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Abstract

In this paper, we identify rich tractable classes ofWeighted
Constraint Satisfaction Problems (WCSPs). Our results stem
from employing a set of transformation techniques—referred
to as “Lifting”—that considers each constraintlocally. We
show that, in general, WCSPs are reducible tominimum
weighted vertex cover problemsin tripartite graphs; and
many tractable classes of WCSPs can be recognized by their
reducibility to minimum weighted vertex cover problemsin
bipartite graphs. We examine the implications of our ap-
proach when combined with other mathematical tools, and
provide a framework for tightly characterizing the complex-
ity of solving a giveninstanceof the WCSP.

1 Introduction
In many real-life problem domains, we are required to ex-
press natural factors like fuzziness, probabilities, prefer-
ences and/or costs, and are subsequently interested in find-
ing an optimal solution with respect to one or more criteria.
Towards this end, many extensions to the basic CSP model
have been introduced to incorporate non-crisp constraints,
probabilities, weights, etc. These include many variants like
Fuzzy CSPs, Probabilistic CSPsandWeighted CSPs.1

Roughly speaking, a WCSP is a generalization of a CSP in
which the constraints are no longer “hard”, but are extended
by associating non-negativecoststo the tuples. The goal is
then to find an assignment of values to all the variables from
their respective domains so that thetotal costis minimized.
More formally, a WCSP is defined by a triplet〈X ,D, C〉,
whereX = {X1, X2 . . . XN} is a set ofvariables, andC =
{C1, C2 . . . CM} is a set ofweighted constraintsbetween
the variables. Each variableXi is associated with a discrete-
valueddomainDi ∈ D, and each weighted constraintCi

is defined on a certain subsetSi ⊆ X of the variables.Si

is referred to as thescopeof Ci; and Ci specifies a non-
negativecostfor each possible combination of values to the
variables inSi. An optimal solution is an assignment of
values to all the variables from their respective domains so
that thesumof the costs (as specified locally by each of the
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1These in turn can be viewed as particular instances of cer-
tain meta-frameworks likeValued CSPs(Schiexet al 1995) and/or
Semiring-based CSPs(Bistarelliet al 1996).

weighted constraints) isminimized. It is well known that, in
general, optimally solving WCSPs is NP-hard.

Representationally, WCSPs can model numerous impor-
tant combinatorial problems arising in many different ap-
plication domains; examples include (but are not limited to)
representing and reasoning about user preferences (Boutilier
et al 2004), planning with goal preferences (Doet al 2007),
resource allocation, combinatorial auctions, and bioinfor-
matics. Quite importantly, WCSPs also arise asEnergy Min-
imization Problems (EMPs)in probabilistic settings. EMPs
are fundamental to many important applications; in com-
puter vision, for example, tasks such as image restoration,
total variation minimization and panoramic image stitching
can be formulated as EMPs derived in the context of Markov
Random Fields (MRFs) (Kolmogorov 2005).2

In this paper, we identify several rich tractable classes of
WCSPs. Our results stem from employing a set of trans-
formation techniques—referred to as “Lifting”—that con-
siders each constraint onlylocally. We show that, in general,
WCSPs are reducible tominimum weighted vertex cover
problemsin tripartite graphs; and many tractable classes
of WCSPs can be recognized by their reducibility tomin-
imum weighted vertex cover problemsin bipartite graphs.
Our approach yields very simple arguments for establishing
the tractability of several interesting classes of WCSPs that
were: (a) previously known to be tractable, and (b) not pre-
viously known to be tractable—e.g., classes of WCSPs with
general domain sizes of the variables and/or general arities
of the weighted constraints. We examine the implications of
our approach when combined with other mathematical tools,
and provide a framework for tightly characterizing the com-
plexity of solving a giveninstanceof the WCSP.

2 Background Results in Graph Theory
In this section, we will briefly review some fundamental re-
sults in graph theory, and set up the groundwork for the rest
of the paper. In later sections, we will study the relevance of
these results in the context of solving WCSPs.

