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Abstract

We present a simple, agnostic active learning algorithm
that works for any hypothesis class of bounded VC di-
mension, and any data distribution. Our algorithm ex-
tends a scheme of Cohn, Atlas, and Ladner to the ag-
nostic setting, by (1) reformulating it using a reduc-
tion to supervised learning and (2) showing how to ap-
ply generalization bounds even for the non-i.i.d. sam-
ples that result from selective sampling. We provide a
general characterization of the label complexity of our
algorithm. This quantity is never more than the usual
PAC sample complexity of supervised learning, and is
exponentially smaller for some hypothesis classes and
distributions. We also demonstrate improvements ex-
perimentally.

Introduction

Active learningaddresses the issue that, in many applica-
tions, labeled data typically comes at a higher cost (e.g. in
time, effort) than unlabeled data. An active learner is given
unlabeled data and must pay to view any label. The hope
is that significantly fewer labeled examples are used than in
the supervised (non-active) learning model. Active learning
applies to a range of data-rich problems such as genomic
sequence annotation and speech recognition. In this paper
we formalize, extend, and provide label complexity guaran-
tees for one of the earliest and simplest approaches to active
learning—one due to Cohn, Atlas, and Ladner (1994).

The scheme of Cohn, Atlas, and Ladner examines data one
by one in a stream and requests the label of any data point
about which it is currently unsure. For example, suppose the
hypothesis class consists of linear separators in the plane,
and assume that the data is linearly separable. Let the first
six data be labeled as follows.
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The learner does not need to request the label of the seventh
point (indicated by the arrow) because it is not unsure about
the label: any straight line with the⊕s and⊖s on opposite
sides has the seventh point with the⊖s. Put another way,
the point is not in theregion of uncertainty(Cohn, Atlas,
and Ladner, 1994), the portion of the data space for which
there is disagreement among hypotheses consistent with the
present labeled data.

Although very elegant and intuitive, this approach to active
learning faces two problems:

1. Explicitly maintaining the region of uncertainty can be
computationally cumbersome.

2. Data is usually not perfectly separable.

Our main contribution is to address these problems. We
provide a simple generalization of the selective sampling
scheme of Cohn, Atlas, and Ladner that tolerates adversarial
noise and never requests many more labels than a standard
agnostic supervised learner would to learn a hypothesis with
the same error.

In the previous example, anagnosticactive learner (one that
does not assume a perfect separator exists) is actuallystill
uncertain about the label of the seventh point, because all
six of the previous labels could be inconsistent with the best
separator. Therefore, it should still request the label. On
the other hand, after enough points have been labeled, if an
unlabeled point occurs at the position shown below, chances
are its label is not needed.
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To extend the notion of uncertainty to the agnostic setting,
we divide the observed data points into two groups,Ŝ and
T :

• Set Ŝ contains the data for which we didnot request la-
bels. We keep these points around and assign them the
label we think they should have.

• SetT contains the data for which we explicitly requested
labels.



We will manage things in such a way that the data inŜ are
always consistent with the best separator in the class. Thus,
somewhat counter-intuitively, the labels in̂S are completely
reliable whereas the labels inT could be inconsistent with
the best separator. To decide whether we are uncertain about
the label of a new pointx, we reduce to supervised learning:
we learn hypothesesh+1 andh−1 such that

• h+1 is consistent with all the labels in̂S ∪ {(x,+1)} and
has minimal empirical error onT , while

• h−1 is consistent with all the labels in̂S ∪ {(x,−1)} and
has minimal empirical error onT .

If, say, thetrue error of the hypothesish+1 is much larger
than that ofh−1, we can safely infer that the best separator
must also labelx with −1 without requesting a label; if the
error difference is only modest, we explicitly request a label.
Standard generalization bounds for an i.i.d. sample let us
perform this test by comparingempiricalerrors onŜ ∪ T .

The last claim may sound awfully suspicious, becauseŜ∪T
is not i.i.d.! Indeed, this is in a sense the core sampling
problem that has always plagued active learning: the labeled
sampleT might not be i.i.d. (due to the filtering of examples
based on an adaptive criterion), whilêS only contains un-
labeled examples (with made-up labels). Nevertheless, we
prove that in our case, it is in fact correct to effectively pre-
tendŜ ∪ T is an i.i.d. sample. A direct consequence is that
the label complexityof our algorithm (the number of labels
requested before achieving a desired error) is never much
more than the usual sample complexity of supervised learn-
ing (and in some cases, is significantly less).

