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Abstract

Bayesian Reinforcement Learning has generated substan-
tial interest recently, as it provides an elegant solution to
the exploration-exploitation trade-off in reinforcement learn-
ing. However most investigations of Bayesian reinforcement
learning to date focus on the standard Markov Decision Pro-
cesses (MDPs). Our goal is to extend these ideas to the
more general Partially Observable MDP (POMDP) frame-
work, where the state is a hidden variable. This difficult
decision-making problem can be formulated cleanly by sim-
ply extending the state to include the model parameters them-
selves. However closed-form solutions are not possible. This
paper explores a family of approximations for solving this
problem. These approaches are able to trade-off between (1)
improving knowledge of the POMDP domain through inter-
action with the environment, (2) resolving uncertainty about
the current state, and (3) choosing actions with high expected
reward.

1 Introduction
Reinforcement learning provides a rich framework for opti-
mizing the behavior of dynamical systems, in cases where
we lack a good mechanistic model of the domain. The
framework has been used extensively in a number of appli-
cations. However it often requires extensive amounts of data
to learn even simple tasks, since it assumes the entire model
must be inferred from experience..

Bayesian reinforcement learning approaches (Dearden,
Friedman, & Andre 1999; Duff 2002; Poupart et al. 2006;
Strens 2000) also address the problem of optimal action se-
lection under parameter uncertainty. In Bayesian reinforce-
ment learning, we assume a prior distribution over model
parameters; we then maintain a posterior distribution over
model parameters as the agent interacts with its environ-
ment, and furthermore the action selection is optimized with
respect to this posterior. This approach is interesting for a
number of reasons. First, it provides a flexible trade-off be-
tween specifying a model a priori through expert knowledge,
and learning a model directly from data. Second, it provides
a nice treatment of the well-known exploration-exploitation
problem in reinforcement learning, by finding a policy that
maximizes expected return over the posterior distribution.
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However reinforcement learning (Bayesian or not) is partic-
ularly challenging to apply in domains where the state of
the system is not fully observable, for the simple reason that
we cannot associate observed events (e.g. rewards, action
effects) with specific states, thus learning is difficulty.

The main focus of this paper is to explore solutions to
the Bayesian reinforcement learning framework in the case
of partially observable domains. Our work is based largely
on the well-known Partially Observable Markov Decision
Process (POMDP) model for planning under uncertainty.
Most of the work on POMDPs to date has focused on
developing efficient algorithms for planning in large do-
mains (Pineau, Gordon, & Thrun 2003; Spaan & Vlassis
2005; Smith & Simmons 2005; Ross & Chaib-draa 2007;
Paquet, Tobin, & Chaib-draa 2005). These approaches are
unfortunately of limited use when models of the agent’s
sensors and dynamics are poor or unavailable. A few ap-
proaches have been proposed to cope with domains lacking
such a model (McCallum 1996; Koenig & Simmons 1996;
Evan-Dar, Kakade, & Mansour 2005) but these approaches
usually require very large amounts of data, and do not ad-
dress the problem of how to gather this data efficiently, or
how to compose with partially specified models during the
planning phase. A few Bayesian RL formulation for the
POMDP model have been proposed recently (Armstrong-
Crews & Veloso 2007; Jaulmes, Pineau, & Precup 2005;
Doshi, Roy, & Pineau 2008), and are applicable to the prob-
lem we outline below. However they overcome the problem
of state aliasing by using an oracle (or meta-queries) to pro-
vide grounding information for the learning process.

Extending the Bayesian reinforcement learning frame-
work to the POMDP model (with no external information)
poses a number of computational challenges. First, as de-
scribed in Section 3, the state space grows exponentially
with the planning horizon. Fortunately, as shown in Sec-
tion 4, we can approximate this (with bounded error) using
a projection to a finite state space. Nonetheless, exact belief
tracking can be prohibitive, due to the number of possible
model parameters. We propose a method which relies on
a sampling of the posterior over model parameters to track
the belief in a tractable manner. Finally, we deal with the
problem of joint exploration and planning by proposing an
online method which performs depth-limited searching over
the belief space.