Given an undirected graphG = 〈V, E〉, a matchingis a
subset of edgesM ⊆ E such that no two edges inM share
a common end-point. Amaximum matchingis a matching

2Here, the minimum Energy setting corresponds to amaximum
a-posteriorilabeling of the variables.
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Figure 1: The left-hand side shows a node-weighted undirected
graph. The weights onX4 andX7 are set to3 and2 respectively;
and all other weights are assumed to be1. The projection of the
minimum weighted vertex cover problem onto the independentset
{X1, X4} yields a table as shown on the right-hand side. For ex-
ample, the entry ‘7’ written against{X1 = 0, X4 = 1} indicates
that whenX1 is prohibited from being in the minimum weighted
vertex cover butX4 is necessarily included in it, then the weight
of the minimum weighted vertex cover—{X2, X3, X4, X7} or
{X2, X3, X4, X5, X6} in this case—is equal to7.

of maximum cardinality. Avertex coveris a subset of nodes
U ⊆ V such that every edge inE has at least one of its end-
points included inU . A minimum vertex coveris a vertex
cover of minimum cardinality.

While the problem of computing the maximum match-
ing can be solved using very efficient polynomial-time al-
gorithms (Micali and Vazirani 1980), the problem of com-
puting the minimum vertex cover is NP-hard in general.
Nonetheless, forbipartite graphs, the minimum vertex cover
problem can be solved very efficiently inO(|V |2.5) time
using amaxflowcomputation (Cormenet al 1990). More-
over, even in the general case, the minimum vertex cover
can be approximated within a factor of2 in polynomial time;
and this approximation factor can further be improved to
2 − 2

k
for k-partite graphs(Hochbaum 1983). It is also

well known that the size of a maximum matching serves as
a lower boundfor the size of a minimum vertex cover (Cor-
menet al 1990). Finally, the above results can be extended
to the “weighted” case in which the nodes/edges of the graph
G are associated with non-negative weights. Themaximum
weighted matchingis then defined to be a matching of max-
imum total weight on its edges, and theminimum weighted
vertex coveris defined to be a vertex cover of minimum total
weight on its nodes.

3 Projections of Minimum Weighted Vertex
Cover Problems onto Independent Sets

In this section, we will first introduce the idea of “project-
ing” the minimum weighted vertex cover problem onto an
independent setof the given graphG = 〈V, E〉.3 We will
then illustrate and prove a number of interesting properties
of these projections. Our study of these projections moti-
vates a special set of transformation techniques—referredto
as “Lifting”—that we will use to reason about WCSPs by
considering each weighted constraint onlylocally.

Consider an undirected graphG = 〈V, E〉. Let U =
{u1, u2 . . . uk} be an independent set ofG. We say that a
k-bit vectort imposes the following restrictions: (a) theith

3An independent setof a graph is a subset of nodes no two of
which are connected by an edge.

bit ti = 0 indicates that the nodeui is necessarilyexcluded
from the minimum weighted vertex cover, and (b) theith bit
ti = 1 indicates that the nodeui is necessarilyincludedin
the minimum weighted vertex cover. Theprojectionof the
minimum weighted vertex cover problem onto the indepen-
dent setU is then defined to be a table of size2k with en-
tries corresponding to each of the2k possiblek-bit vectors
(t(1), t(2) . . . t(2

k)); the value of the entry corresponding to
t(j) is set to be equal to the weight of the minimum weighted
vertex coverconditionedon the restrictions imposed byt(j).
Figure 1 presents a simple example to illustrate the idea of
projecting the minimum weighted vertex cover problem onto
an independent set of the given graph.4

Given an undirected graphG = 〈V, E〉 and an inde-
pendent setU = {u1, u2 . . . uk}, let PG,U denote the
projection of the minimum weighted vertex cover problem
onto U ; and let PG,U (t) denote the value of the entry
corresponding to thek-bit vector t. We will now prove
some basic algorithmic properties of the projectionPG,U

(see Figures 2 and 3).

Lemma 1: ‘COMPUTE-PROJECTION-VALUE’ (Figure
2) computesPG,U (t) for a givenk-bit vectort.
Proof: In step 2(a) of the algorithm, we notice that ifti = 0
then the weight ofui is set to∞. This ensures the exclusion
of ui from the minimum weighted vertex cover computed in
steps 3 and 4. In step 2(b) of the algorithm, we notice that if
ti = 1 thenui is included in the minimum weighted vertex
cover (computed in step 4). Further, in this case, all the
edges that are incident onui are removed from the graph
(step 2(b)); this reflects the fact that these edges would now
be covered by the inclusion ofui. The truth of the Lemma
then follows simply from the definition ofPG,U (t).