An important algorithmic detail is the specific choice of gen-
eralization bound we use in deciding whether to request a
label or not. A small polynomial difference in generaliza-
tion rates (betweenn−1/2 andn−1, say) can get magnified
into anexponentialdifference in label complexity, so it is
crucial for us to use a good bound. We use a normalized
bound that takes into account the empirical error (computed
on Ŝ ∪ T—again, not an i.i.d. sample) of the hypothesis in
question.

Earlier work on agnostic active learning (Balcan, Beygelz-
imer, and Langford, 2006; Hanneke, 2007) has been able to
upper bound label complexity in terms of a parameter of the
hypothesis class (and data distribution) called thedisagree-
ment coefficient. We give label complexity bounds for our
method based on this same quantity, and we get a better de-
pendence on it, linear rather than quadratic.

To summarize, in this paper we present and analyze a sim-
ple agnostic active learning algorithm for general hypothesis
classes of bounded VC dimension. It extends the selective
sampling scheme of Cohn, Atlas, and Ladner (1994) to the
agnostic setting, using normalized generalization bounds,
which we apply in a simple but subtle manner. For certain
hypothesis classes and distributions, our analysis yieldsim-
proved label complexity guarantees over the standard sam-
ple complexity of supervised learning. We also demonstrate

such improvements experimentally.

Related work

A large number of algorithms have been proposed for ac-
tive learning, under a variety of learning models. In this
section, we consider only methods whose generalization be-
havior has been rigorously analyzed.

An early landmark result was the selective sampling scheme
of Cohn, Atlas, and Ladner (1994) described above. This
simple active learning algorithm, designed for separable
data, has been the inspiration for a lot of subsequent work. A
few years later, the seminal work of Freund, Seung, Shamir,
and Tishby (1997) analyzed an algorithm calledquery-by-
committeethat operates in a Bayesian setting and uses an
elegant sampling trick for deciding when to query points.
The core primitive required by this algorithm is the ability
to sample randomly from the posterior over the hypothesis
space. In some cases this can be achieved efficiently (Gilad-
Bachrach, Navot, and Tishby, 2005), for instance when the
hypothesis class consists of linear separators inR

d (with a
uniform prior) and the data is distributed uniformly over the
surface of the unit sphere inRd. In this particular setting,
the authors showed that the number of labels required to
achieve generalization errorε is justO(d log 1/ε), exponen-
tially lower than the usual supervised sample complexity of
O(d/ε).

Subsequently, Dasgupta, Kalai, and Monteleoni (2005)
showed that a simple variant of the perceptron algorithm
also achieves this label complexity, even for a worst-case
(non-Bayesian) choice of target hypothesis.

All the work mentioned so far assumesseparabledata. This
case was studied abstractly by Dasgupta (2005), who found
that a parameter called thesplitting indexloosely charac-
terizes the label complexity of actively learning hypothesis
classes of bounded VC dimension. As yet, it is not known
how to realize this label complexity in a computationally ef-
ficient way, except in special cases.

A natural way to formulate active learning in theagnostic
setting is to ask the learner to return a hypothesis with error
at mostν + ε (whereν is the error of the best hypothesis
in the specified class) using as few labels as possible. A
basic constraint on the label complexity was pointed out by
Kääriäinen (2006), who showed that for anyν ∈ (0, 1/2),
there are data distributions that force any active learner that
achieves error at mostν + ε to requestΩ((ν/ε)2) labels.

The first rigorously-analyzed agnostic active learning al-
gorithm, calledA2, was developed recently by Balcan,
Beygelzimer, and Langford (2006). Like Cohn-Atlas-
Ladner (1994), this algorithm uses a region of uncertainty,
although the lack of separability complicates matters and
A2 ends up explicitly maintaining anε-net of the hypoth-
esis space. Subsequently, Hanneke (2007) characterized the
label complexity of theA2 algorithm in terms of a param-
eter called thedisagreement coefficient. Another thread of
work focuses on agnostic learning of thresholds for data that



lie on a line; in this case, a precise characterization of label
complexity can be given (Castro and Nowak, 2006, 2007).

These previous results either make strong distributional as-
sumptions (such as separability, or a uniform input distribu-
tion), or else they are computationally prohibitive in general.

