ner, this result suggests that Condorcet consistent voting
rules may be vulnerable to manipulation. The only feature
of Condorcet consistent rules that might make manipula-
tion computationally difficult is how they decide the winner
when there is no Condorcet winner. For example, the 2nd or-
der Copeland rule which is Condorcet consistent is NP-hard
to manipulate by a coalition of agents (Bartholdi, Tovey, &
Trick 1989). This illustrates the tension between chosing a
voting rule with which it is computationally easy to decide
when to terminate preference elicitation, but with which it is
computationally hard to manipulate the election.

Election pre-round
An interesting approach to make manipulation computation-
ally difficult is to add a pre-round to an election (Conitzer &
Sandholm 2003; Elkind & Lipmaa 2005). For instance, we
might perform one round of the cup rule, before executing
the plurality rule on the surviving candidates. Such a pre-
round turns plurality which is computationally easy to ma-
nipulate by a coalition into a hybrid rule that is NP-hard to
manipulate assuming an unbounded number of candidates
(Conitzer & Sandholm 2003). Whilst this hybridization of
the plurality rule makes manipulation computationally dif-
ficult, it does not appear to make it difficult to elicit prefer-
ences.

Theorem 7 COARSE ELICITATION OVER for the hybrid
rule which applies one round of the cup and then plural-
ity to the survivors is polynomial, even with weighted votes
and an unbounded number of candidates.

Proof: A candidate can win their pre-round iff their oppo-
nent has less than half the weight of possible votes. For each
candidateA that can win their pre-round, we test if any other
candidateB that can win their pre-round is able to defeat
them. B will be able to defeatA overall if the total weight
of votes cast forA is less than the total weight of votes cast
for B plus the total weight of uncast votes. If there is only
one candidate that can win their pre-round who cannot be



defeated then the result is determined and we can terminate
eliciting votes. Otherwise, elicitation of votes needs to con-
tinue.

This illustrates that the tension between manipulation and
the termination of eliciting preferences is not inevitable. We
started with the plurality rule. It is polynomial to decide
when to terminate preference elicitation when using the plu-
rality rule (which is good), but it is also polynomial for a
coalition of agents to manipulate the result (which is bad).
Adding a pre-round to the plurality rule makes manipulation
computationally intractable (which is good). However, de-
ciding if elicitation can be terminated remains polynomial
(which is good).

Preference manipulation
Up till now, manipulation has been by a coalition of agents.
We can consider a more limited form of manipulation. Sup-
pose we cannot manipulate all the votes of a coalition of
agents, but we can manipulate only certain preferences of
certain agents. For example, we might run a TV cam-
paign to persuade agents to rank one candidate above an-
other. As a second example, we might be unable to bride
a agent to place our preferred candidate first in their vote,
but we might be able to bribe them to swap the order of two
more lowly ranked candidates. We therefore define PREF-
ERENCEMANIPULATION as the problem of deciding if we
can change some given preferences to ensure a particular
candidate wins.

Definition 6 (PREFERENCE MANIPULATION)
Input: a candidate, a profile and certain preference or-

derings within the profile.
Output: true iff these preference orderings can be ma-

nipulated to give a profile in which the candidate wins.

Note that some preferences are fixed (“agent 3 prefersB
toC and this cannot be manipulated”), that other preferences
can be changed (“the ranking betweenA andB for agent 3
is manipulable”), but that we can only change preferences
to give a total order. This last condition is needed as many
voting rules are only defined over total orders. However,
when the voting rule works with a more general preference
relation, we may be able to relax this condition. Surpris-
ingly, this more subtle form of manipulation can be compu-
tationally harder than manipulation by a coalition of agents.
COALITION MANIPULATION is a subproblem of PREFER-
ENCE MANIPULATION . It follows immediately that if ma-
nipulation by a coalition is NP-hard, then so is manipula-
tion of individual preferences, and that if manipulation of
individual preferences is polynomial then manipulation by a
coalition is also. However, as the following example illus-
trates, these implications do not necessarily reverse (unless
P = NP ). With the cup rule, we only need 3 candidates for
it to be NP-hard for a coalition of agents to be able to ma-
nipulate the result if they can only change individual prefer-
ences.

Theorem 8 For the cup rule on weighted votes,COALI -
TION MANIPULATION is polynomial irrespective of the
number of candidates, butPREFERENCEMANIPULATION
with 3 or more candidates is NP-complete.