Lemma 2: Procedure ‘COMPUTE-MIN-PROJECTION’
(Figure 3) computesargmint PG,U (t) andmint PG,U(t).
Proof: First, we note that the conditions imposed by any
k-bit vectort restricts the candidate space for optimization;
and therefore,PG,U(t) ≥ W . Second, let the assignment
returned by the algorithm in Figure 3 bêt. From step 2,̂t
is consistent withS on the membership ofu1, u2 . . . uk in
the minimum weighted vertex cover; conversely,S is a can-
didate vertex cover in the space for optimization associated
with PG,U(t̂)—establishing the conditionPG,U (t̂) ≤ W .
Putting the two results together, we have that for anyk-bit
vector t, PG,U (t) ≥ PG,U (t̂). This proves that̂t is the
required optimal vector of assignments; and clearly, this
also proves thatW = mint PG,U (t) as required.

We note that both ‘COMPUTE-PROJECTION-VALUE’
and ‘COMPUTE-MIN-PROJECTION’ make use of just one
call to the minimum weighted vertex cover problem. While

4It is worth noting that the projection is well defined only when
U is an independent set. If this is not the case, then there exists
some edge(ui1 , ui2) for ui1 , ui2 ∈ U . The entry corresponding
to anyk-bit vector that disallows bothui1 andui2 from being in the
minimum weighted vertex cover then becomes undefined because
the edge(ui1 , ui2) cannot be covered in any way.



ALGORITHM: COMPUTE-PROJECTION-VALUE
INPUT: (a) a node-weighted undirected graphG = 〈V, E〉; (b) an independent setU =
{u1, u2 . . . uk} ⊆ V ; (c) ak-bit vectort.
OUTPUT: the value of the projectionPG,U (t).
(1) S1 ← {}.
(2) For i = 1, 2 . . . k:

(a) If ti = 0: set the weight ofui to∞.
(b) If ti = 1: S1 ← S1 ∪{ui}; removeui (and all edges incident on it) from the graph.

(3) Let S2 be the minimum weighted vertex cover computed for the resulting graph.
(4) Let W be the sum of the weights on all the nodes inS1 ∪ S2.
(5) RETURN:PG,U (t)←W .
END ALGORITHM

Figure 2: Shows an algorithm for computingPG,U (t). The algorithm makes use of one call to the problem of computing the minimum
weighted vertex cover.

ALGORITHM: COMPUTE-MIN-PROJECTION
INPUT: (a) a node-weighted undirected graphG = 〈V, E〉; (b) an independent setU =
{u1, u2 . . . uk} ⊆ V .
OUTPUT: (a) the optimalt∗ such thatt∗ = argmint PG,U (t); (b) the optimal value
PG,U (t∗).
(1) Compute the minimum weighted vertex cover onG. LetS be the set of nodes included
in this cover, and letW be the total weight of the nodes inS.
(2) For allui ∈ U :

(a) If ui ∈ S: sett∗i ← 1.
(b) If ui /∈ S: sett∗i ← 0.

(3) RETURN: (a)t∗: optimal assignment vector; (b)W : optimal value.
END ALGORITHM

Figure 3:Shows an algorithm for computing the optimalt∗ such thatt∗ = argmint PG,U (t); the optimal valuePG,U (t∗) is also returned.
We note that the algorithm makes use of just one call to the problem of computing the minimum weighted vertex cover.
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Figure 6: Illustrates the critical problem associated with choos-
ing maximum weighted matchings for providing lifted representa-
tions of the weighted constraints. The first two diagrams (possibly
coming from trying to represent two different weighted constraints)
show the variableX and the auxiliary variablesA1 andA2 respec-
tively. “Combining” the combinatorial structures by merging the
edges that representX leads to a scenario (as shown in the right-
most diagram) where spurious constraints are introduced between
the auxiliary variables; in particular, bothA1 andA2 are unneces-
sarily disallowed from being set to ‘True’ (‘1’) simultaneously (as
the edges representing them now share a common end-point).

this observation follows merely from the definition of a pro-
jection for the former algorithm, it is much more interesting
in the case of the latter algorithm.

