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Abstract

In a combinatorial auction, a set of resources is for sale, and
agents can bid on subsets of these resources. In a voting set-
ting, the agents decide among a set of alternatives by having
each agent rank all the alternatives. Many of the key research
issues in these two domains are similar. The aim of this pa-
per is to give a convenient side-by-side comparison that will
clarify the relation between the domains, and serve as a guide
to future research.

Introduction
In multiagent systems, it is often necessary for a group of
agents to make a collective decision even though they have
different preferences over the different options. For exam-
ple, the agents may have to decide how to allocate a set re-
sources among themselves. A common mechanism for do-
ing this is to run a combinatorial auction, where the agents
place bids on bundles (subsets) of resources (for example,
an agent can bid 10 on the bundle of resources consisting of
A and C), and based on these bids an allocation of resources
is determined, as well as the payment that each agent needs
to make. However, there are many other collective decision
problems that do not involve allocating resources or mak-
ing payments. A general approach for choosing among a set
of alternatives is for each agent to rank all the alternatives,
after which a winning alternative is chosen based on these
rankings. In this case, we say that the agents vote over the
alternatives (and the rankings are the votes). Voting settings
are also referred to as social choice settings.

Combinatorial auctions have become a well-established
research topic in multiagent systems. In recent years, re-
search on voting in multiagent systems has also soared, and
a community of people interested in computational social
choice has formed. While there is certainly significant in-
teraction between the people working on combinatorial auc-
tions and the ones working on voting, the two communities
are perhaps more disjoint than one would expect. This paper
aims to compare some of the research issues across the two
topics, thereby providing to each community a convenient
window into the other (and, perhaps, a window into both for
outsiders). The comparison is also likely to suggest new re-
search directions for each topic. Finally, we argue that the
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research on the two topics is likely to converge further in the
future.

Defining the rules
Both in combinatorial auctions and in voting settings, we
need to specify how agents report their preferences (that is,
how they place their bids/cast their votes), and how an out-
come is chosen on the basis of these. As we will see, there
are multiple ways of doing so in each case.

Combinatorial auctions
To understand the different ways in which a combinatorial
auction can be designed, it is helpful to first study some com-
mon single-item auctions.

• English auction. In an English auction (perhaps the best-
known auction format) any bidder can enter a bid higher
than the current highest bid at any point. Once nobody
wants to submit a higher bid, the current highest bidder
wins the item and pays her bid.

• Japanese auction. In a Japanese auction, there is an initial
price of zero for the item, which is gradually increased. A
bidder can leave the room at any point if the price be-
comes too high for her. The auction ends when only one
bidder remains, who then wins and pays the final price.

• Dutch auction. In a Dutch auction, the price starts at a
high value and is gradually decreased. At any point, any
bidder can claim the item at the current price, at which
point the auction ends.

• First-price sealed-bid auction. Each bidder privately
sends a bid to the auctioneer (for example, in a sealed
envelope). The highest bidder wins and pays her bid.

• Second-price sealed-bid auction. This auction is identi-
cal to the first-price sealed-bid auction, except the highest
bidder (who still wins) pays the bid of the second-highest
bidder.

A common objective among all of these auctions is to al-
locate the item to the bidder who values the item the most
(that is, to allocate the item efficiently). The differences
among them mostly reflect other issues, such as the follow-
ing. One advantage of the English, Japanese, and Dutch auc-
tions is that, depending on what happens in the auction, a



bidder may not have to invest the effort necessary to deter-
mine her exact valuation for the item. For example, in an
English or Japanese auction, once the second-to-last bidder
drops out, the winner no longer has to think about how much
longer she would have stayed in the auction; and in a Dutch
auction, once someone else claims the item, the remaining
bidders no longer have to think about when they would have
claimed the item. This is closely related to preference elic-
itation, which we will discuss in a later section. An advan-
tage of the second-price sealed-bid auction over the first-
price sealed-bid auction is the following. In the first-price
auction, bidders will try to only slightly outbid their com-
petitors, to pay as little as possible. If the bidder with the
highest value underestimates the other bids, this can result
in another bidder winning the item, so that the allocation is
inefficient. In the second-price sealed-bid auction, however,
there is no reason to try to only slightly outbid the next bid-
der; in fact, it can be shown that it is optimal to bid one’s
true valuation for the item. We will discuss issues such as
these in a later section.