Proof: Theorem 7 in (Conitzer & Sandholm 2002a)
proves that COALITION MANIPULATION for the cup rule
on weighted votes is polynomial. To prove PREFERENCE
MANIPULATION is NP-hard for 3 or more candidates, we
give a reduction from the number partitioning problem. We
consider the cup in whichA playsB, and the winner then
playsC. We have a bag of integers,ki with sum2k and we
wish to decide if they can be partitioned into two bags, each
with sumk. We will show that we can set up an election
where we can manipulate a given set of preferences so that
C wins if and only if a partition exists. We suppose the fol-
lowing votes for the three candidates are not manipulable:1
vote forC > B > A of weight1, 1 voteC > A > B of
weight2k − 1, and 1 voteB > C > A of weight2k − 1.
At this point, the weight of votes such thatC is ahead ofA
is 4k− 1, the weight of votes such thatC is ahead ofB is 1,
and the weight of votes such thatB is ahead ofA is 1. For
eachki, we also have a manipulable vote of weight2ki in
whichA > C is fixed and cannot be changed, but the rest of
the vote can be manipulated. That is, the ordering between
A andB and betweenB andC is manipulable. As the to-
tal weight of these manipulable votes is4k, we are sureA
beatsC in the final result by 1 vote whatever manipulation
takes place. We now show that the manipulable vote can be
changed to make the final result thatB beatsA and thenC
beatsB iff there is a partition of sizek. Suppose there is
such a partition. Then let the manipulated votes in one bag
of such a partition beA > C > B and the manipulated
votes in the other beB > A > C. Then,B beatsA and
C beatsB (and thusC wins). On the other hand, suppose
there is a way to manipulate the preferences so thatC wins.
This can only happen ifB beatsA and thenC beatsB. If
A beatsB in the first round,A will beatC in the final round
and win. ForC to beatB, at least half the weight of manip-
ulable votes must rankC aboveB. Similarly, for B to beat
A, at least half the weight of manipulable votes must rankB
aboveA. Since all votes rankA aboveC, B cannot be both
aboveA and belowC. Thus precisely half the weight of ma-
nipulated votes ranksB aboveA and half ranksC aboveB.
Hence, we have a partition of equal weight. To conclude, we
can manipulate the preferences so thatC can win iff there is
a partition of sizek. Note that the particular cup used in the
reduction was balanced. It therefore follows that PREFER-
ENCE MANIPULATION remains NP-complete even if we are
limited to balanced cups.

Thus, the cup rule is easy to manipulate when we can
change thewholevote of a coalition of agents. If we can
change only some of their preferences, manipulation is NP-
hard. The computational complexity of manipulating prefer-
ences is closely related to that of deciding if preference elici-
tation can be terminated. In particular, it is easy to show that
FINE ELICITATION OVER is coNP-complete implies PREF-
ERENCE MANIPULATION is NP-complete. However, this
implication does not reverse. For example, by Theorem 8,
PREFERENCEMANIPULATION is NP-complete for the cup
rule on weighted votes with 3 candidates but by Theorem
2, FINE ELICITATION OVER is polynomial for the cup rule
with the same number of candidates.



We can give other examples where preference manipu-
lation is computationally intractable but manipulation by
a coalition of agents is polynomial. For example, the
Copeland rule is NP-hard to manipulate by a coalition of
weighted agents if we have 4 or more candidates, and poly-
nomial to manipulate if we have 3 or fewer candidates. How-
ever, as we show here, it is NP-hard to manipulate individ-
ual preferences with the Copeland rule if there are 3 or more
candidates. Hence, for 3 candidates and the Copeland rule,
PREFERENCEMANIPULATION is NP-hard but COALITION
MANIPULATION is polynomial. The Copeland rule elects
the candidate that wins the most pairwise majority elections.
In the case of a tie, as in (Conitzer & Sandholm 2002a), the
election is presumed to go in favour of the manipulator.

Theorem 9 For the Copeland rule on weighted votes,
COALITION MANIPULATION is NP-complete if there are 4
or more candidates and polynomial otherwise, whilstPREF-
ERENCE MANIPULATION is NP-complete if there are 3 or
more candidates and polynomial otherwise.