2 Technical background
A POMDP is defined by finite sets of states S, ac-
tions A and observations Z. It has transition proba-
bilities {T sas′}s,s′∈S,a∈A where T sas

′
= Pr(st+1 =

s′|st = s, at = a) and observation probabilities
{Osaz}s∈S,a∈A,z∈Z where Osaz = Pr(zt = z|st =
s, at−1 = a). The reward function R : S×A→ < specifies
the immediate reward obtained by the agent. In a POMDP,
the state is never observed. Instead the agent perceives an
observation z ∈ Z at each time step, which (along with the
action sequence) allows it to maintain a belief state b ∈ ∆S.
The belief state specifies the probability of being in each
state given the history of action and observation experienced
so far, starting from an initial belief b0. It can be updated at
each time step using Baye’s rule:

bt+1(s′) =
Os

′atzt+1
∑
s∈S T

sats
′
bt(s)∑

s′′∈sO
s′′atzt+1

∑
s∈S T

sats′′bt(s)
. (1)

A policy π : ∆S → A indicates how the agent should
select actions as a function of the current belief. Solving a
POMDP involves finding the optimal policy π∗ that maxi-
mizes the expected discounted return over the infinite hori-
zon. The return obtained by following π∗ from a belief b is
defined by Bellman’s equation:

V ∗(b) = max
a∈A

"X
s∈S

b(s)R(s, a) + γ
X
z∈Z

Pr(z|b, a)V ∗(τ(b, a, z))

#
,

(2)
where τ(b, a, z) is the new belief after performing action a

and observation z and γ ∈ [0, 1) is the discount factor.
Exact solving algorithms (Kaelbling, Littman, & Cas-

sandra 1998) are usually intractable, except on small do-
mains with only a few states, actions and observations.
Various approximate algorithms, both offline (Pineau, Gor-
don, & Thrun 2003; Spaan & Vlassis 2005; Smith & Sim-
mons 2004) and online (Washington 1997; Paquet, Tobin,
& Chaib-draa 2005), have been proposed to tackle increas-
ingly large domains. However, all these methods require full
knowledge of the POMDP model, which is a strong assump-
tion in practice.

To model the uncertainty on the transition T sas
′

and ob-
servation Osaz parameters, we make extensive use of the
Dirichlet distribution, which is a probability distribution
over the parameters of a multinomial distribution. Given φi,
the number of times event ei has occured over n trials, the
probabilities pi of each event follow a Dirichlet distribution,
i.e. (p1, . . . , pk) ∼ Dir(φ1, . . . , φk). This distribution rep-
resents the probability that a discrete random variable be-
haves according to some probability distribution pi, given
that the counts φi have been observed over n trials (n =∑k
i=1 φi). The probability density function of the Dirich-

let distribution is defined by: f(p, φ) = 1
B(φ)

∏k
i=1 p

φi−1
i ,

where B is the multinomial beta function. The expected
value of pi is E[pi] = φiPk

j=1 φj
.

3 Bayes-Adaptive POMDP Model
In this section, we introduce the Bayes-Adaptive POMDP
(BAPOMDP) model. This is an extension of the Bayes-

Adaptive MDP introduced by (Duff 2002), and is closely
related to the extended MDP model used by others (Dear-
den, Friedman, & Andre 1999; Poupart et al. 2006; Strens
2000).

Consider the standard POMDP model: M =
(S,A,Z, T,O,R, γ). We begin by assuming that the state,
action and observation spaces are finite and known, but that
the transition and observability probabilities are unknown
or partially known. Furthermore we assume the uncertainty
on the distributions T sa· and Os

′a· are represented by ex-
perience counts: φass′∀s′ represents the number of times the
transition (s, a, s′) occurred, similarly ψas′z∀z is the num-
ber of times observation z was made in state s′ after doing
action a. Given count vectors φ,ψ, the expected transition
probability for T sas

′
is: T sas

′

φ = φa
ss′P

s′′∈S φ
a
ss′′

, and similarly

for Os
′az
ψ = ψa

s′zP
z′∈Z ψ

a
s′z′

. For simplicity, we assume the re-
ward function is known, though the model easily generalizes
to the case of unknown reward functions.

The objective of the BAPOMDP is to learn an optimal
policy π : ∆S × T × O → A, such that actions are
chosen to maximize reward taking into account both state
and parameter uncertainty. To model this, we construct the
BAPOMDP model M ′ = (S′, A, Z, T ′, O′, R′, γ) as fol-
lows: the new state space S′ = S × T × O, where S is the
original state space of the POMDP with unknown model pa-
rameters, T = {φ ∈ N|S|2|A||∀(s, a),

∑
s′∈S φ

a
ss′ > 0}

represents the space in which φ lies and O = {ψ ∈
N|S||A||Z||∀(s, a),

∑
z∈Z ψ

a
sz > 0} represents the space in

which ψ lies. To avoid confusion, we refer to the set of ex-
tended states S′ as hyperstates.