The main point, however, is that the various auctions
agree, in some sense, on the objective of efficient alloca-
tion, and the differences merely reflect other issues. There
are other auctions that have a different objective, such as
revenue-maximizing auctions (Myerson 1981), which do not
always allocate the item efficiently; or even auctions that
try to minimize revenue (although these still allocate the
item efficiently) (Bailey 1997; Porter, Shoham, & Tennen-
holtz 2004; Cavallo 2006; Guo & Conitzer 2007; Moulin
2007). Nevertheless, in combinatorial auctions, typically
the main objective is to allocate efficiently (though there
is some work on revenue-maximizing combinatorial auc-
tions as well (Avery & Hendershott 2000; Armstrong 2000;
Conitzer & Sandholm 2004; Likhodedov & Sandholm 2004;
2005)). That is, it is assumed that every bidder i has a val-
uation function vi : 2I → R, where vi(S) is bidder i’s
value for the subset S of the items I , and the goal is to
allocate to the bidders nonoverlapping bundles Si to max-
imize

∑
i vi(Si). As in the single-item auction case, there

are distinctions among combinatorial auctions in terms of
the temporal aspects of the auction as well as the payments
to be made by the bidders, but these distinctions are again
driven by other considerations, which we will discuss in later
sections. (There are also variants of combinatorial auctions,
such as combinatorial reverse auctions, where the auctioneer
seeks to buy certain items and the bidders offer to sell bun-
dles of these items at various prices; and combinatorial ex-
changes, where agents can be both buyers and sellers (Sand-
holm et al. 2002). While these variants are very important,
they resemble regular combinatorial (forward) auctions in
terms of the issues discussed in this paper, so we will not
consider them in the remainder.)

Voting
In a typical voting setting, there is a set of alternatives or
candidates, C, and each agent (voter) i has preferences �i

over these m alternatives, with a �i b indicating that i
(weakly) prefers a over b. Usually, for convenience, it is
assumed that all preferences are strict, so that we simply use

�i. (Recent work has begun to extend social choice theory
to settings where there is imcompleteness/incomparability in
the agents’ preferences (Pini et al. 2005; Rossi et al. 2006;
Pini et al. 2007).) Based on the preferences that the voters
report, one alternative is chosen as the winner. (Sometimes,
the output is a complete (aggregate) ranking of the alterna-
tives; generally any rule can be used to determine either just
a winner or an aggregate ranking.) Some example rules are
given below. (For each rule that gives points to alternatives,
the alternative with the highest score is the winner.)

• Plurality. An alternative receives a point every time it is
ranked first.

• Borda. An alternative receives m− 1 points every time it
is ranked first, m − 2 every time it is ranked second, ...,
and 0 every time it is ranked last.

• Copeland. We conduct a pairwise election between every
pair of alternatives: the winner of the pairwise election is
the alternative that is ranked higher by more voters. An al-
ternative receives 2 points for every pairwise win, 1 point
for every pairwise tie, and 0 points for every pairwise loss.

• Bucklin. If there is an alternative that is ranked first by
more than half the voters, that alternative wins; otherwise,
if there is an alternative that is ranked first or second by
more than half the voters, that alternative wins; etc.

• STV. The alternative that is ranked first the fewest times is
removed from every vote. (Votes that had this alternative
ranked first will now have another alternative ranked first.)
This is repeated until one alternative remains.

• Slater. We choose an aggregate ranking of the alternatives
that is consistent with the outcome of as many pairwise
elections as possible.

• Kemeny. We choose an aggregate ranking of the alterna-
tives that has as few disagreements with votes as possible
(a disagreement occurs when a vote ranks a above b, but
the aggregate ranking ranks b above a).

In some sense, the differences among these rules are
more fundamental than the differences among (combinato-
rial) auctions. Most auctions agree on the objective of ef-
ficient allocation, and the differences among them are due
more to other considerations, such as incremental preference
revelation and strategic bidding. In contrast, in a voting set-
ting, it is not even clear what objective we should be pursu-
ing. Certainly we can state a vague objective such as “the
winner should be high in the preferences of many voters and
low in the preferences of few,” but there are many different
interpretations of this, and, in some sense, each of the voting
rules above corresponds to one such interpretation.

One natural approach to identifying the “optimal” vot-
ing rule is to specify some axioms that such a rule should
satisfy. Unfortunately, there are several impossibility re-
sults that show that no rule satisfies certain natural proper-
ties. For example, consider the independence of irrelevant
alternatives (IIA) criterion, which states that, if we mod-
ify the votes but do not change whether a is ahead of b in
any vote, then in the aggregate ranking, there also should be



no change in whether a is ahead of b. While this is a nat-
ural criterion, Arrow’s impossibility theorem (Arrow 1963)
states that with 3 or more alternatives, any rule that satis-
fies IIA must either be Pareto inefficient, which means that
it sometimes ranks b ahead of a even though all voters rank
a ahead of b, or dictatorial, which means that the rule sim-
ply copies a fixed voter’s ranking. There are some com-
binations of other axioms that are satisfied by exactly one
rule—for example, Young and Levenglick (Young & Lev-
englick 1978) give an axiomatic characterization of the Ke-
meny rule. However, such axiomatic arguments have so far
not succeeded in building broad consensus on what the op-
timal rule is.