Proof: Theorem 2 in (Conitzer & Sandholm 2002a) proves
that COALITION MANIPULATION is NP-complete for the
Copeland rule with weighted votes and 4 or more candi-
dates. Theorem 70 in (Conitzer 2006) proves that it is poly-
nomial for 3 or fewer candidates. To prove PREFERENCE
MANIPULATION is NP-hard for 3 or more candidates and
weighted votes, we give a reduction from the number par-
titioning problem. We have a bag of integers,ki with sum
2k and we wish to decide if they can be partitioned into two
bags, each with sumk. We will show that we can set up
an election where we can manipulate a given set of prefer-
ences so thatC wins if and only if a partition exists. We
suppose the following votes for the three candidates are not
manipulable:1 vote for C > A > B of weight k, and 1
voteC > B > A of weightk. For eachki, we also have a
manipulable vote of weightki in whichA > C andB > C
are fixed and cannot be changed, but the preference between
A andB is manipulable. As the total weight of these manip-
ulable votes is2k, we are sureA ties withC andB ties with
C whatever manipulation takes place. We now show that
the manipulable vote can be changed to make the final result
thatA ties withB and thus, by the adversarial tie-breaking
assumption, thatC wins iff there is a partition of sizek.
Suppose there is such a partition. Then let the manipulated
votes in one bag of such a partition beA > B > C and the
manipulated votes in the other beB > A > C. Then,A
ties with B and thusC wins. On the other hand, suppose
there is a way to manipulate the preferences so thatC wins.
This can only happen ifA ties withB. If A beatsB, thenA
wins overall. Similarly, ifB beatsA, thenB wins overall.
Thus precisely half the weight of manipulated votes ranks
A aboveB and half ranksB aboveA. Hence we have a
partition of equal weight. Thus, we can manipulate the pref-
erences so thatC can win iff there is a partition of sizek.

To conclude, voting rules like the cup and Copeland rule
are easy to manipulate if we can change whole votes. If
we can only manipulate individual preferences, they are NP-
hard to manipulate. This suggests that a more fine-grained

view provides insight into manipulability.

Uncertainty about votes

Many of our results so far have considered weighted votes.
One reason to consider weighted votes is that they inform us
about unweighted votes when we have uncertainty about the
votes cast. EVALUATION is the problem of deciding if the
probability of the candidate winning is strictly greater than
some givenr (Conitzer & Sandholm 2002a).

Definition 7 (EVALUATION)
Input: a candidate, a probability distribution over votes,

and a numberr ∈ [0, 1].
Output: true iff the probability of the candidate winning

is strictly greater thanr.

EVALUATION is closely related to manipulation as the fol-
lowing result illustrates.

Theorem 10 PREFERENCE MANIPULATION is NP-hard
for a voting rule on weighted votes impliesEVALUATION
with the same rule on unweighted votes is also NP-hard.

Proof: We reduce PREFERENCE MANIPULATION to
EVALUATION . Each agent of weightk is replaced byk
agents of weight 1 whose votes are perfectly correlated. We
then construct a joint probability distribution over the votes
so that each completion is drawn with the correct frequency.
We setr = 0. EVALUATION then decides PREFERENCE
MANIPULATION .

Note that the reduction can take on board many restric-
tions on the voting rule or election. For example, if PREFER-
ENCE MANIPULATION is NP-hard for weighted votes with
3 or more candidates then EVALUATION is NP-hard for un-
weighted votes with 3 or more candidates. In a similar fash-
ion, we can show that if COALITION MANIPULATION on
weighted votes is NP-hard then EVALUATION is also. How-
ever, this is a weaker result as it has a more specific hypothe-
sis that holds in fewer situations. There are voting rules like
the cup rule for which COALITION MANIPULATION is poly-
nomial but PREFERENCEMANIPULATION is NP-hard. As
simple corollary of Theorem 10 is that we can conclude for
the first time that EVALUATION for the cup rule is NP-hard.

Corollary 1 EVALUATION for the cup rule with 3 or more
candidates is NP-hard.

The cup rule is used in a wide range of situations includ-
ing major sporting competitions like the World Cup. The
computational difficulty of manipulating the cup rule (or of
predicting the winner) therefore appears to be of some im-
portance. However, we need to be careful in drawing too
strong a conclusion. In particular, we have assumed that
each agent’s preference relation is transitive. This creates a
tension: we want the runner-up to be strong enough to win
their side of the tournament, but not so strong that they beat
the winner. If we drop the assumption that agents’ prefer-
ence relations are transitive, then manipulating the cup rule
(or predicting the winner) may be easy.



Related work
Conitzer and Sandholm have studied the computational
complexity of eliciting preferences (Conitzer & Sandholm
2002b). They proved that for unweighted votes and an un-
bounded number of candidates, it is NP-hard to decided
when to stop eliciting votes for the STV rule, but polyno-
mial for many other rules including plurality, Borda and
Copeland. They also considered how hard it is to design
an elicitation policy so that few queries are needed. They
showed that even with complete information about how the
agents will vote, it is NP-hard for many voting rules to de-
termine which agents to ask their preferences. Finally, they
showed that elicitation introduces additional opportunities
for strategic manipulation of the election.