Our work was inspired by both Cohn-Atlas-Ladner and
Balcan-Beygelzimer-Langford, and we have built heavily
upon their insights. We bound the label complexity of our
method in terms of the same parameter as used forA2 (Han-
neke, 2007), and get a somewhat better dependence (linear
rather than quadratic).

A common feature of Cohn-Atlas-Ladner,A2, and our
method is that they are all fairly non-aggressive in their
choice of query points. They are content with querying all
points on which there is even a small amount of uncertainty,
rather than, for instance, pursuing the maximally uncertain
point. Recently, Balcan, Broder, and Zhang (2007) showed
that for the hypothesis class of linear separators, under dis-
tributional assumptions on the data (for instance, a uniform
distribution over the unit sphere), a more aggressive strategy
can yield better label complexity.

Preliminaries

Learning framework and uniform convergence

LetX be the input space,D a distribution overX×{±1} and
H a class of hypothesesh : X → {±1} with VC dimension
vcdim(H) = d < ∞. Recall that thenth shattering coeffi-
cientS(H, n) is defined as the maximum number of ways in
whichH can label a set ofn points; by Sauer’s lemma, this
is at mostO(nd) (Bousquet, Boucheron, and Lugosi, 2004,
p.175). We denote byDX the marginal ofD overX . In our
active learning model, the learner receives unlabeled data
sampled fromDX ; for any sampled pointx, it can optionally
request the labely sampled from the conditional distribution
at x. This process can be viewed as sampling(x, y) from
D and revealing onlyx to the learner, keeping the labely
hidden unless the learner explicitly requests it. The errorof
a hypothesish underD is errD(h) = Pr(x,y)∼D[h(x) 6= y],
and on a finite sampleZ ⊂ X × {±1}, the empirical error
of h is

err(h,Z) =
1

|Z|
∑

(x,y)∈Z

1l[h(x) 6= y],

where1l[·] is the0-1 indicator function. We assume for sim-
plicity that the minimal errorν = inf{errD(h) : h ∈ H} is
achieved by a hypothesish∗ ∈ H.

Our algorithm and analysis use the following normalized
uniform convergence bound (Bousquet, Boucheron, and Lu-
gosi, 2004, p.200).

Lemma 1 (Vapnik and Chervonenkis (1971)). Let F be a
family of measurable functionsf : Z → {0, 1} over a space
Z. Denote byEZf the empirical average off over a subset
Z ⊂ Z. Let αn =

√
(4/n) ln(8S(F , 2n)/δ). If Z is an

i.i.d. sample of sizen from a fixed distribution overZ, then,
with probability at least1 − δ, for all f ∈ F :

−min
(
αn

√
EZf, α2

n + αn

√
Ef

)

≤ Ef − EZf

≤ min
(
α2

n + αn

√
EZf, αn

√
Ef

)
.

Disagreement coefficient

The active learning algorithm we will shortly describe is not
very aggressive: rather than seeking out points that are max-
imally informative, it queries every point that it is somewhat
unsure about. The early work of Cohn-Atlas-Ladner (1994)
and the recentA2 algorithm (Balcan, Beygelzimer, and
Langford, 2006) are similarly mellow in their querying strat-
egy. The label complexity improvements achievable by
such algorithms are nicely captured by a parameter called
the disagreement coefficient, introduced recently by Han-
neke (2007) in his analysis ofA2.

To motivate the disagreement coefficient, imagine that we
are in the midst of learning, and that our current hypothesis
ht has error at mostβ. Suppose we even know the value
of β. Then the only candidate hypotheses we still need to
consider are those that differ fromht on at most a2β fraction
of the input distribution, because all other hypotheses must
have error more thanβ. To make this a bit more formal, we
impose a (pseudo-)metricρ on the space of hypotheses, as
follows.
Definition 1. The disagreement pseudo-metricρ on H is
defined by

ρ(h, h′) = Pr
x∼DX

[h(x) 6= h′(x)]

for h, h′ ∈ H. Let B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r} be
the ball centered aroundh of radiusr.

Returning to our earlier scenario, we need only consider hy-
potheses inB(ht, 2β) and thus, when we see a new data
point x, there is no sense in asking for its label if all of
B(ht, 2β) agrees on what this label should be. The only
points we potentially need to query are

{x : h(x) 6= h′(x) for someh, h′ ∈ B(ht, 2β)}.
Intuitively, the disagreement coefficient captures how the
measure of this set grows withβ. The following is a slight
variation of the original definition of Hanneke (2007).
Definition 2. The disagreement coefficientθ =
θ(D,H, ε) > 0 is

inf
r≥ε+ν

{
Prx∼DX

[∃h ∈ B(h∗, r) s.t.h(x) 6= h∗(x)]

r

}

whereh∗ = arg infh∈H errD(h) andν = errD(h∗).

