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Abstract

Reinforcement Learning (RL) Markov Decision Pro-
cesses is studied with an emphasis on the well-studied
exploration problem. We first formulate and discuss
a definition of “efficient” algorithms that is termed
Probably Approximately Correct (PAC) in RL. Next
we provide general sufficient conditions for such an al-
gorithm that applies to several different modeling as-
sumptions. The conditions can be used to demonstrate
that efficient learning is possible in finite MDPs, with
either a model-based or model-free approach, in fac-
tored MDPs, and in continuous MDPs with linear dy-
namics.

1 Introduction

In the reinforcement-learning (RL) problem (Sutton &
Barto 1998), an agent acts in an unknown or incom-
pletely known environment with the goal of maximiz-
ing an external reward signal. In the most standard
mathematical formulation of the problem, the environ-
ment is modeled as a Markov Decision Process (MDP)
and the goal of the agent is to obtain near-optimal dis-
counted return. Over the years, many algorithms have
been proposed for this problem, but analyses of their
performances have been relatively scarce. In fact, un-
til recently, most theoretical guarantees have been that
certain algorithms will discover an optimal policy in the
limit, after an infinite amount of experience. In con-
trast, several attempts have been made to study “Prob-
ably Approximately Correct” or PAC-MDP algorithms,
which exhibit near-optimal behavior in polynomial time
and experience. This paper discusses several extensions
of those results.

We present a theorem that provides sufficient condi-
tions for an algorithm to be PAC-MDP. We examine
these conditions and show how they can be applied to
prove that efficient learning is possible in three inter-
esting scenerios: finite MDPs (i.e. the “Tabular case”),
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factored MDPs, and continuous MDPs with linear dy-
namics.

2 Notation

This section introduces the Markov Decision Process
(MDP) notation used throughout the paper; see (Sut-
ton & Barto 1998) for an introduction. Let Ps denote
the set of all probability distributions over the set S.
An MDP M is a five tuple (S,A,T,R,v), where § is
a set called the state space, A is a set called the ac-
tion space, T : § x A — Pgs is the transition distribu-
tion, R : & Xx A — Pg is the reward distribution, and
0 < v < 1is a discount factor on the summed sequence
of rewards. We call the elements of S and A states and
actions, respectively, and use S and A to denote the
number of states and the number of actions, respec-
tively. We let T'(s’|s,a) denote the transition probabil-
ity of state s’ of the distribution T'(s,a). In addition,
R(s,a) denotes the expected value of the distribution
R(s,a).

We assume that the learner (also called the agent) re-
ceives S, A, and ~ as input. The learning problem is
defined as follows. The agent always occupies a single
state s of the MDP M. The agent is told this state and
must choose an action a. It then receives an immediate
reward 7 ~ R(s,a) and is transported to a next state
s’ ~ T(s,a). This procedure then repeats forever. The
first state occupied by the agent may be chosen arbi-
trarily. Intuitively, the solution or goal of the problem
is to obtain as large as possible reward in as short as
possible time. In Section 2.1, we provide one possible
formalization of this objective within the PAC-MDP
framework. We define a timestep to be a single inter-
action with the environment, as described above. The
tth timestep encompasses the process of choosing the
tth action. We also define an experience of state-action
pair (s, a) to refer to the event of taking action a from
state s.

A policy is any strategy for choosing actions. A sta-



tionary policy is one that produces an action based on
only the current state, ignoring the rest of the agent’s
history. We assume (unless noted otherwise) that re-
wards! all lie in the interval [0,1]. For any policy T,
let Vi (s) (Q74(s,a)) denote the discounted, infinite-
horizon value (action-value) function for 7 in M (which
may be omitted from the notation) from state s. If H
is a positive integer, let Vi (s, H) denote the H-step
value of policy 7 from s. If 7 is non-stationary, then
s is replaced by a partial path c¢; = s1,a1,71,..., St,
in the previous definitions. Specifically, let s; and 7
be the tth encountered state and received reward, re-
spectively, resulting from execution of policy 7 in some
MDP M. Then, Vjj(c) = E[Z;io Y rejled] and
Ve, H) = E[Zf;ol ¥ rirjled]. These expectations
are taken over all possible infinite paths the agent might
follow in the future. The optimal policy is denoted 7*
and has value functions V5 (s) and Q3%,(s, a). Note that
a policy cannot have a value greater than 1/(1 — v) by
the assumption of a maximum reward of 1.