Another approach that has been pursued to decide on the
optimal voting rule is the following. Suppose that there
exists a “correct” outcome (winner or ranking), which we
cannot directly observe; but every voter’s preferences con-
stitute a noisy observation of this correct outcome. Given
a noise model (a conditional probability distribution over
the preferences given the correct outcome), it would make
sense to choose the outcome that maximizes the likelihood
of the observed preferences. This approach was already pur-
sued by the early social choice theorist Condorcet (de Caritat
(Marquis de Condorcet) 1785), who proposed one particular
noise model. In this noise model, each voter ranks each pair
of alternatives correctly with some probability p > 1/2, in-
dependently. (This can lead to cyclic preferences, but that
does not affect the maximum likelihood approach.) Con-
dorcet solved for the maximum likelihood estimator rule for
the cases of 2 and 3 alternatives. Two centuries later, in a
paper titled “Optimal Voting Rules” (Young 1995), Young
showed that the solution for general numbers of alterna-
tives coincides with the Kemeny rule. Unfortunately, this
argument is convincing only to the extent that one believes
that Condorcet’s noise model is the correct one. In fact, we
showed more recently that for many (but not all) of the com-
mon voting rules, there is a noise model such that that rule
becomes the solution (Conitzer & Sandholm 2005a).

It thus appears that for the foreseeable future, no general
agreement will emerge on which rule is optimal. Moreover,
as we move towards settings in which there are so many al-
ternatives that it is no longer feasible for a voter to provide
a full ranking of all of them, new rules must be designed to
address this. We will discuss this in more detail in the next
section.

Expressing preferences
In the previous section, we defined the structure of the
agents’ preferences (valuations for bundles in combinatorial
auctions, and rankings of alternatives in voting). In order
to choose an outcome based on the agents’ preferences, the
agents will need to report them; and to do so, the agents
need a language in which to express their preferences. It is
generally easy to create a straightforward language for do-
ing so, but expressing one’s preferences in such a language
often requires exponential space. A good language for ex-
pressing preferences will allow agents to specify “natural”
preferences concisely.

Combinatorial auctions

In a combinatorial auction, the straightforward way for a
bidder to commmunicate her preferences to the auctioneer
is to simply provide a list of 2|I| − 1 values, one for each
nonempty bundle of items. Of course, this is impractical for
anything other than very small auctions. Hence, it becomes
important to have a good bidding language in which bid-
ders can express their valuation functions concisely. Unfor-
tunately, regardless of the language used, there will always
be some valuation functions that require exponential space to
express, for purely information theoretic reasons. However,
a good bidding language allows bidders to express natural
valuation functions concisely. This is analogous to, for ex-
ample, Bayes Nets: any distribution can be represented us-
ing a Bayes Net, but in general, doing so requires specifying
an exponentially large number of probabilities. However,
natural distributions display a significant amount of condi-
tional independence, and such distributions can be expressed
much more concisely using a Bayes Net.

So, the question becomes: which valuation functions are
natural? One common assumption is that the bidder is
single-minded, that is, there is a bundle Si and a constant
ki such that vi(S) = ki if Si ⊆ S, and vi(S) = 0 if
Si 6⊆ S. That is, the bidder has her heart set on a partic-
ular bundle; if she gets it, she receives a utility of ki (and
any additional items that she receives will simply be thrown
away), but if even one item from Si is missing, the bundle
becomes worthless to her. A single-minded valuation func-
tion is easy to express: in this case, a bid consists simply of
a bundle Si and a value ki. However, usually, bidders are in-
terested in more than one bundle. The OR-language allows
a bidder to bid on multiple bundles. An example bid in this
language is ({a}, 3) OR ({b, c}, 4) OR ({c, d}, 5). This bid
indicates that if the bidder receives the bundle {a, b, c}, her
value is 7 (because she receives the first two bundles in her
bid); if she receives {b, c, d}, her utility is 5 (each of the last
two bundles in her bid are contained in the bundle she re-
ceives, but c can only be counted towards one of them, and
the last bundle has the greater valuation). A disadvantage
of the OR-language is that it cannot express every valua-
tion function. For example, consider the valuation function
v({a}) = 1, v({b}) = 1, v({a, b}) = 1 (the bidder wants
either item and has no use for a second item). If the bidder
bids ({a}, 1) OR ({b}, 1), this implies a valuation of 2 for
the bundle {a, b}; on the other hand, if she does not include
both singleton bundles in her bid, then the bid will not reflect
her valuation for those.

An alternative is the XOR-language. At most one of the
bundles in an XOR-bid can be counted: for example, the bid
({a}, 3) XOR ({b, c}, 4) XOR ({c, d}, 5) indicates that the
bidder’s value for {a, b, c} is 4 (only one of the first two bun-
dles can be counted). In this language, any valuation func-
tion can be expressed (if necessary, by XOR-ing all possi-
ble bundles together). One downside of the XOR-language
is that some natural valuation functions require exponential
space to represent—for example, the function v(S) = |S|
(which can be concisely represented in the OR language by
listing each singleton bundle at a value of 1). Of course,



nothing prevents us from using ORs and XORs simultane-
ously, to obtain the best of both worlds.

There are also bidding languages with a different flavor.
For example, the bidder can specify interactions among the
items (Chevaleyre et al. 2004; Conitzer, Sandholm, & Santi
2005). If a bidder reports a valuation of 2 for item a, a val-
uation of 3 for item b, and an interaction of −1 between the
items, this implies a valuation of 2+3−1 = 4 for the bundle
{a, b}.