Bartholdi, Tovey, Trick and Orlin were the first to suggest
that computational complexity might be used as a barrier
to manipulation (Bartholdi, Tovey, & Trick 1989; Bartholdi
& Orlin 1991). Their results considered manipulation by a
single agent. Conitzer, Sandholm and Lang subsequently
considered manipulation by a coalition of agents (Conitzer
& Sandholm 2002a; Conitzer, Lang, & Sandholm 2003;
Conitzer 2006). For instance, they proved that manipula-
tion of Borda, veto, STV, plurality with runoff, Copeland
and Simpson by a coalition of agents are all NP-hard for
weighted votes with a small (bounded) number of candi-
dates. Similarly, they proved that it is NP-hard for a coali-
tion of agents to manipulate the election so that a given can-
didate does not win for STV and plurality with runoff with
weighted votes and a small (bounded) number of candidates.
Finally, they proved that deciding when eliciting preferences
can be terminated is NP-hard for STV but polynomial for
many other rules, whilst deciding which votes to elicit is NP-
hard for approval, Borda, Copeland and Simpson (Conitzer
& Sandholm 2002b).

Procaccia and Rosenschein looked at the average-case
complexity of manipulating an election (Procaccia & Rosen-
schein 2007). Worst-case results like those given here
may not apply to the elections met in practice. They con-
sider elections distributed with respect to junta distributions,
which concentrate on hard instances. They prove that scor-
ing rules, which are NP-hard to manipulate in the worst case,
are computationally easy on average. In a related direction,
Conitzer and Sandholm have shown that it is impossible to
create a voting rule that is usually hard to manipulate if a
large fraction of instances are weakly monotone and ma-
nipulation can make either of exactly two candidates win
(Conitzer & Sandholm 2006).

Faliszewskiet al. studied a form of preference manipula-
tion, called “micro-bribery” in which individual preferences
of agents can be manipulated (Faliszewskiet al. 2007). Note
that the resulting orders may not be transitive. Interestingly,
they proved that for the Llull and Copeland rules, it is poly-
nomial for the chair to perform such manipulation of indi-
vidual preferences, but computationally intractable when the
chair can only manipulate whole votes. This contrasts with
the results here where we prove that there are rules like the
cup and Copeland rule which are easy to manipulate by a
coalition if we can change whole votes, but computationally
intractable when we can change only individual preferences.

To deal with uncertainty in the votes, Konczak and Lang
introduced the notions of possible and necessary winners
(Konczak & Lang 2005). Given an incomplete profile, pos-
sible winners are those that win in some completion whilst
necessary winners are those that win in all completions.
When the set of possible winners contains just one candi-
date, this is the necessary winner and elicitation can be ter-
minated. They proved that for any scoring rule, possible and
necessary winners are polynomial to compute, as are possi-
ble and necessary Condorcet winners. They also argue that
when computing possible winners is polynomial, so is ma-
nipulation by a coalition of agents. Piniet al. proved that
possible and necessary winners are NP-hard to compute for
STV for an unbounded number of candidates, and NP-hard
even to approximate these sets to within some constant fac-
tor in size (Piniet al. 2007). Finally, in a companion paper,
we study how to compute the possible and necessary win-
ners of the cup rule when there is uncertainty about the votes
and/or the agenda.

Conclusions
We have studied a number of interesting computational
questions surrounding the elicitation of preferences and the
strategic manipulation of elections. We have proved that the
complexity of determining when we can terminate elicita-
tion depends on the elicitation strategy. In particular, we
have shown that it can be polynomial to decide when to
stop eliciting whole votes from agents but NP-hard to de-
cide when to stop eliciting individual preferences. Compu-
tational complexity can thus motivate the choice of an elic-
itation strategy. We have also studied the connection be-
tween manipulation and preference elicitation. We argued
that there is a tension between making manipulation com-
putationally intractable and making it computationally easy
to decide when to terminate eliciting preferences. We also
showed that what we can manipulate affects the computa-
tional complexity of manipulation. In particular, we proved
that there are voting rules which are easy to manipulate if
we can change all of an agent’s vote, but intractable if we
can change only some of their preferences. This suggests
that a more fine-grained view of manipulation is informa-
tive. Finally, we studied the connection between preference
elicitation and predicting the winner of an election. Based
on this connection, we identified a voting rule where it is
NP-hard to decide the probability of a candidate winning
given a probability distribution over the agents’ votes.
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