2.1 Learning Efficiently

To formalize the notion of “efficient learning”, we allow
the learning algorithm to receive two additional inputs,
€ and 4, both positive real numbers. The first param-
eter, €, controls the quality of behavior we require of
the algorithm (how close to optimality do we desire)
and the second parameter, ¢, is a measure of confidence
(how certain do we want to be of the algorithm’s per-
formance). As these parameters decrease, greater ex-
ploration and learning is necessary, as more is expected
of the algorithms.

In the following definition, we view an algorithm as sim-
ply some non-stationary (in terms of the current state)
policy that, on each timestep, takes as input an en-
tire history or trajectory through the MDP (its actual
history) and outputs an action (which the agent then
executes). Formally, we define the policy of any algo-
rithm A at a fixed instance of time t to be a function
Ai {8 x A x [0,1]}* — A, that maps future paths to
future actions?.

Definition 1 ((Kakade  2003)) Let ¢ =
(s1,a1,71,82,02,72,...) be a path generated by ex-
ecuting an algorithm A in an MDP M. For any
fized € > 0, the sample complexity of exploration
(sample complexity, for short) of A is the number
of timesteps t such that the policy at time t, A, is not
e-optimal from the current state, s; at time t (formally,

1t is straightforward to generalize to the case where the
rewards are bounded above and below by known but arbi-
trary constants, say Rmin and Rypaz, respectively.

2The action of an agent on timestep ¢ is given by the
function evaluated at the empty history, A (0).

VA (St) < V*(St) — 6).

Note that the sample complexity of an algorithm is de-
pendent on some infinite-length path through the MDP.
We believe this definition captures the essence of mea-
suring learning. It directly measures the number of
times the agent acts poorly (quantified by €) and we
view “fast” learners as those that act poorly as few
times as possible. Based on this intuition, we define
what it means to be an “efficient” learning algorithm

Definition 2 An algorithm A is said to be an effi-
cient PAC-MDP (Probably Approzimately Correct
in Markov Decision Processes) algorithm if, for any
e > 0 and 0 < 0 < 1, the per-step computa-
tional complexity and the sample complexity of A are
less than some polynomial in the relevant quantities
(S, A,1/e,1/6,1/(1 — 7)), with probability at least 1 —4.
It is simply PAC-MDP if we relaz the definition to
have no computational complexity requirement.

The terminology, PAC, in this definition is borrowed
from (Valiant 1984), a classic paper dealing with su-
pervised learning. One thing to note is that we only
restrict a PAC-MDP algorithm from behaving poorly
(non-e-optimally) on more than a small (polynomially)
number of timesteps. We don’t place any limitations on
when the algorithm acts poorly or how poorly it acts
on those timesteps. This definition is in contrast to
Valiant’s PAC notion, which is more “off-line” in that
it requires the algorithm to make all of its mistakes
ahead of time before identifying a near-optimal policy.

Please see (Kakade 2003) for a full motivation of this
performance measure. Efficient PAC-learnability in the
sample-complexity framework from above implies PAC-
learnability in a more realistic framework called Average
Loss that measures the actual return (sum of rewards)
achieved by the agent against the expected return of the
optimal policy (Strehl & Littman 2005). The analysis
of R-MAX by (Kakade 2003) and of MBIE by (Strehl
& Littman 2005) use the same definition as above. The
analysis of R-MAX by (Brafman & Tennenholtz 2002)
and of E3 by (Kearns & Singh 2002) use slightly differ-
ent definitions of efficient learning?®.