The action and observation sets of the BAPOMDP are the
same as in the original POMDP.

Transition and observation functions of the BAPOMDP
must capture how the state and the count vectors (φ and ψ)
evolve after every time step. Consider an agent in a given
state s with count vectors φ and ψ, which performs action
a, causing it to move to state s′ and observe z. Then the
vector φ′ after the transition is defined as φ′ = φ + δass′ ,
where δass′ is a vector full of zeroes, with a 1 for the count
φass′ , and the vector ψ′ after the observation is defined as
ψ′ = ψ + δas′z , where δas′z is a vector full of zeroes, with
a 1 for the count ψas′z . Note that the probabilities of such
transitions and observations occurring must be defined by
considering all models and their probabilities as specified
by the current Dirichlet distributions. Hence, we define T ′

and O′ in the BAPOMDP to be:

T ′(< s, φ, ψ >, a,< s′, φ′, ψ′ >) ={
T sas

′

φ Os
′az
ψ , if φ′ = φ+ δass′ and ψ′ = ψ + δas′z

0, otherwise
(3)

O′(< s, φ, ψ >, a,< s′, φ′, ψ′ >, z) ={
1, if φ′ = φ+ δass′ and ψ′ = ψ + δas′z
0. otherwise (4)

Notice here that the observation probabilities are folded into
the transition function, and that the observation function be-



comes deterministic. This happens because a state transi-
tion in the BAPOMDP automatically specifies which obser-
vation is acquired after transition, via the way the counts
are incremented. Since the counts do not affect the re-
ward, the reward function of the BAPOMDP is defined as
R′(< s, φ, ψ >, a) = R(s, a); the discount factor of the
BAPOMDP remains the same as in the original POMDP
model.

The belief state of the BAPOMDP represents a distribu-
tion over both states and count values. If b0 is the initial
belief state of the unknown POMDP, and the count vectors
φ0 ∈ T and ψ0 ∈ O represent the prior knowledge on
this POMDP, then the initial belief of the BAPOMDP is:
b′0(s, φ0, ψ0) = {b0(s), if (φ, ψ) = (φ0, ψ0); 0, otherwise}.
After actions are taken, the uncertainty on the POMDP
model is represented by mixtures of Dirichlet distributions
(i.e. mixtures of count vectors).

Note that the BAPOMDP has a known model and is an
instance of a continuous POMDP. Therefore the belief up-
date (Eqn 1) and Bellman equation (Eqn 2), can be applied
directly to update the belief and compute the value function
of the BAPOMDP. Of course computing these complex in-
tegrals in closed-form will usually be intractable. Thus the
next sections explore approximate methods for belief moni-
toring and planning in the BAPOMDP model.

3.1 Finite State Space Approximation

Note that the BAPOMDP is in fact a POMDP with a count-
ably infinite state space. In practice, maintaining the belief
state is practical only if the number of states with non-zero
probabilities is finite. We prove this in the following theo-
rem:

Theorem 3.1. Let (S′, A, Z, T ′, O′, R′, γ) be a BAPOMDP
constructed from the POMDP (S,A,Z, T,O,R, γ). If S is
finite, then at any time t, the set S′b′t = {σ ∈ S′|b′t(σ) > 0}
has size |S′b′t | ≤ |S|t+1.

Proof. Proof by induction. When t = 0, b′0(s, φ, ψ) > 0
only if φ = φ0 and ψ = ψ0. Hence |S′b′0 | ≤ |S|. For the gen-
eral case, assume that |S′b′t−1

| ≤ |S|t. From the definitions
of the belief update function, b′t(s

′, φ′, ψ′) > 0 iff ∃(s, φ, ψ)
such that b′t−1(s, φ, ψ) > 0, φ′ = φ+δass′ and ψ′ = ψ+δas′z .
Hence, a particular (s, φ, ψ) such that b′t−1(s, φ, ψ) > 0
yields non-zero probabilities to at most |S| different states
in b′t. Since |S′b′t−1

| ≤ |S|t by assumption, then if we gener-
ate |S| different probable state in b′t for each probable state
in S′bt−1

, it follows that |S′b′t | ≤ |S|t+1.