Clearly,θ ≤ 1/(ε+ν); furthermore, it is a constant bounded
independently of1/(ε + ν) in several cases previously con-
sidered in the literature (Hanneke, 2007). For example, if
H is homogeneous linear separators andDX is the uniform
distribution over the unit sphere inRd, thenθ = Θ(

√
d).



Algorithm 1
Input: stream(x1, x2, . . . , xm) i.i.d. fromDX

Initially, Ŝ0 := ∅ andT0 := ∅.
Forn = 1, 2, . . . ,m:

1. For eacĥy ∈ {±1}:
let hŷ := LEARNH(Ŝn−1 ∪ {(xn, ŷ)}, Tn−1).

2. If err(h−ŷ, Ŝn−1 ∪ Tn−1) − err(hŷ, Ŝn−1 ∪ Tn−1) >
∆n−1 (or if no suchh−ŷ is found) for someŷ ∈ {±1},
thenŜn := Ŝn−1 ∪ {(xn, ŷ)} andTn := Tn−1.

3. Else requestyn; Ŝn := Ŝn−1 and Tn := Tn−1 ∪
{(xn, yn)}.

Returnhf = LEARNH(Ŝm, Tm).

Figure 1: The agnostic selective sampling algorithm. See
(1) for a possible setting for∆n.

Agnostic selective sampling

Here we state and analyze our general algorithm for agnos-
tic active learning. The main techniques employed by the
algorithm are reductions to a supervised learning task and
generalization bounds applied to differences of empiricaler-
rors.

A general algorithm for agnostic active learning

Figure 1 states our algorithm in full generality. The input is
a stream ofm unlabeled examples drawn i.i.d fromDX ; for
the time being,m can be thought of as̃O((d/ε)(1 + ν/ε))
whereε is the accuracy parameter.1

The algorithm operates by reduction to a special kind of su-
pervised learning that includes hard constraints.

For A,B ⊂ X × {±1}, let LEARNH(A,B) denote
a supervised learner that returns a hypothesish ∈ H
consistent withA, and with minimum error onB. If
there is no hypothesis consistent withA, it reports this.

For some simple hypothesis classes like intervals on the line,
or rectangles inR2, it is easy to construct such a learner. For
more complex classes like linear separators, the main bottle-
neck is the hardness of minimizing the0− 1 loss onB (that
is, the hardness of agnostic supervised learning). If a convex
upper bound on this loss function is used instead, as in the
case of soft-margin support vector machines, it is straight-
forward to incorporate hard constraints; but at present the
rigorous guarantees accompanying our algorithm apply only
if 0 − 1 loss is used.

Algorithm 1 maintains two sets of labeled examples,Ŝ and
T , each of which is initially empty. Upon receivingxn, it
learns two2 hypotheses,hŷ = LEARNH(Ŝ ∪ {(xn, ŷ)}, T )

1TheÕ notation suppresseslog 1/δ and terms polylogarithmic
in those that appear.

2If LEARNH cannot find a hypothesis consistent witĥS ∪

for ŷ ∈ {±1}, and then compares their empirical errors on
Ŝ∪T . If the difference is large enough, it is possible to infer
howh∗ labelsxn (as we show in Lemma 3). In this case, the
algorithm addsxn, with this inferred label, tôS. Otherwise,
the algorithm requests the labelyn and adds(xn, yn) to T .
Thus, Ŝ contains examples with inferred labels consistent
with h∗, andT contains examples with their requested la-
bels. Becauseh∗ might err on some examples inT , we just
insist thatLEARNH find a hypothesis with minimal error
on T . Meanwhile, by construction,h∗ is consistent witĥS
(as we shall see), so we requireLEARNH to only consider
hypotheses consistent witĥS.

Bounds for error differences

We still need to specify∆n, the threshold value for error
differences that determines whether the algorithm requests a
label or not. Intuitively,∆n should reflect how closely em-
pirical errors on a sample approximate true errors on the dis-
tributionD. Note that our algorithm is modular with respect
to the choice of∆n, so, for example, it can be customized
for a particular input distribution and hypothesis class. Be-
low we provide a simple and adaptive setting that works for
any distribution and hypothesis class with finite VC dimen-
sion.