Voting
In a voting setting, the straightforward way for a voter to
communicate her preferences is to simply communicate the
position of each alternative in her ranking. If there are m al-
ternatives (and hence m different positions), specifying one
position requires O(log m) bits, leading to a total space re-
quirement of O(m log m) bits. In many settings, this is quite
manageable, and because of this the problem of how prefer-
ences are represented often does not receive much attention
in voting.

Nevertheless, there are many important settings in which
there are exponentially many alternatives, so that m log m
space is no longer manageable. For example, in some set-
tings, the set of alternatives may be written as C = X1 ×
X2 × . . . × Xp. Here, each Xj corresponds to a separate
issue on which we need to make a decision. In such a do-
main, we need to make use of a more sophisticated language
for representing preferences, such as a CP-net (Boutilier
et al. 2004). Preferences expressed in such a language
do not always give enough information to recover the full
ranking of all alternatives, so not all the standard rules can
be applied in such a setting. Some very recent work has
been devoted to determining how winners should be cho-
sen in such settings (Lang 2007; Xia, Lang, & Ying 2007a;
2007b), but much more remains to be done here.

Winner determination
Once we have defined the rules by which an outcome is cho-
sen, as well as the language in which preferences are re-
ported, we have a well-defined computational problem of
deciding what the outcome is given the reported preferences.
In combinatorial auctions, this computational problem is
usually called the winner determination problem. Since in
voting, we are also determining a winner, we will use the
same name for the problem in that setting.

Combinatorial auctions
The winner determination problem in a combinatorial auc-
tion is to, given the bids (expressed in some bidding lan-
guage), determine the allocation that maximizes the total
value. For simplicity, let us first assume that every bidder
i is single-minded, and hence her bid can be represented as
(Si, ki). The problem is then to select a subset A of the
bids to accept, to maximize

∑
i∈A ki, under the constraint

that Si ∩ Sj = ∅ for all i, j ∈ A, i 6= j. This problem
is NP-hard (Rothkopf, Pekeč, & Harstad 1998), even to ap-
proximate (Sandholm 2002). There are various approaches
to solving it nonetheless: modeling it as an integer program,

writing a search-based algorithm (Sandholm 2006), or us-
ing a dynamic programming algorithm (Rothkopf, Pekeč, &
Harstad 1998).

It turns out that any algorithm for the winner determina-
tion problem with single-minded bids can be extended to
deal with bids that use ORs and XORs. For ORs, this is
easy to see: as far as winner determination is concerned,
there is no difference between receiving two single-minded
bids (S1, k1) and (S2, k2), or receiving a single bid (S1, k1)
OR (S2, k2), because in either case the auctioneer can award
both bundles for a value of k1 + k2 if and only if the
bundles do not overlap. This argument does not work for
XORs, but there is a clever trick for converting an XOR
into an OR (Fujishima, Leyton-Brown, & Shoham 1999;
Nisan 2000): given a bid (S1, k1) XOR (S2, k2), create a
dummy item d, and replace the bid by (S1 ∪ {d}, k1) OR
(S2 ∪ {d}, k2). Now the two bundles can no longer both
be awarded to the bidder, because they overlap. Because
of this, most research on the combinatorial auction winner
determination problem has focused on single-minded bids.

While the winner determination problem with single-
minded bids is NP-hard in general, it can become
polynomial-time solvable if the bids lie in a restricted
class (Rothkopf, Pekeč, & Harstad 1998; Tennenholtz 2000;
Penn & Tennenholtz 2000; Sandholm & Suri 2003; Conitzer,
Derryberry, & Sandholm 2004; Gottlob & Greco 2007). For
example, it is polynomial-time solvable if each bid is on
at most two items (Rothkopf, Pekeč, & Harstad 1998), or
if each bid is on a connected set of vertices in a graph
with bounded treewidth (Conitzer, Derryberry, & Sandholm
2004) (this result can be generalized further (Gottlob &
Greco 2007)).

For other bidding languages, the complexity of the winner
determination problem may be different. For example, for
the language based on specifying interactions among items
(described above), the winner determination problem is NP-
hard even with only pairwise interactions.

Voting
In settings where m is not extremely large, so that each
voter can communicate her complete ranking of all the al-
ternatives, determining the winning alternative is computa-
tionally straightforward for most voting rules. For exam-
ple, a rule such as Borda requires nothing more than adding
up the scores of the alternatives. However, this is not the
case for all voting rules: some of them are in fact NP-
hard to execute (Bartholdi, Tovey, & Trick 1989b; Hemas-
paandra, Hemaspaandra, & Rothe 1997; Cohen, Schapire,
& Singer 1999; Dwork et al. 2001; Rothe, Spakowski, &
Vogel 2003; Ailon, Charikar, & Newman 2005; Alon 2006;
Conitzer 2006; Procaccia, Rosenschein, & Zohar 2007;
Brandt, Fischer, & Harrenstein 2007). As an example,
let us take the Slater rule, which requires finding a rank-
ing that is inconsistent with the outcomes of as few pair-
wise elections as possible. Determining the outcomes of
the pairwise elections is easy. It is helpful to summarize
this information in a directed graph, in which the alterna-
tives are the vertices and each edge points from the winner
of a pairwise election to the loser. If this graph is acyclic,