4 Lifted Representations for WCSPs
We will now present important results that relateprojections
to the computational aspects of solving WCSPs. As a first
step, we make the simple observation that the result of pro-

jecting the minimum weighted vertex cover problem onto an
independent setU of the given graph produces a table of size
2|U|; in some sense, this table can be viewed as a weighted
constraint over|U | Boolean variables. Conversely, given a
weighted constraint, we can think about designing a “lifted”
representation for it so as to be able to view it as the projec-
tion of a minimum weighted vertex cover problem in some
intelligently constructed node-weighted undirected graph.5

Later in the paper, we will show how we can build such a
lifted representation for any given weighted constraint us-
ing a tripartite graph. For now, however, we will concen-
trate only on the computational aspects of solving WCSPs
when the lifted representations for each of the weighted con-
straints are already given to us.

Figure 4 shows an example WCSP over 3 Boolean
variables. Here, there are3 unary weighted constraints and
3 binary weighted constraints; and their lifted representa-
tions (as projections of minimum weighted vertex cover
problems) are shown next to each of them. Further, the
figure also illustrates how acomposite graphis obtained
from the individual graphs corresponding to each of the
weighted constraints. In the composite graph, nodes that
represent the same variable are simply “merged”—along
with their edges—and every “composite” node is given a

5This graph can involve other auxiliary nodes.



Constraint Network

X1 X2

X3

X1

A4

0.8

0.2

Unary Constraint on X1

X1 = 0

X1 = 1 0.2

0.8

X2

A5

0.3

0.7

Unary Constraint on X2

X2 = 0

X2 = 1 0.7

0.3

X3

A6

0.1

0.9

Unary Constraint on X3

X3 = 0

X3 = 1 0.9

0.1

X1 X2

A1 0.5

0.10.2

Binary Constraint on X1 and X2

0

1

0 1X1

X2

0.5

0.3

0.6

0.7

X2 X3

A2 0.6

0.70.4

Binary Constraint on X2 and X3

0

1

0 1X2

X3

0.6

1.1

1.3

1.0

X1 X3

A3 0.4

0.50.3

Binary Constraint on X1 and X3

0

1

0 1X1

X3

0.4

0.8

0.9

0.7

X1 X2 X3

A1 A2 A3 A4 A5 A6

1.2 2.10.7

0.5 0.6 0.4 0.8 0.3 0.1

Composite Graph

X1 X2 X3

A1 A2 A3 A4 A5 A6

Arguments in Proofs

Constraint Network

X1 X2

X3

X1

A4

0.8

0.2

Unary Constraint on X1

X1 = 0

X1 = 1 0.2

0.8

X2

A5

0.3

0.7

Unary Constraint on X2

X2 = 0

X2 = 1 0.7

0.3

X3

A6

0.1

0.9

Unary Constraint on X3

X3 = 0

X3 = 1 0.9

0.1

X1 X2

A1 0.5

0.10.2

Binary Constraint on X1 and X2

0

1

0 1X1

X2

0.5

0.3

0.6

0.7

X2 X3

A2 0.6

0.70.4

Binary Constraint on X2 and X3

0

1

0 1X2

X3

0.6

1.1

1.3

1.0

X1 X3

A3 0.4

0.50.3

Binary Constraint on X1 and X3

0

1

0 1X1

X3

0.4

0.8

0.9

0.7

X1 X2 X3

A1 A2 A3 A4 A5 A6

1.2 2.10.7

0.5 0.6 0.4 0.8 0.3 0.1

Composite Graph

X1 X2 X3

A1 A2 A3 A4 A5 A6

Arguments in Proofs

Figure 4: Shows an example WCSP. The6 unary/binary weighted constraints are shown along with their lifted representations in the
rightmost two columns. The composite graph is shown in the2nd row of the1st column; and the arguments used in the proof of Lemma 3 are
illustrated in the3rd row of the1st column. The encircled subgraphs are indicative of the independence of the corresponding subproblems
when all theX-variables are instantiated.

weight equal to the sum of the individual weights. Figure
5 presents the procedure for constructing the composite
graph; and the following Lemmas prove some very inter-
esting properties of the composite graph in the general case.6