2.2 General Framework

We now develop some theoretical machinery to prove
PAC-MDP statements about various algorithms. Our

3(Kearns & Singh 2002) dealt with discounted and undis-
counted MDPs differently. In the discounted case the agent
is required to halt after a polynomial amount of time and
output a near-optimal policy from the current state, with
high probability. (Kakade 2003) discusses the relationship
between this notion and Definiton 1.



theory will be focused on algorithms that maintain a
set of action values, Q(s,a), for each state-action pair
(denoted Qy(s,a) at time t)*. We also assume an algo-
rithm always chooses actions greedily with respect to
the action values. For convenience, we also introduce
the notation V(s) to denote max, Q(s,a) and Vi(s) to
denote V(s) at time t.

Definition 3 Suppose an RL algorithm A maintains a
value, denoted Q(s,a), for each state-action pair (s,a)
with s € S and a € A. Let Qi(s,a) denote the estimate
for (s,a) immediately before the tth action of the agent.
We say that A is a greedy algorithm if the tth action
of A, a, is a; = argmax,cp Q¢(S¢,a), where s; is the
tth state reached by the agent.

The following is a definition of a new MDP that will be
useful in our analysis.

Definition 4 Let M = (S,A, T, R,v) be an MDP with
a giwen set of action values, Q(s,a) for each state-
action pair (s,a), and a set K of state-action pairs.
We define the known state-action MDP My = (SU
{#s.al(s,0) & K},A, Tk, Ri,) as follows. For each
unknown state-action pair, (s,a) ¢ K, we add a new
state zs,q to My, which has self-loops for each action
(Tk(2s.al|2s,a,") = 1). For all (s,a) € K, Rg(s,a) =
R(s,a) and Tk (-|s,a) = T(:|s,a). For all (s,a) ¢ K,
Rk (s,a) = Q(s,a)(1—) and Tk (2s,4|s,a) = 1. For the
new states, the reward is Ri(2s,q,") = Q(s,a)(1 — 7).

The known state-action MDP is a generalization of the
standard notions of a “known state MDP” of (Kearns
& Singh 2002) and (Kakade 2003). It is an MDP whose
dynamics (reward and transition functions) are equal to
the true dynamics of M for a subset of the state-action
pairs (specifically those in K). For all other state-action
pairs, the value of taking those state-action pairs in Mg
(and following any policy from that point on) is equal
to the current action-value estimates Q(s, a). We intu-
itively view K as a set of state-action pairs for which
the agent has sufficiently accurate estimates of their dy-
namics.

Definition 5 Suppose that for algorithm A there is a
set of state-action pairs Ky (we drop the subscript t if
t is clear from context) defined during each timestep t
and that depends only on the history of the agent up
to timestep t (before the (t)th action). Let Ay be the
event, called the escape event, that some state-action
pair (s,a) is experienced by the agent at time t, such

that (s,a) & K.

4The results don’t rely on the algorithm having an ex-
plicit representation of each action value (for example, they
could be implicitly held inside of a function approximator).

Note that all learning algorithms we consider take €
and ¢ as input. We let A(e, d) denote the version of
algorithm A parameterized with ¢ and §. The proof of
Theorem 1 follows the structure of the work of (Kakade
2003), but generalizes several key steps.

Theorem 1 (Strehl, Li, & Littman 2006) Let A(e, )
be any greedy learning algorithm such that for every
timestep t, there exists a set K; of state-action pairs
that depends only on the agent’s history up to timestep
t. We assume that K; = Kyy1 unless, during timestep
t, an update to some state-action value occurs or the
escape event Ax happens. Let Mg, be the known state-
action MDP and 7, be the current greedy policy, that is,
for all states s, m(s) = argmax, Q¢(s,a). Suppose that
for any inputs € and &, with probability at least 1 — 4§,
the following conditions hold for all states s, actions
a, and timesteps t: (1) Vi(s) > V*(s) — € (optimism),
(2) Vi(s) — V]\Z‘Kt (s) < e (accuracy), and (3) the to-
tal number of updates of action-value estimates plus the
number of times the escape event from K;, Ak, can oc-
cur is bounded by ((e,0) (learning complexity). Then,
when A(e, 0) is executed on any MDP M, it will follow
a 4e-optimal policy from its current state on all but

C(€,0) nln 1
O(E(l—v)zl 5! 6(1—7))

timesteps, with probability at least 1 — 2.