then it already corresponds to a ranking. If not, then the
Slater rule asks us to make the graph acyclic, by revers-
ing as few edges as possible. This problem turns out to
be NP-hard (Ailon, Charikar, & Newman 2005; Alon 2006;
Conitzer 2006). The Kemeny rule can similarly be in-
tepreted in a graph-theoretic way: to do so, we use the same
graph as for the Slater rule, except we add a weight to each
edge (a, b) which is equal to the margin of a’s pairwise vic-
tory over b. The problem now becomes to reverse a set of
edges of minimum total weight to make the graph acyclic. It
is possible to find votes so that all the weights become equal
to each other, so the Kemeny problem is at least as hard as
the Slater problem, that is, NP-hard. Still, it is possible to
solve reasonably-sized winner determination instances for
the Kemeny rule, using search-based techniques (Davenport
& Kalagnanam 2004) or integer programming (Conitzer,
Davenport, & Kalagnanam 2006).

Preference elicitation
So far, we have assumed that each agent reports her com-
plete preferences all at once. While a good language for
describing preferences can be very helpful in doing so, the
agent still needs to determine her entire preferences before
she can report them. An alternative approach is to use a se-
quential process, where one agent reports some information
about her preferences; then, based on that information, an-
other agent reports some information about her preferences,
etc., until we know enough to determine the outcome. This
approach is known as preference elicitation, and it is usually
guided by a central party, the elicitor, who determines who
has to report which information next (usually by asking that
agent a query about her preferences).

When we use preference elicitation, it is generally not
necessary for each agent to reveal all of her preferences.
Very often, once we have obtained some preference infor-
mation from the agents, other information becomes irrele-
vant. For example, if we have already determined that one
agent’s value for a particular bundle is not high enough to
have any chance of winning, then there may not be any need
to determine the exact value. As another example, if we
have already determined that one alternative has no chance
of winning, then there may not be any need to determine its
exact position in a voter’s preferences. Making use of such
observations can reduce the amount of information that the
agents have to communicate. However, the benefit here is
more than mere communicational convenience. Often, the
greater benefit is that the agent does not even need to de-
termine her preferences completely. A significant amount
of deliberation effort can be required to determine even a
single bit of preference information (for example, which of
two alternatives is preferred), so it can be very valuable to
realize that this information is not needed. An additional
benefit is that the agents’ privacy is improved, in the sense
that they have to release less of their preference informa-
tion. It follows that preference elicitation can be extremely
valuable even in settings where preferences can be described
concisely—for example, voting over a small set of alterna-
tives.

Combinatorial auctions
In combinatorial auctions, it is easy to see the potential ben-
efits of preference elicitation. Even when armed with the
best bidding language, determining one’s exact valuation for
every bundle can still be overwhelming. It is therefore not
surprising that much of the work on preference elicitation
has focused on combinatorial auctions.

In a sense, single-item auctions such as the English,
Japanese, and Dutch auctions are already doing some prefer-
ence elicitation. At each stage, bidders reveal some informa-
tion, such as whether the current price is too high for them;
and once we know the winning bidder, we end the auction,
even if we do not yet know all bidders’ exact valuations.
Indeed, some of the approaches to preference elicitation in
combinatorial auctions try to mimic these single-item auc-
tions. Several ascending combinatorial auctions have been
proposed (Parkes & Ungar 2000; Ausubel & Milgrom 2002;
Parkes 2006). In every round of an ascending combinato-
rial auction, each bidder faces a price for each bundle, and
needs to decide which bundle she would like to buy under
these prices. The prices start low, so that bidders will choose
large bundles that overlap with each other. Each round, the
prices are raised, up to the point that the chosen bundles
no longer overlap with each other. While ascending com-
binatorial auctions can, under certain conditions, result in
the optimal allocation, they also face some inherent limita-
tions (Blumrosen & Nisan 2005).

Ascending combinatorial auctions typically proceed in a
very systematic fashion. It is also possible to take a more
flexible preference elicitation approach, where the auction-
eer/elicitor can ask any agent any query at any point. Com-
mon queries include the demand query, where a bidder is
asked which bundle she would prefer under certain prices
(as in the ascending auctions), and the value query, which
simply asks for the bidder’s valuation for a specific bundle.

One question that is often studied in preference elicitation
is the following: if a bidder’s valuation function is guaran-
teed to lie in a certain class of functions C, can we deter-
mine the bidder’s valuation function exactly using only a
polynomial number of queries? A number of positive re-
sults have been obtained along this line. For example, a
bidder’s valuation function can be elicited exactly with a
number of value and demand queries that is polynomial in
the length of the valuation function’s representation in the
XOR-language (Lahaie & Parkes 2004). Hence, valuations
that admit a concise XOR-representation can be elicited ef-
ficiently using such queries. However, this result only holds
if the demand queries can set prices on bundles (rather than
just on individual items) (Blum et al. 2004). There are nu-
merous other results that show that various classes can(not)
be elicited using a polynomial number of queries of a given
type (Zinkevich, Blum, & Sandholm 2003; Santi, Conitzer,
& Sandholm 2004; Conitzer, Sandholm, & Santi 2005;
Blumrosen & Nisan 2005; Lahaie, Constantin, & Parkes
2005).