The setting of∆n can only depend on observable quantities,
so we first clarify the distinction between empirical errorson
Ŝn ∪ Tn and those with respect to the true (hidden) labels.

Definition 3. Let Ŝn andTn be as defined in Algorithm 1.
Let Sn (shedding the hat accent) be the set of labeled ex-
amples identical to those in̂Sn, except with the true hid-
den labels swapped in. Thus, for example,Sn ∪ Tn is an
i.i.d. sample fromD of sizen. Finally, let

errn(h) = err(h, Sn∪Tn) and êrrn(h) = err(h, Ŝn∪Tn).

It is straightforward to apply Lemma 1 to empirical errors on
Sn ∪ Tn, i.e. toerrn(h), but we cannot use such bounds al-
gorithmically: we do not request the true labels for points in
Ŝn and thus cannot reliably computeerrn(h). What we can
compute are errordifferenceserrn(h) − errn(h′) for pairs
of hypotheses(h, h′) that agree on (and thus make the same
mistakes on)̂Sn, since for such pairs, we have

errn(h) − errn(h′) = êrrn(h) − êrrn(h′).3

These empirical error differences are means of{−1, 0,+1}-
valued random variables. We need to rewrite them in terms
of {0, 1}-valued random variables for some of the concen-
tration bounds we will be using.

{(xn, y)} for somey, then assumingh∗ is consistent withŜ, it
must be thath∗(x) = −y. In this case, we simply add(xn,−y) to
Ŝ, regardless of the error difference.

3This observation is enough to immediately justify the use of
additivegeneralization bounds for∆n. However, we need to use
normalized (multiplicative)bounds to achieve a better label com-
plexity.



Definition 4. For a pair (h, h′) ∈ H × H, define
g+

h,h′(x, y) = 1l[h(x) 6= y ∧ h′(x) = y] andg−h,h′(x, y) =

1l[h(x) = y ∧ h′(x) 6= y].

With this notation, we haveerr(h,Z) − err(h′, Z) =
EZ [g+

h,h′ ]−EZ [g−h,h′ ] for anyZ ⊂ X ×{±1}. Now, apply-

ing Lemma 1 toG = {g+
h,h′ : (h, h′) ∈ H ×H} = {g−h,h′ :

(h, h′) ∈ H × H}, and noting thatS(G, n) ≤ S(H, n)2,
gives the following lemma.

Lemma 2. Let αn =
√

(4/n) ln(8S(H, 2n)2/δ). With
probability at least1 − δ over an i.i.d. sampleZ of sizen
fromD, we have for all(h, h′) ∈ H ×H,

err(h,Z) − err(h′, Z) ≤

errD(h) − errD(h′) + α2
n + αn(

√
EZ [g+

h,h′ ] +
√

EZ [g−h,h′ ]).

With Z = Sn∪Tn, the error difference on the left-hand side
is errn(h)− errn(h′), which can be empirically determined
because it is equal tôerrn(h) − êrrn(h′). But the terms in
the square root on the right-hand side still pose a problem,
which we fix next.
Corollary 1. Let βn =√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ). Then, with prob-
ability at least1 − δ, for all n ≥ 1 and all (h, h′) ∈ H ×H
consistent witĥSn, we have

êrrn(h) − êrrn(h′) ≤
errD(h) − errD(h′) + β2

n + βn(
√

êrrn(h) +
√

êrrn(h′)).

Proof. For eachn ≥ 1, we apply Lemma 2 usingZ =
Sn∪Tn andδ = δ/(n2 +n). Then, we apply a union bound
over all n ≥ 1. Thus, with probability at least1 − δ, the
bounds in Lemma 2 hold simultaneously for alln ≥ 1 and
all (h, h′) ∈ H2 with Sn ∪ Tn in place ofZ. The corollary
follows becauseerrn(h) − errn(h′) = êrrn(h) − êrrn(h′);
and becauseESn∪Tn

[g+
h,h′ ] ≤ êrrn(h) andESn∪Tn

[g−h,h′ ] ≤
êrrn(h′). To see the first of these expectation bounds, wit-
ness that becauseh andh′ agree onSn,

ESn∪Tn
[g+

h,h′ ]

=
1

n

∑

(x,y)∈Tn

1l[h(x) 6= y ∧ h′(x) = y]

≤ 1

n

∑

(x,y)∈Tn

1l[h(x) 6= y] = êrrn(h).