This proof suggests that it is sufficient to iterate over
S and S′b′t−1

in order to compute the belief state b′t when
an action and observation is taken in the environment.
Hence, Algorithm 3.1 can be used to update the belief state.
Note that the normalization constant η := Pr(z|b, a) =∑
<s,φ,ψ>∈S′b

b(s, φ, ψ)
∑
s′∈S T

sas′

φ Os
′az
ψ .

function τ(b, a, z)
Initialize b′ as a 0 vector.
η ← 0
for all (s, φ, ψ) ∈ S′b do

for all s′ ∈ S do
(φ′, ψ′)← (φ+ δass′ , ψ + δas′z)

b′(s′, φ′, ψ′)← b′(s′, φ′, ψ′) + b(s, φ, ψ)T sas
′

φ Os
′az
ψ

η ← η + b(s, φ, ψ)T sas
′

φ Os
′az
ψ

end for
end for
return (1/η)b′

Algorithm 3.1: Exact Belief Update in BAPOMDP.

3.2 Exact Solution for BAPOMDP in Finite
Horizons

The value function of a BAPOMDP for finite horizons can
be represented by a finite set Γ of functions α : S′ → R,
as in standard POMDP. For example, an exact solution can
be computed using dynamic programming (see (Kaelbling,
Littman, & Cassandra 1998) for more details):

Γa1 = {αa|αa(s, φ, ψ) = R(s, a)},
Γa,zt = {αa,zi |
αa,zi (s, φ, ψ) = γ

P
s′∈S T

sas′
φ Os

′az
ψ α′i(s

′, φ+ δass′ , ψ + δas′z),
where α′i ∈ Γt−1},

Γat = Γa1 ⊕ Γa,z1t ⊕ Γa,z2t ⊕ · · · ⊕ Γ
a,z|Z|
t ,

(where ⊕ is the cross sum operator),
Γt =

S
a∈A Γat .

(5)
Note here that the definition of
αa,zi (s, φ, ψ) is obtained from the fact that
T ′((s, φ, ψ), a, (s′, φ′, ψ′))O′((s, φ, ψ), a, (s′, φ′, ψ′), z) =
0 except when φ′ = φ + δass′ and ψ′ = ψ + δas′z .
The optimal policy is extracted as usual: πΓ(b) =
argmaxα∈Γ

∑
σ∈S′b

α(σ)b(σ). In practice, it will be
impossible to compute αa,zi (s, φ, ψ) for all (s, φ, ψ) ∈ S′.
In order to compute these more efficiently, we show in the
next section that the infinite state space can be reduced to a
finite state space, while still preserving the value function to
arbitrary precision for any horizon t.

4 Approximating the BAPOMDP: Theory
and Algorithms

Solving a BAPOMDP exactly for all belief states is im-
possible in practice due to the dimensionnality of the state
space (in particular to the fact that the count vectors can
grow unbounded). We now show how we can reduce this
infinite state space to a finite state space. This allows us
to compute an ε-optimal value function over the result-
ing finite-dimensionnal belief space using standard POMDP
techniques. Various methods for belief tracking in the infi-
nite model are also presented.

4.1 Approximate Finite Model
We first present an upper bound on the value difference
between two states that differ only by their model es-



timate φ and ψ. This bound uses the following def-
initions: given φ, φ′ ∈ T , and ψ,ψ′ ∈ O, define
Dsa
S (φ, φ′) =

∑
s′∈S

∣∣∣T sas′φ − T sas
′

φ′

∣∣∣ and Dsa
Z (ψ,ψ′) =∑

z∈Z

∣∣∣Osazψ −Osazψ′

∣∣∣, and N sa
φ =

∑
s′∈S φ

a
ss′ and N sa

ψ =∑
z∈Z ψ

a
sz .

Theorem 4.1. Given any φ, φ′ ∈ T , ψ,ψ′ ∈ O, and
γ ∈ (0, 1), then for all t:

sup
αt∈Γt,s∈S

|αt(s, φ, ψ) − αt(s, φ′, ψ′)| ≤

2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa
S (φ, φ′) +Ds′a

Z (ψ,ψ′)

+ 4
ln(γ−e)

(P
s′′∈S|φass′′−φ′ass′′ |

(N sa
φ +1)(N sa

φ′ +1) +
P
z∈Z |ψas′z−ψ′as′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
Proof. Full proof provided in (Ross, Chaib-draa, & Pineau
2007a). Proof involves first bounding the error in 1-step pre-
diction:

∑
s′∈S

∑
z∈Z

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

≤ Dsa
S (φ′, φ)+

sups′∈SDs′a
Z (ψ′, ψ), then unfolding the recurrence, and

bounding the distance over count vectors: Dsa
S (φ + δ, φ′ +

δ) ≤ Dsa
S (φ, φ′) + 2N sa

δ

P
s′∈S |φ

a
ss′−φ

′a
ss′ |

(N sa
φ +N sa

δ )(N sa
φ′ +N sa

δ ) (similarly for

Ds′a
Z (ψ + δ, ψ′ + δ)).