Lemma 3: Consider a complete assignmentq (i.e., an
assignment of values to all the variables from their re-
spective domains). The cost ofq can be computed simply
by running ‘COMPUTE-PROJECTION-VALUE’ on the
composite graph.
Proof: The cost ofq is given by the sum of the costs
defined locally by each weighted constraint. From Lemma
1, the cost defined locally byCi can be computed by
running ‘COMPUTE-PROJECTION-VALUE’ onHi (see
procedure in Figure 5). Therefore, it suffices for us to prove
that running ‘COMPUTE-PROJECTION-VALUE’ on the
composite graph is equivalent to running it on each of the
individual graphsH1, H2 . . . HM and summing the results.
Consider the total weight contributed by theX-nodes—say,
Xr (1 ≤ r ≤ N ) in particular. WhenXr = 0, the total
weight contributed byXr in any Hi is 0, and this is also
the case in the composite graph. WhenXr = 1, the total
weight contributed byXr is equal to the sum of the weights
associated with it in each of the individual graphs that it
appears in. By construction (step 2(a)(B) in Figure 5), this
total weight is equal to the weight contributed byXi in the
composite graph. Now consider the total weight contributed
by the auxiliary nodes. It is easy to see that once the nodes

6These Lemmas allow us to reason about each weighted con-
straint onlylocally, and this special reduction mechanism is there-
fore given the name “Lifting”.

X1, X2 . . . XN are instantiated in the composite graph, the
optimal values for the auxiliary variables coming from one
graph areindependentof the optimal values for the auxiliary
variables coming from any other graph; and this establishes
that any auxiliary variable—say, coming from the graph
Hj—is chosen to be in the minimum weighted vertex cover
of the composite graph if and only if it is chosen to be in the
minimum weighted vertex cover ofHj . Therefore, the total
weight contributed by the auxiliary nodes also remains the
same in the composite graph—hence proving the Lemma.

Lemma 4: The optimal (minimum) cost complete as-
signment q∗ (for the given WCSP) can be computed
simply by running the procedure ‘COMPUTE-MIN-
PROJECTION’ on the composite graph.
Proof: From Lemma 2, the assignment returned by running
the procedure ‘COMPUTE-MIN-PROJECTION’ (on the
composite graph) is optimal with respect to the composite
graph. From Lemma 3, the cost of any complete assignment
can be computed from the composite graph. Put together,
the returned assignment is optimal for the given WCSP—
hence proving the Lemma.

It is worth noting that the arguments used in the proofs
of the above Lemmas are somewhat similar to those used
in loop-cutset conditioning(Pearl 1986). It is the above
property of thevertex coverproblem that makes it an in-
telligently chosen combinatorial problem useful for build-
ing lifted representations of the weighted constraints. An-
other combinatorial structure that exhibits this propertyis
themaximum weighted independent set. On the other hand,
the maximum weighted matchingproblem (where the val-



ALGORITHM: BUILD-COMPOSITE-GRAPH
INPUT: (a) a WCSP with variablesX1, X2 . . . XN and weighted constraintsC1, C2 . . . CM ;
(b) lifted graphical representationsH1, H2 . . . HM for each of the weighted constraints—the
graphHi corresponds to the weighted constraintCi.
OUTPUT: acomposite graphthat provides a lifted representation for the entire WCSP.
(1) For i = 1, 2 . . .M :

(a) Give the auxiliary variables inHi unique names.
(2) For i = 1, 2 . . .N :

(a) “Merge” all copies ofXi by doing the following:
(A) If Xi has an edge to an auxiliary nodeA in any of the graphsH1, H2 . . .HM , then
introduce an edge between the “merged” copy ofXi andA in the composite graph as well.
(B) Set the weight on the “merged” copy ofXi to be equal to the sum of the weights assigned
to it in each of the individual graphsH1, H2 . . . HM that it appears in.

(3) RETURN: the resultingcomposite graph.
END ALGORITHM

Figure 5: A straightforward procedure for building the composite graph from the individual graphs that represent each of the weighted
constraints in a WCSP. The composite graph provides a liftedrepresentation for the entire WCSP.

ues of the Boolean variables in the given WCSP are rep-
resented using the presence/absence of certain edges in the
maximum weighted matching) may be used to represent in-
teresting weighted constraintslocally, but as Figure 6 shows,
the “combination” of the representations built for different
weighted constraints introduces spurious dependencies be-
tween the auxiliary variables, and therefore does not suit our
purposes.

5 Computational Results for WCSPs
We will now prove an important Theorem and illustrate the
power of this Theorem in identifying several interesting
tractable classes of WCSPs. We will also discuss the
computational aspects of solving WCSPs in the general
case, and examine the implications of our approach when
combined with other mathematical tools.