The second bound is similar.

Corollary 1 implies that we can effectively apply the nor-
malized uniform convergence bounds from Lemma 1 to em-
pirical error differences on̂Sn ∪ Tn, even thougĥSn ∪ Tn

is not an i.i.d. sample fromD. In light of this, we use the
following setting of∆n:

∆n := β2
n + βn

(√
êrrn(h+1) +

√
êrrn(h−1)

)
(1)

where βn =
√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ) =

Õ(
√

d log n/n) as per Corollary 1.

Correctness and fall-back analysis

We now justify our setting of∆n with a correctness proof
and fall-back guarantee.

The following lemma elucidates how the inferred labels in
Ŝ serve as a mechanism for implicitly maintaining a candi-
date set of hypotheses that always includesh∗. The fall-back
guarantee then follows almost immediately.

Lemma 3. With probability at least1 − δ, the hypothesis
h∗ = arg infh∈H errD(h) is consistent witĥSn for all n ≥ 0
in Algorithm 1.

Proof. Apply the bounds in Corollary 1 (they hold with
probability at least1 − δ) and proceed by induction onn.
The base case is trivial sincêS0 = ∅. Now assumeh∗

is consistent withŜn. Suppose upon receivingxn+1, we
discover êrrn(h+1) − êrrn(h−1) > ∆n. We will show
that h∗(xn+1) = −1 (assume bothh+1 and h−1 exist,
since it is clearh∗(xn+1) = −1 if h+1 does not exist).
Suppose for the sake of contradiction thath∗(xn+1) =
+1. We know thatêrrn(h∗) ≥ êrrn(h+1) (by the in-
ductive hypothesish∗ is consistent withŜn, and yet the
learner choseh+1 in preference to it) and̂errn(h+1) −
êrrn(h−1) > β2

n + βn(
√

êrrn(h+1) +
√

êrrn(h−1)). In
particular,êrrn(h+1) > β2

n. Therefore,

êrrn(h∗) − êrrn(h−1)

= (êrrn(h∗) − êrrn(h+1)) + (êrrn(h+1) − êrrn(h−1))

>
√

êrrn(h+1)(
√

êrrn(h∗) −
√

êrrn(h+1))

+ β2
n + βn(

√
êrrn(h+1) +

√
êrrn(h−1))

> βn(
√

êrrn(h∗) −
√

êrrn(h+1))

+ β2
n + βn(

√
êrrn(h+1) +

√
êrrn(h−1))

= β2
n + βn(

√
êrrn(h∗) +

√
êrrn(h−1)).

Now Corollary 1 implies thaterrD(h∗) > errD(h−1), a con-
tradiction.

Theorem 1. Let ν = infh∈H errD(h) andd = vcdim(H).
There exists a constantc > 0 such that the following holds.
If Algorithm 1 is given a stream ofm unlabeled examples,
then with probability at least1 − δ, the algorithm returns
a hypothesis with error at mostν + c · ((1/m)(d log m +

log(1/δ)) +
√

(ν/m)(d log m + log(1/δ))).

Proof. Lemma 3 implies thath∗ is consistent witĥSm with
probability at least1 − δ. Using the same bounds from
Corollary 1 (already applied in Lemma 3) onh∗ and hf

together with the fact̂errm(hf ) ≤ êrrm(h∗), we have
errD(hf ) ≤ ν + β2

m + βm
√

ν + βm

√
errD(hf ), which in

turn implieserrD(hf ) ≤ ν + 3β2
m + 2βm

√
ν.

So, Algorithm 1 returns a hypothesis with error at mostν+ε
whenm = Õ((d/ε)(1 + ν/ε)); this is (asymptotically) the
usual sample complexity of supervised learning. Since the



algorithm requests at mostm labels, its label complexity is
always at most̃O((d/ε)(1 + ν/ε)).

Label complexity analysis

We can also bound the label complexity of our algorithm in
terms of the disagreement coefficientθ. This yields tighter
bounds whenθ is bounded independently of1/(ε + ν). The
key to deriving our label complexity bounds based onθ is
noting that the probability of requesting the(n + 1)st label
is intimately related toθ and∆n.