If there are no restrictions on the valuation function,
some negative results are known. For example, it has been
shown using tools from communication complexity the-
ory (Kushilevitz & Nisan 1997) that the winner determi-



nation problem in general requires exponential communica-
tion (Nisan & Segal 2005). This is true regardless of the
types of query that are allowed.

Voting
When agents are voting over a set of alternatives that is not
extremely large, the potential benefits of preference elicita-
tion are less dramatic than in a combinatorial auction: even
reporting one’s complete preferences requires only a poly-
nomial amount of communication. Nevertheless, as we have
already noted, determining these preferences generally still
requires a large amount of deliberation effort. Hence, there
is still significant value in doing preference elicitation in
such settings.

As in the case of combinatorial auctions, there has been
some work on determining how many queries are needed
to completely elicit a voter’s preferences, assuming that the
preferences lie in a specific class. For instance: sometimes
there is a natural order < on the alternatives—for example,
some candidates may be more “right-wing” than others. A
voter’s preferences �i are said to be single-peaked with re-
spect to this order if, whenever a < b < c or c < b < a
(where a is i’s most-preferred alternative), we have that
b �i c. That is, the voter always prefers alternatives that are
closer to her most-preferred alternative. It has been shown
that single-peaked preferences can be elicited using a linear
number of comparison queries (which ask the voter which of
two alternatives is preferred), if either the order < is known,
or at least one other vote that is single-peaked with respect
to < is known (Conitzer 2007b).

Another important topic is the communication complexity
of executing various rules—that is, for a given rule, what is
the minimum number of bits that needs to be communicated
by the voters (in the worst case) to determine the winner? It
should be noted that here, there is no constraint on the types
of query that are used. Some of the rules, such as Borda and
Copeland, turn out to require Ω(nm log m) communication
in the worst case—that is, in the worst case, the communi-
cation requirements are roughly as bad as having everyone
reveal all of their preferences. For other rules, however, we
can get away with much less communication: for example,
STV requires only O(n(log m)2) (using the straightforward
protocol where everyone reports their most-preferred alter-
native first; then, when an alternative is eliminated, all vot-
ers who ranked that alternative first communicate their next-
most preferred alternative, etc.), and Bucklin requires only
O(nm) (using a more sophisticated protocol based on bi-
nary search) (Conitzer & Sandholm 2005b).

Another key computational problem for preference elic-
itation is the following (Conitzer & Sandholm 2002; Kon-
czak & Lang 2005; Pini et al. 2007; Walsh 2007): given
some of the preferences of some of the voters, do we already
know which alternative is the winner? If we can solve this
problem, then we will know when we can stop eliciting pref-
erences and declare the winner. This problem is often easy,
but sometimes it is NP-hard, for example for STV (Conitzer
& Sandholm 2002).

A final direction is to optimize the elicitation process:
given a prior distribution over the voters’ preferences, plan

the elicitation process to minimize the expected number of
voters whose preferences we elicit before we know the win-
ner. For most rules, this problem is NP-hard even if we are
completely certain beforehand about how voters will vote
(but we still need to elicit their preferences to prove that we
are right) (Conitzer & Sandholm 2002).

Strategic agents and mechanism design
A final important issue is that of strategic bidding/voting.
Depending on the rules for the auction/election and the
bids/votes cast by the other agents, it may not be in an
agent’s best interest to truthfully report her preferences. An
agent that reports preferences other than the preferences she
truly has (with the aim of obtaining a better outcome for
herself) is said to misreport or manipulate. If agents manip-
ulate, this can be detrimental to the quality of the outcome:
even if we manage to solve the winner determination prob-
lem to optimality with respect to the reported preferences,
there is no guarantee that this results in an outcome that is
good with respect to the true preferences, which is what we
really care about. As we will see shortly, the approaches
that are taken to address this problem are generally differ-
ent in combinatorial auctions than in voting. This is because
in combinatorial auctions, the payments can be used to re-
move any incentive for the bidders to misreport their valua-
tion function, whereas in general voting settings, incentives
to misreport always remain.

Combinatorial auctions
To illustrate the main idea, it is helpful to return to the single-
item auction setting. We assume that a bidder i’s utility for
winning the item at price πi is vi − πi, where vi is the bid-
der’s (true) valuation for the item; and the utility for not win-
ning is 0. Let us first consider the first-price sealed-bid auc-
tion. It is easy to see that in this auction, it never makes
sense for a bidder to bid her true valuation vi, because in
this case, even if she wins, her utility is vi − vi = 0. Rather,
a bidder needs to bid lower than her true valuation to have
any chance of obtaining positive utility.