3 Finite MDPs
3.1 A model-based algorithm

In this section, we discuss the R-MAX algorithm(Braf-
man & Tennenholtz 2002). R-MAX is a model-based
algorithm for finite MDPs. It uses all of its past expe-
rience (in the form of tuples of current state, current
action, reward, and next state) to maintain an explicit
MDP estimate, T and R of its unknown environment
using maximum-likelihood estimation. It also requires
an integer-valued parameter, m. The action selection
step is always to choose the action that maximizes the
current action value. The update step is to solve the
following set of equations:

Qs,a) = Ris,a)+7 3 T(s']s,0) maxQ(s', '),

if n(s,a) > m,
Q(s;a) = 1/(1=),

Solving this set of equations is equivalent to computing
the optimal action-value function of an MDP, which
we call Model(R-MAX). This MDP uses the empiri-
cal transition and reward distributions for those state-
action pairs that have been experienced by the agent at
least m times. The transition distribution for the other

if n(s,a) < m.



state-action pairs is a self loop and the reward for those
state-action pairs is always 1, the maximum possible.

We can use Theorem 1 to prove the following:

Theorem 2 Suppose that 0 < e < ﬁ and 0 < § <1

are two real numbers and M = (S,A, T, R,~) is any
MDP. There exists inputs m = m(l, (15) and €1, satis-
fying m(e, 5) =0 (%) and & = O(%), such
that if R-MAX is executed on M with inputs m and e,
then the following holds. Let Ay denote R-MAX’s policy
at time t and sy denote the state at time t. With proba-

bility at least 1-6, VI\“/L}‘ (s¢) > Vi (st) — € is true for all

but O | =2=5 (S +1n =2~ SA In & 5In timesteps t.
( ( e(I-7) 7)

3.2 A model-free algorithm

The Delayed Q-learning algorithm was introduced by
(Strehl et al. 2006) as the first algorithm that is
known to be PAC-MDP and whose per-timestep com-
putational demands are minimal (roughly equivalent to
those of Q-learning). Due to its low memory require-
ments it can also be viewed as a model-free algorithm
and the first to be provably PAC-MDP. Its analysis is
also noteworthy because the polynomial upper bound
on its sample complexity is a significant improvement,
asymptotically, over the best previously known upper
bound for any algorithm, when only the dependence
on S and A is considered. The algorithm is called “de-
layed” because it waits until a state-action pair has been
experienced m times before updating that state-action
pair’s associated action value, where m is a parame-
ter provided as input. When it does update an action
value, the update can be viewed as an average of the
target values for the m most recently missed update
opportunities plus a small exploration bonus of €;.

Although we don’t have room to go into the details of
the algorithm or its analysis we mention that Theorem 1
can be used to prove the following theorem.

Theorem 3 (Strehl et al.  2006) Suppose that 0 <
e < ﬁ and 0 < 6 < 1 are two real numbers

and M = (S,A\T,R,~) is any MDP. There exists

inputs m = m(z,3) and €1, satisfying m(i,};) =
n A Af(e1(1— [
o (1nGs (1;152(1/2)(21 )/ )) and L L= Ot 7)) such

that if Delayed Q-learning is emecuted on M then the
following holds. Let A; denote Delayed Q-learning’s
policy at time t and s; denote the state at time t. With
probability at least 1-6, Vit (se) > Vi (se)—e is true for

all but O (

- ln In 5(11 ) In (5;—7)) timesteps t.