Lemma 4. There exist constantsc1, c2 > 0 such that, with
probability at least1−2δ, for all n ≥ 1, the following holds.
Let h∗(xn+1) = ŷ whereh∗ = arg infh∈H errD(h). Then,
the probability that Algorithm 1 requests the labelyn+1 is

Prxn+1∼DX
[Requestyn+1]

≤ Prxn+1∼DX
[errD(h−ŷ) ≤ c1ν + c2β

2
n]

where βn is as defined in Corollary 1 andν =
infh∈H errD(h).

Proof. See full version of paper.

Lemma 5. In the same setting as Lemma 4, there exists a
constantc > 0 such thatPrxn+1∼DX

[Requestyn+1] ≤ c ·
θ · (ν + β2

n), whereθ = θ(D,H, 3β2
m + 2βm

√
ν) is the

disagreement coefficient,ν = infh∈H errD(h), andβn is as
defined in Corollary 1.

Proof. Supposeh∗(xn+1) = −1. By the triangle inequality,
we have thaterrD(h+1) ≥ ρ(h+1, h

∗) − ν, whereρ is the
disagreement metric onH (Definition 1). By Lemma 4, this
implies that the probability of requestingyn+1 is at most
the probability thatρ(h+1, h

∗) ≤ (c1 + 1)ν + c2β
2
n for

some constantsc1, c2 > 0. We can choose the constants
so that(c1 + 1)ν + c2β

2
n ≥ ν + 3β2

m + 2βm
√

ν. Then, the
definition of the disagreement coefficient gives the conclu-
sion thatPrxn+1∼DX

[ρ(h+1, h
∗) ≤ (c1 + 1)ν + c2β

2
n] ≤

θ · ((c1 + 1)ν + c2β
2
n).

Now we give our main label complexity bound for agnostic
active learning.

Theorem 2. Let m be the number of unlabeled data given
to Algorithm 1,d = vcdim(H), ν = infh∈H errD(h), βm

as defined in Corollary 1, andθ = θ(D,H, 3β2
m +2βm

√
ν).

There exists a constantc1 > 0 such that for anyc2 ≥ 1, with
probability at least1 − 2δ:

1. If ν ≤ (c2 − 1)β2
m, Algorithm 1 returns a hypothesis with

error as bounded in Theorem 1 and the expected number
of labels requested is at most

1 + c1c2θ ·
(

d log2 m + log
1

δ
log m

)
.

2. Else, the same holds except the expected number of labels
requested is at most

1 + c1θ ·
(

νm + d log2 m + log
1

δ
log m

)
.

Furthermore, ifL is the expected number of labels requested
as per above, then with probability at least1 − δ′, the algo-
rithm requests no more thanL +

√
3L log(1/δ′) labels.

Proof. Follows from Lemma 5 and a Chernoff bound for the
Poisson trials1l[Requestyn].

With the substitutionε = 3β2
m + 2βm

√
ν as per The-

orem 1, Theorem 2 entails that for any hypothesis class
and data distribution for which the disagreement coefficient
θ = θ(D,H, ε) is bounded independently of1/(ε + ν)
(see (Hanneke, 2007) for some examples), Algorithm 1 only
needsÕ(θd log2(1/ε)) labels to achieve errorε ≈ ν and
Õ(θd(log2(1/ε) + (ν/ε)2)) labels to achieve errorε ≪ ν.
The latter matches the dependence onν/ε in theΩ((ν/ε)2)
lower bound (K̈aäriäinen, 2006).

The linear dependence onθ improves on the quadratic de-
pendence shown forA2 (Hanneke, 2007)4. For an illustra-
tive consequence of this, supposeDX is the uniform distri-
bution on the sphere inRd andH is homogeneous linear sep-
arators; in this case,θ = Θ(

√
d). Then the label complex-

ity of A2 depends at least quadratically on the dimension,
whereas the corresponding dependence for our algorithm is
d3/2. A specially-designed setting of∆n (say, specific to
the input distribution and hypothesis class) may be able to
further reduce the dependence tod (see Balcan, Broder, and
Zhang (2007)).