On the other hand, let us consider the second-price sealed-
bid auction. To see how a bidder i should bid in this auction,
let us first suppose that she knows all the other bids. Then,
she has only two choices: either bid higher than the highest
other bid, b∗, and obtain utility vi− b∗; or bid lower, and ob-
tain utility 0. Clearly, she should do the former if and only if
vi > b∗. But this can be achieved simply by bidding truth-
fully (for which she does not even need to know the others’
bids). Thus, it is always optimal for a bidder to reveal her
true valuation in a second-price sealed-bid auction. That is,
this auction is (dominant-strategies) incentive compatible.

A natural question is whether it is possible to make com-
binatorial auctions incentive compatible as well by using
the right payments. It turns out that this is indeed possi-
ble, by using the Generalized Vickrey Auction (GVA) (some-
times also referred to as the Clarke mechanism, or the VCG
mechanism (Vickrey 1961; Clarke 1971; Groves 1973)). The
GVA works as follows: first, solve the winner determination
problem, to obtain an optimal allocation S1, . . . , Sn, with



total value V =
∑n

i=1 vi(Si). Now, to determine how much
bidder i must pay, remove i from the auction, and solve the
winner determination problem again with the remaining bid-
ders, obtaining a total utility of V−i (which is at most V ).
Then, bidder i must pay V−i − (V − vi(Si)). It is not diffi-
cult to show that the GVA is incentive compatible.

While the GVA appears to solve the problem of strate-
gic bidding nicely, it still has a number of drawbacks. First
of all, if obtaining the efficient allocation of resources is
not the objective, then the GVA may not be optimal. (For
example, there has been significant interest in determin-
ing the combinatorial auction mechanism that maximizes
expected revenue, although this turns out to be surpris-
ingly difficult (Avery & Hendershott 2000; Armstrong 2000;
Conitzer & Sandholm 2004; Likhodedov & Sandholm 2004;
2005).) Another problem is that the GVA is very vulnerable
to multiple bidders colluding: whereas there is no incentive
for a single bidder to misreport by herself, a group of bidders
can make themselves (sometimes much) better off by collec-
tively misreporting (Ausubel & Milgrom 2006; Conitzer &
Sandholm 2006a). A bidder can also make herself much bet-
ter off by pretending to be multiple distinct bidders, which
is often possible in open, anonymous environments such as
the Internet. That is, the GVA is not false-name-proof. Sev-
eral combinatorial auction mechanisms have been proposed
that are false-name-proof, but this comes at the cost of ef-
ficiency (Yokoo, Sakurai, & Matsubara 2001; Yokoo 2003;
Yokoo, Sakurai, & Matsubara 2004; Yokoo, Matsutani, &
Iwasaki 2006). (An alternative approach is to verify the
identities of some of the bidders after the fact (Conitzer
2007c).) A final issue is that the winner determination prob-
lems must be solved to optimality: if an approximately op-
timal solution is used, the GVA is in general no longer in-
centive compatible. A significant body of research has fo-
cused on creating approximation algorithms for the win-
ner determination problem that can be combined with pay-
ment schemes that make them incentive compatible (Nisan
& Ronen 2001; Lehmann, O’Callaghan, & Shoham 2002;
Mu’alem & Nisan 2002; Bartal, Gonen, & Nisan 2003;
Archer et al. 2003; Dobzinski, Nisan, & Schapira 2006;
Dobzinski & Nisan 2007a; 2007b).

Voting
While the GVA mechanism solves the problem of strate-
gic bidding in combinatorial auctions (with some serious
caveats), in voting settings no such solution exists. (This
is fundamentally due to the lack of payments in voting set-
tings: the Clarke mechanism, of which the GVA is a special
case, can also be applied to voting settings in which the vot-
ers can be required to make payments.) Specifically, there
is the Gibbard-Satterthwaite impossibility theorem (Gibbard
1973; Satterthwaite 1975), which states that with 3 or more
alternatives, every voting rule that is incentive compatible
is either dictatorial, or is such that there is an alternative
that cannot win, regardless of the votes. (One may won-
der if one can do better using voting rules that use random-
ization in their choice of the winner; however, a later pa-
per by Gibbard (Gibbard 1977) characterizes the class of
incentive compatible randomized voting rules completely,

and the result is still mostly negative in that all the rules
in the class have some undesirable properties. As an aside,
the class becomes even smaller if we require false-name-
proofness (Conitzer 2007a).)