We now use this bound on the α-vector values to
approximate the space of Dirichlet parameters within
a finite subspace. We use the following definitions:
given any ε > 0, define ε′ = ε(1−γ)2

8γ||R||∞ , ε′′ =
ε(1−γ)2 ln(γ−e)

32γ||R||∞ , N ε
S = max

(
|S|(1+ε′)

ε′ , 1
ε′′ − 1

)
and N ε

Z =

max
(
|Z|(1+ε′)

ε′ , 1
ε′′ − 1

)
.

Theorem 4.2. Given any ε > 0 and (s, φ, ψ) ∈ S′ such
that ∃a ∈ A, s′ ∈ S, N s′a

φ > N ε
S or N s′a

ψ > N ε
Z , then

∃(s, φ′, ψ′) ∈ S′ such that ∀a ∈ A, s′ ∈ S, N s′a
φ′ ≤ N ε

S and
N s′a
ψ′ ≤ N ε

Z where |αt(s, φ, ψ) − αt(s, φ′, ψ′)| < ε holds
for all t and αt ∈ Γt.

Proof. The proof of this theorem is quite extensive, and is
provided in (Ross, Chaib-draa, & Pineau 2007a).

Theorem 4.2 suggests that if we want a precision of ε
on the value function, we just need to restrict the space of
Dirichlet parameters to count vectors φ ∈ T̃ε = {φ ∈
N|S|2|A||∀a ∈ A, s ∈ S, 0 < N sa

φ ≤ N ε
S} and ψ ∈

Õε = {ψ ∈ N|S||A||Z||∀a ∈ A, s ∈ S, 0 < N sa
ψ ≤

N ε
Z}. Since T̃ε and Õε are finite, we can define a finite ap-

proximate BAPOMDP as the tuple (S̃ε, A, Z, T̃ε, Õε, R̃ε, γ)
where S̃ε = S × T̃ε × Õε is the finite state space. To de-
fine the transition and observation functions over that finite
state space, we need to make sure that when the count vec-
tors are incremented, they stay within the finite space. To
achieve, this we define a projection operator Pε : S′ → S̃ε
that simply projects every state in S′ to their closest state in
S̃ε.

Definition 4.1. Let d : S′ × S′ → R be defined such that:
d(s, φ, ψ, s′, φ′, ψ′) =

2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa
S (φ, φ′) +Ds′a

Z (ψ,ψ′)

+ 4
ln(γ−e)

(P
s′′∈S |φ

a
ss′′−φ

′a
ss′′ |

(Nas
φ +1)(Nas

φ′ +1) +
P
z∈Z |ψa

s′z−ψ
′a
s′z|

(Nas′
ψ +1)(Nas′

ψ′ +1)

)]
,

if s = s′

8γ||R||∞
(1−γ)2

(
1 + 4

ln(γ−e)

)
+ 2||R||∞

(1−γ) , otherwise.

Definition 4.2. Let Pε : S′ → S̃ε be defined as Pε(s) =
arg min
s′∈S̃ε

d(s, s′)

The function d uses the bound defined in Theorem 4.1 as
a distance between states that only differs by their φ and ψ
vectors, and uses an upper bound on that value when the
states differ. Thus Pε always maps states (s, φ, ψ) ∈ S′

to some state (s, φ′, ψ′) ∈ S̃ε. Note that if σ ∈ S̃ε, then
Pε(σ) = σ. Using Pε, the transition and observation func-
tion are defined as follows:

T̃ε((s, φ, ψ), a, (s′, φ′, ψ′)) =
T sas

′
φ Os

′az
ψ , if (s′, φ′, ψ′) = Pε(s′, φ+ δass′ , ψ + δas′z)

0, otherwise.

Õε((s, φ, ψ), a, (s′, φ′, ψ′), z) =
1, if (s′, φ′, ψ′) = Pε(s′, φ+ δass′ , ψ + δas′z)
0, otherwise.