4 Factored MDPs

Definition 6 A factored-state MDP (or £-MDP)
is an MDP where the states are represented as vectors
of n components X = {X1,Xs,...,X,}. FEach com-
ponent X; (called o state variable or state factor)
may be one of finitely many values from the set D(X;).
In other words, each state can be written in the form
x = (x1,...,2n), where x; € D(X;).

The definition of factored-state MDPs is motivated by
the desire to achieve learning in very large state spaces.
The number of states of a factored-state MDP M is
exponential in the number n of state variables.

We assume that the transition function factors so that

T(x' |z, a) HP (x}]z,a) (1)

We also assume that the component transition distri-
butions P(-|z,a) can be compactly represented by a
Bayesian Dynamic Network (DBN) (Boutilier, Dean,
& Hanks 1999). Using Theorem 1, we can prove that
a modified version of Factored R-MAX (Guestrin, Pa-
trascu, & Schuurmans 2002) is PAC-MDP. The main
difference between Factored R-MAX and R-MAX is
that instead of learning each transition probability
(T's'|s, a)separately (leading to S?x A independent vari-
ables to learn) Factored R-MAX estimates each transi-
tion component (P(z}|x,a)) from data and keeps track
of which components are the same (according to the
graphical structure of the DBN). For the full details
please see (Strehl 2007).

5 Continuous MDPs with linear
dynamics

In the previous sections we have assumed that the num-
ber of states in the underlying MDP is finite. Here we
relax that assumption and consider MDPs whose states
are represented as real vectors.

The model we use is slightly modified from the model
described by (Abbeel & Ng 2005). Let Ps denote the
set of all (measurable) probability distributions over the
set S. The environment is described by a discounted
MDP M = (S,A,T,R,~), where S = R"™S is the state
space, A = R"™4 is the action space, T : S x A —
Pg is the unknown transition dynamics, v € [0,1) is
the discount factor, and R : S x A — R is the known
reward function.® For each timestep ¢, let ; € S denote

5 All of our results can easily be extended to the case of

an unknown reward function with a suitable linearity as-
sumption.



the current state and u; € A the current action. The
transition dynamics T satisfy

T = Mo(xr,ue) + wy, (2)

where 7,41 € S, ¢(+,+) : R?sT"4 — R” is a (basis or
kernel) function satisfying ||¢(-,-)|| < 1, and M is an
ng X n matrix. We assume that the 2-norm of each
row of M is bounded by 1.° Each component of the
noise term wy; € R™S is chosen i.i.d. from a normal
distribution with mean 0 and variance o2 for a known
constant o. If an MDP satisfies the above conditions we
say that it is linearly parameterized, because the next-
state x;y1 is a linear function of the vector ¢(zt,uy)
(which describes the current state and action) plus a
noise term. We assume that the learner (also called the
agent) receives ng, na, n, R, ¢(-,-), o, and v as input,
with T initially being unknown.

We begin by creating a supervised regression problem,
fi(¢(s,a)), for each state-component ¢ that attempts to
predict the ith component of the state resulting from
taking any action a from any initial state s, that is, we
learn a function f; : R®™ — R for each i € {1,...,ng}.
The learned function approximators can be combined
to form a model (in the form of a linearly parameter-
ized MDP) of the unknown environment. We then solve
this model and act according to the optimal policy of
the model. Exploration is achieved by keeping confi-
dence bounds on the predictions made by f; and when
we are not sufficiently confident about a given predic-
tion for state s and action a, we assume (in the model)
that (s, a) leads to a maximally rewarding state. Thus,
the algorithm can be viewed as a direct generalization
of R-Max to linearly parameterized MDPs. Using The-
orem 1, we can prove that it is PAC-MDP.

6 Conclusion

We have developed a general theory that allows the so-
lution of a variety of interesting reinforcement learning
problems in a formal manner. Future work consists of
applying the theory to more realistic problems and de-
veloping large-scale systems. One of the fundamental
difficulties of our approach presented is to overcome the
computational burden of planning in the model-based
approaches.
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