Still, something must be done to address the problem of
strategic voting. Several recent papers have pursued the ap-
proach of using computational hardness as a barrier to ma-
nipulation. The idea here is the following: while for any
reasonable rule, there are guaranteed to be instances where
there exists a beneficial manipulation (that is, a way of vot-
ing insincerely that makes the voter better off), the voter will
not be able to make use of this if the manipulation is com-
putationally too hard to discover. Indeed, there has been
a number of results showing that the problem of finding
a beneficial manipulation is NP-hard (for some rules, for
some definitions of the manipulation problem) (Bartholdi,
Tovey, & Trick 1989a; Bartholdi & Orlin 1991; Conitzer
& Sandholm 2003; Elkind & Lipmaa 2005; Hemaspaandra
& Hemaspaandra 2007; Conitzer, Sandholm, & Lang 2007;
Procaccia, Rosenschein, & Zohar 2007). While this shows
that there is indeed some computational barrier to manipula-
tion, the result is not as strong as we would like. Specifically,
NP-hardness is a worst-case measure of hardness: it shows
that (assuming P 6=NP) any algorithm for finding manipula-
tions is going to require exponential time on some instances,
but it could still be the case that the algorithm rapidly
identifies a beneficial manipulation on most instances. It
would be more satisfactory to have a result that shows that
most instances are hard to manipulate. Unfortunately, re-
cently some negative results have been obtained that show
that, under some restrictions on the rule, it is usually
easy to find a manipulation (Conitzer & Sandholm 2006b;
Procaccia & Rosenschein 2007a; 2007b). Still, it seems that
the book is not yet closed on using computational hardness
as a barrier to manipulation. Incidentally, computational
hardness has also been considered as a barrier against other
types of undesirable behavior, for example by the chair-
person of the election (Bartholdi, Tovey, & Trick 1992;
Hemaspaandra, Hemaspaandra, & Rothe 2005; Faliszewski,
Hemaspaandra, & Hemaspaandra 2006; Procaccia, Rosen-
schein, & Zohar 2007).

Another issue is that if we use preference elicitation on
a voting rule that is not incentive compatible, this may in-
troduce additional opportunities for manipulation. This is
because from the queries that a voter is asked, she can in-
fer something about how the others are voting; and she may
wish to change her vote based on this information (Conitzer
& Sandholm 2002). This is an issue that does not occur if
we use a (dominant-strategies) incentive compatible mecha-
nism (such as the GVA): in that case, answering the queries
truthfully becomes an ex post equilibrium. That is, it is opti-
mal for every agent to answer the queries truthfully, as long
as the others do so as well—regardless of what their prefer-
ences are.

Conclusions
In this paper, we considered several issues that are of impor-
tance both in combinatorial auctions and in voting settings,



and compared the research on these issues in the two do-
mains.

We first considered the rules for how outcomes are chosen
in combinatorial auctions and in voting. Here we noticed a
major difference. Most (though not all) combinatorial auc-
tion designs agree on the objective of maximizing the effi-
ciency of the allocation of items, and the differences among
the designs are primarily due to other factors, such as how
bidders’ valuations are elicited and what incentives bidders
have when they bid strategically. In contrast, in voting set-
tings, it is generally not clear what the ideal objective is, and
different voting rules correspond to different objectives.

We then considered the languages in which agents express
their preferences. In combinatorial auctions, there is a sig-
nificant body of research on various bidding languages and
their strengths and weaknesses. In voting, there is not much
research on languages yet; this is presumably primarily be-
cause most work so far has dealt with settings where the
number of alternatives is not extremely large, and in such
settings it does not require much space to express any rank-
ing. However, this is not true in the case of combinatorial
alternative spaces (which can have exponential size). Some
languages for representing preferences have been proposed
for combinatorial alternative spaces, and as the interest in
such settings grows, undoubtedly so will the interest in vot-
ing languages.

Subsequently, we considered the winner determination
problem. In combinatorial auctions, the winner determina-
tion problem has received a lot of attention, in part because
this is perhaps the first problem that needs to be solved to
be able to run a combinatorial auction. In voting, when the
number of alternatives is not extremely large, the winner de-
termination problem is quite easy for most rules. But there
are some rules for which it is NP-hard, and various tech-
niques have been proposed for running these rules nonethe-
less. It seems that as the focus shifts to combinatorial alter-
native spaces, more difficult winner determination problems
will emerge.

We then considered preference elicitation, that is, sequen-
tially querying the agents for parts of their preferences until
we know enough to determine the outcome. Again, this is
a problem that has received more attention in combinatorial
auctions, presumably because in general, a bidder must com-
municate exponentially many values, so any reduction in
this communication is highly desirable. Nevertheless, pref-
erence elicitation has also received some attention in voting
settings. This is because even though specifying a ranking
requires space polynomial in the number of alternatives, it
generally requires significant deliberation effort to decide on
the precise ranking, and preference elicitation can reduce the
required deliberation effort. Yet again, it seems that prefer-
ence elicitation will receive more attention in settings with
exponentially many alternatives.

Finally, we considered strategic agents, who will misre-
port their preferences if this is to their benefit. Here there
is a major difference between combinatorial auctions and
voting. In combinatorial auctions, it is possible to remove
any incentive to misreport, using techniques from mecha-
nism design. Unfortunately, in voting settings, mechanism

design provides little more than negative results, and hence
research has turned to other ways to prevent misreporting—
specifically, making it computationally hard to do so bene-
ficially. However, both in combinatorial auctions and vot-
ing, there is a growing interest in addressing new types of
manipulation—specifically, the ability to participate in the
mechanism multiple times under different identifiers. It ap-
pears that this type of manipulation is more difficult to ad-
dress in combinatorial auctions, so perhaps the techniques
that will be designed to address this will be similar across
the two domains.

In summary, many of the same issues are at play in com-
binatorial auctions and voting settings. Considering current
trends in research in the two domains, it seems that the sim-
ilarities will only grow. Hence, it appears that researchers in
each domain would benefit from keeping a close eye on the
other domain.
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