These definitions are the same as the one in the infinite
BAPOMDP, except that now we add an extra projection to
make sure that the incremented count vectors stays in S̃ε.
Finally, the reward function R̃ε : S̃ε × A → R is defined as
R̃ε((s, φ, ψ), a) = R(s, a).

Theorem 4.3 bounds the value difference between α-
vectors computed with this finite model and the α-vector
computed with the original model.
Theorem 4.3. Given any ε > 0, (s, φ, ψ) ∈ S′ and
αt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be the α-vector representing the same con-
ditionnal plan as αt but computed with the fi-
nite BAPOMDP (S̃ε, A, Z, T̃ε, Õε, R̃ε, γ), then
|α̃t(Pε(s, φ, ψ))− αt(s, φ, ψ)| < ε

1−γ .

Proof. This follows directly from our definition of Pε and
a recurrence over the one-step approximation in Theorem
4.2. Full proof presented in (Ross, Chaib-draa, & Pineau
2007a).

Because the state space is now finite, solution methods
from the literature on finite POMDPs could theoretically
be applied. This includes en particular the equations for
τ(b, a, z) and V ∗(b) that were presented in Section 2. In
practice however, even though the state space is finite, it will
generally be very large for small ε, such that it may still be
intractable, even for small domains. We therefore favor a
faster online solution approach, as described below.



4.2 Approximate Belief Monitoring
As shown in Theorem 3.1, the number of states with non-
zero probability grows exponentially in the planning hori-
zon, thus exact belief monitoring can quickly become in-
tractable. We now discuss different particle-based approxi-
mations that allow polynomial-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algo-
rithms have been widely used for sequential state estimation
(Doucet, de Freitas, & Gordon 2001). Given a prior belief
b, followed by action a and observation z, the new belief
b′ is obtained by first sampling K states from the distribu-
tion b, then for each sampled s a new state s′ is sampled
from T (s, a, ·). Finally, the probability O(s′, a, z) is added
to b′(s′) and the belief b′ is re-normalized. This will cap-
ture at most K states with non-zero probabilities. In the
context of BAPOMDPs, we use a slight variation of this
method, where (s, φ, ψ) are first sampled from b, and then
a next state s′ ∈ S is sampled from the normalized distri-
bution T sa·φ O·az

ψ . The probability 1/K is added directly to
b′(s′, φ+ δass′ , ψ + δas′z).

Most Probable: Alternately, we can do the exact belief
update at a given time step, but then only keep the K most
probable states in the new belief b′ and renormalize b′.

Weighted Distance Minimization: The two previous
methods only try to approximate the distribution τ(b, a, z).
However, in practice, we only care most about the agent’s
expected reward. Hence, instead of keeping the K most
likely states, we can keep K states which best approximate
the belief’s value. As in the Most Probable method, we do an
exact belief update, however in this case we fit the posterior
distribution using a greedy K-means procedure, where dis-
tance is defined as in Definition 4.1, weighted by the proba-
bility of the state to remove.

4.3 Online planning
While the finite model presented in Section 4.1 can be used
to find provably near-optimal policies offline, this will likely
be intractable in practice due to the very large state space
required to ensure good precision. Instead, we turn to on-
line lookahead search algorithms, which have been proposed
for solving standard POMDPs (Paquet, Tobin, & Chaib-draa
2005). Our approach simply performs dynamic program-
ming over all the beliefs reachable within some fixed finite
planning horizon from the current belief. The action with
highest return over that finite horizon is executed and then
planning is conducted again on the next belief. To further
limit the complexity of the online planning algorithm, we
used the approximate belief monitoring methods detailed
above. Its overall complexity is in O((|A||Z|)DCb) where
D is the planning horizon and Cb is the complexity of up-
dating the belief.

5 Empirical Results
We begin by evaluating the different belief approximations
introduced above. To do so, we use a simple online d-step
lookahead search, and compare the overall expected return
and model accuracy in two different problems: the well-
known Tiger (Kaelbling, Littman, & Cassandra 1998) and a

new domain called Follow. Given T sas
′

and Os
′az the exact

probabilities of the (unknown) POMDP, the model accuracy
is measured in terms of the weighted sum of L1-distance,
denoted WL1, between the exact model and the probable
models in a belief state b:

WL1(b) =
∑

(s,φ,ψ)∈S′b
b(s, φ, ψ)L1(φ, ψ)

L1(φ, ψ) =
∑
a∈A

∑
s′∈S

[∑
s∈S |T sas

′

φ − T sas
′ |

+
∑
z∈Z |Os

′az
ψ −Os

′az|
]