Experiments

We implemented Algorithm 1 in a few simple cases to exper-
imentally demonstrate the label complexity improvements.
In each case, the data distributionDX was uniform over
[0, 1]; the stream length wasm = 10000, and each exper-
iment was repeated20 times with different random seeds.
Our first experiment studied linear thresholds on the line.
The target hypothesis was fixed to beh∗(x) = sign(x−0.5).
For this hypothesis class, we used two different noise mod-
els, each of which ensuredinfh∈H errD(h) = errD(h∗) = ν
for a pre-specifiedν ∈ [0, 1]. The first model was random
misclassification: for each pointx ∼ DX , we independently
labeled ith∗(x) with probability 1 − ν and−h∗(x) with
probabilityν. In the second model (also used in Castro and
Nowak (2006)), for each pointx ∼ DX , we independently
labeled it+1 with probability(x− 0.5)/(4ν) + 0.5 and−1
otherwise, thus concentrating the noise near the boundary.
Our second experiment studied intervals on the line. Here,
we only used random misclassification, but we varied the
target interval lengthp+ = Prx∼DX

[h∗(x) = +1].

4It may be possible to reduceA2’s quadratic dependence to a
linear dependence by using normalized bounds, as we do here.



The results show that the number of labels requested by Al-
gorithm 1 was exponentially smaller than the total number of
data seen (m) under the first noise model, and was polyno-
mially smaller under the second noise model (see Figure 2;
we verified the polynomial vs. exponential distinction on
separate log-log scale plots). In the case of intervals, we
observe an initial phase (of duration roughly∝ 1/p+) in
which every label is requested, followed by a more efficient
phase, confirming the known active-learnability of this class.
These improvements show that our algorithm needed signif-
icantly fewer labels to achieve the same error as a standard
supervised algorithm that uses labels for all points seen.

As a sanity check, we examined the locations of data for
which Algorithm 1 requested a label. We looked at two
particular runs of the algorithm: the first was withH =
intervals,p+ = 0.2, m = 10000, andν = 0.1; the second
was withH = boxes (d = 2), p+ = 0.49, m = 1000, and
ν = 0.01. In each case, the data distribution was uniform
over [0, 1]d, and the noise model was random misclassifica-
tion. Figure 3 shows that, early on, labels were requested
everywhere. But as the algorithm progressed, label requests
concentrated near the boundary of the target hypothesis.

Conclusion and future work

We have presented a simple and natural approach to agnos-
tic active learning. Our extension of the selective sampling
scheme of Cohn-Atlas-Ladner (1994)

1. simplifies the maintenance of the region of uncertainty
with a reduction to supervised learning, and

2. guards against noise with a suitable algorithmic applica-
tion of generalization bounds.

Our algorithm relies on a threshold parameter∆n for com-
paring empirical errors. We prescribe a very simple and
natural choice for∆n – a normalized generalization bound
from supervised learning – but one could hope for a more
clever or aggressive choice, akin to those in Balcan, Broder,
and Zhang (2007) for linear separators.

Finding consistent hypotheses when data is separable is
often a simple task. In such cases, reduction-based ac-
tive learning algorithms can be relatively efficient. On the
other hand, agnostic supervised learning is computation-
ally intractable for many hypothesis classes (Guruswami and
Raghavendra, 2006), and of course, agnostic active learning
is at least as hard in the worst case. Our reduction to super-
vised learning is benign in the sense that the learning prob-
lems we need to solve are over samples from the original dis-
tribution, so we do not create pathologically hard instances
(like those arising from hardness reductions) unless they are
inherent in the data. Nevertheless, an important research di-
rection is to develop consistent active learning algorithms
that only require solving tractable (e.g. convex) optimiza-
tion problems. A similar reduction-based scheme may be
possible.
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Figure 2: Labeling rate plots. The plots show the number of labels requested (vertical axis) versus the total number of points
seen (labeled + unlabeled, horizontal axis) using Algorithm 1. (a)H = thresholds: under random misclassification noise
with ν = 0 (solid), 0.1 (dashed),0.2 (dot-dashed); under the boundary noise model withν = 0.1 (lower dotted),0.2 (upper
dotted). (b)H = intervals: under random misclassification with(p+, ν) = (0.2, 0.0) (solid), (0.1, 0.0) (dashed),(0.2, 0.1)
(dot-dashed),(0.1, 0.1) (dotted).

(a) (b)

Figure 3: Locations of label requests. (a)H = intervals,h∗ = [0.4, 0.6]. The top histogram shows the locations of first
400 label requests (the x-axis is the unit interval); the bottomhistogram is for all (2141) label requests. (b)H = boxes,
h∗ = [0.15, 0.85]2. The first200 requests occurred at the×s, the next200 at the▽s, and the final109 at the©s.