5.1 Tiger
In the Tiger problem (Kaelbling, Littman, & Cassandra
1998), we consider the case where the transition and reward
parameters are known, but the observation probabilities are
not. Hence, there are four unknown parameters: OLl,
OLr, ORl, ORr (OLr stands for Pr(z = hear right|s =
tiger Left, a = Listen)). We define the observation count
vector ψ = (ψLl, ψLr, ψRl, ψRr). We consider a prior of
ψ0 = (5, 3, 3, 5), which specifies an expected sensor accu-
racy of 62.5% (instead of the correct 85%) in both states.
Each simulation consists of 100 episodes. Episodes ter-
minate when the agent opens a door, at which point the
POMDP state (i.e. tiger’s position) is reset, but the distri-
bution over count vector is carried over to the next episode.

Figures 1 and 2 show how the average return and model
accuracy evolve over the 100 episodes (results are averaged
over 1000 simulations), using an online 3-step lookahead
search with varying belief approximations and parameters.
Returns obtained by planning directly with the prior and
exact model (without learning) are shown for comparison.
Model accuracy is measured on the initial belief of each
episode. Figure 3 compares the average planning time per
action taken by each approach. We observe from these fig-
ures that the results for the Most Probable and Weighted Dis-
tance approximations are very similar and perform well even
with few particles (lines are overlapping in many places,
making Weighted Distance results hard to see). On the other
hand, the performance of Monte Carlo is significantly af-
fected by the number of particles and had to use much more
particles (64) to obtain an improvement over the prior. This
may be due to the sampling error that is introduced when
using fewer samples.

5.2 Follow
We propose a new POMDP domain, called Follow, inspired
by an interactive human-robot task. It is often the case
that such domains are particularly subject to parameter un-
certainty (due to the difficulty in modelling human behav-
ior), thus this environment motivates the utility of Bayes-
Adaptive POMDP in a very practical way. The goal of the
Follow task is for a robot to continuously follow one of two
individuals in a 2D open area. The two subjects have dif-
ferent motion behavior, requiring the robot to use a differ-
ent policy for each. At every episode, the target person
is selected randomly with Pr = 0.5 (and the other is not
present). The person’s identity is not observable (except
through their motion). The state space has two features: a
binary variable indicating which person is being followed,
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Figure 3: Planning Time with different belief approxima-
tions.

and a position variable indicating the person’s position rel-
ative to the robot (5 × 5 square grid with the robot always
at the center). Initially, the robot and person are at the same
position. Both the robot and the person can perform five
motion actions {NoAction,North,East, South,West}.
The person follows a fixed stochastic policy (station-
ary over space and time), but the parameters of this
behavior are unknown. The robot perceives observa-
tions indicating the person’s position relative to the robot:
{Same,North,East, South,West, Unseen}. The robot
perceives the correct observation Pr = 0.8 and Unseen
with Pr = 0.2. The reward R = +1 if the robot and per-
son are at the same position (central grid cell), R = 0 if
the person is one cell away from the robot, and R = −1 if
the person is two cells away. The task terminates if the per-
son reaches a distance of 3 cells away from the robot, also
causing a reward of -20. We use a discount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion
model (deterministic), the observation probabilities and the
rewards are assumed to be known. We maintain a sepa-
rate count vector for each person, representing the num-
ber of times they move in each direction, i.e. φ1 =
(φ1
NA, φ

1
N , φ

1
E , φ

1
S , φ

1
W ), φ2 = (φ2

NA, φ
2
N , φ

2
E , φ

2
S , φ

2
W ).

We assume a prior φ1
0 = (2, 3, 1, 2, 2) for person 1 and

φ2
0 = (2, 1, 3, 2, 2) for person 2, while in reality person

1 moves with probabilities Pr = (0.3, 0.4, 0.2, 0.05, 0.05)
and person 2 with Pr = (0.1, 0.05, 0.8, 0.03, 0.02). We run
200 simulations, each consisting of 100 episodes (of at most
10 time steps). The count vectors’ distributions are reset af-
ter every simulation, and the target person is reset after every
episode. We use a 2-step lookahead search for planning in
the BAPOMDP.

Figures 4 and 5 show how the average return and model
accuracy evolve over the 100 episodes (averaged over the
200 simulations) with different belief approximations. Fig-
ure 6 compares the planning time taken by each approach.
We observe from these figures that the results for the
Weighted Distance approximations are much better both in
terms of return and model accuracy, even with fewer parti-
cles (16). Monte Carlo fails at providing any improvement
over the prior model, which indicates it would require much
more particles. Running Weighted Distance with 16 parti-
cles require less time than both Monte Carlo and Most Prob-
able with 64 particles, showing that it can be more time ef-
ficient for the performance it provides in complex environ-
ment.

6 Conclusion
The objective of this paper is to describe a decision-theoretic
framework for learning and acting in POMDPs under pa-
rameter uncertainty. This raises a number of interesting
challenges, including (1) defining the appropriate model
for POMDP parameter uncertainty, (2) approximating this
model while maintaining performance guarantees, (3) per-
forming tractable belief updating, and (4) planning action
sequences which optimally trade-off exploration and ex-
ploitation.

We proposed a new model, the Bayes-Adaptive POMDP,
and showed that it can be approximated to ε-precision by a
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Figure 6: Planning Time with different belief approxima-
tions.

finite POMDP. We provided practical approaches for belief
tracking and online planning in this model, and validated
these using two experimental domains. Results in the Follow
problem, showed that our approach is able to learn the mo-
tion patterns of two (simulated) individuals. This suggests
interesting applications in human-robot interaction, where it
is often essential that we be able to reason and plan under
parameter uncertainty.
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Fonds Québécois de la Recherche sur la Nature et les Tech-
nologies (FQRNT). Most of the results in this paper appear
in (Ross, Chaib-draa, & Pineau 2007b) and (Ross, Chaib-
draa, & Pineau 2007a).

References
Armstrong-Crews, N., and Veloso, M. 2007. Oracular partially
observable markov decision processes: A very special case. In
Proceedings of ICRA.
Dearden, R.; Friedman, N.; and Andre, N. 1999. Model based
bayesian exploration. In Proceedings of UAI.
Doshi, F.; Roy, N.; and Pineau, J. 2008. Reinforcement learning
with limited reinforcement: Using bayes risk for active learning
in pomdps. ISAIM (online proceedings).
Doucet, A.; de Freitas, N.; and Gordon, N. 2001. Sequential
Monte Carlo Methods In Practice. Springer.
Duff, M. 2002. Optimal Learning: Computational Procedure for
Bayes-Adaptive Markov Decision Processes. Ph.D. Dissertation,
University of Massachusetts, Amherst, USA.
Evan-Dar, E.; Kakade, S. M.; and Mansour, Y. 2005. Reinforce-
ment learning in pomdps without resets. Proceedings of IJCAI.
Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Active learning in
partially observable markov decision processes. In Proceedings
of ECML.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99–134.
Koenig, S., and Simmons, R. 1996. Unsupervised learning
of probabilistic models for robot navigation. In Proceedings of
ICRA.
McCallum, A. K. 1996. Reinforcement Learning with Selective
Perception and Hidden State. Ph.D. Dissertation, University of
Rochester.
Paquet, S.; Tobin, L.; and Chaib-draa, B. 2005. An online
POMDP algorithm for complex multiagent environments. In Pro-
ceedings of AAMAS.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: an anytime algorithm for POMDPs. In Proceedings of
IJCAI, 1025–1032.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An ana-
lytic solution to discrete bayesian reinforcement learning. In Pro-
ceedings of ICML.
Ross, R., and Chaib-draa, B. 2007. AEMS: An Anytime Online
Search Algorithm for Approximate Policy Refinement in Large
POMDPs. In Proceedings of IJCAI.
Ross, S.; Chaib-draa, B.; and Pineau, J. 2007a. Bayes-adaptive
pomdps. Technical Report SOCS-TR-2007.6, McGill University.



Ross, S.; Chaib-draa, B.; and Pineau, J. 2007b. Bayes-adaptive
pomdps. Proceedings of NIPS.
Smith, T., and Simmons, R. 2004. Heuristic search value iteration
for POMDPs. In Proceedings of UAI.
Smith, T., and Simmons, R. 2005. Point-based POMDP algo-
rithms: improved analysis and implementation. In Proceedings
of UAI.
Spaan, M., and Vlassis, N. 2005. Perseus: randomized point-
based value iteration for POMDPs. JAIR 24:195–220.
Strens, M. 2000. A Bayesian framework for reinforcement learn-
ing. In Proceedings of ICML.
Washington, R. 1997. BI-POMDP: bounded, incremental par-
tially observable Markov model planning. In Proceedings Euro-
pean Conf. on Planning, volume 1348 of LNCS. Springer.