Theorem 5: The languageLbipartite of all weighted
constraints that havelifted bipartite graph representations
is tractable.7

Proof: From algorithm ‘BUILD-COMPOSITE-GRAPH’
in Figure 5, it is clear that when every weighted constraint
in a WCSP has a lifted bipartite graph representation with
the X-variables belonging to the same partition, then the
composite graph is also bipartite with all theX-variables
belonging to the same partition. The truth of the Theorem
then follows simply from the fact that in any bipartite graph,
the minimum weighted vertex cover problem can be solved
in polynomial time (Cormenet al 1990).

5.1 Boolean Variables and Binary/Non-Binary
Constraints

We first consider WCSPs with Boolean variables and binary
constraints. Even in this simple case, the kinds of prob-
lems that we can speak about significantly differ in their

7Of course, all theX-variables in any graph are required to have
the same color—i.e., belong to the same partition.
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Figure 8: Shows a bipartite graph representing a weighted con-
straint over the3 Boolean variablesX1, X2 andX3. A1, A2 and
A3 are the auxiliary variables.

associated tractability results. For example, both themin-
st-cut problem and themax-cutproblem can be encoded
as WCSPs with Boolean variables and binary constraints;8

but while the former problem can be solved in polynomial
time, the latter problem is NP-hard. Figure 7 sheds some
light on such WCSPs; in particular, it shows that: (a) any
Boolean unary weighted constraint has a simple lifted bi-
partite graph representation; (b) themin-st-cutconstraints
are particular cases of weighted constraints that have a sim-
ple lifted bipartite graph representation as aV -structure; and
(c) themax-cutconstraints are particular cases of weighted
constraints that have a simple lifted representation as aU -
structure (that is not bipartite).9 The following important
conclusions can be drawn immediately: (a) a generalization
of themin-st-cutproblem with arbitrary unary weighted con-
straints is tractable;10 (b) the entire space of weighted con-
straints resulting from varying the parametersw1, w2 and
w3 (in theV -structure) is tractable; and (c) the absence of a

8For themin-st-cutproblem, unary weighted constraints onXs

andXt ensure that they are assigned the values0 and1 respec-
tively; and for every edge〈vi, vj〉 in the graph, a binary weighted
constraint betweenXi andXj yields a value of1 whenXi 6= Xj ,
and0 otherwise. For themax-cutproblem, the binary weighted
constraints are reversed.

9Note that theX-variables have to be in the same partition.
10Similar problems were identified as being tractable in (Kol-

mogorov and Zabih 2004) using different combinatorial arguments.



w1

w2

X

A
w1

w2

X = 1
X = 0

Xi Xj

A

w1 w2

w3w1 + w3

0

1

10

Xi
w1

w1 + w3

0

1

10 w2

Xj

w3

2w3 w2 + w3

w1 + w2 + w3

w3

w1 + w2

w2 + w3

Xi

Xj
Xi

Xj

w3A1 A2

(a) (b) (c)

w1

w2

X

A
w1

w2

X = 1
X = 0

Xi Xj

A

w1 w2

w3w1 + w3

0

1

10

Xi
w1

w1 + w3

0

1

10 w2

Xj

w3

2w3 w2 + w3

w1 + w2 + w3

w3

w1 + w2

w2 + w3

Xi

Xj
Xi

Xj

w3A1 A2

(a) (b) (c)
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Figure 10: Illustrates how a weighted constraint can be repre-
sented as a multivariate polynomial.E(X, Y ) is the required poly-
nomial; and its coefficients can be computed by solving the system
of 6 linear equations with6 unknowns.

lifted bipartite graph representation formax-cutconstraints
is consistent with its intractability.

As a next step, we present a simple example in Figure 8
to illustrate how we can generalize our techniques to rea-
son about non-binary weighted constraints. The mere exis-
tence of the lifted bipartite graph representation establishes
the tractability of the kinds of ternary weighted constraints
shown in the figure. Further, setting different values forw1

andw2 yields different kinds of tractable (convex) functions.
In general, several parameters in the bipartite graphs can be
adjusted to yield a multitude of tractable classes of WCSPs.
These include: (a) theweightson the nodes, (b) thegraph-
ical structuresof the bipartite graphs, and (c) theencod-
ing mechanismbetween the values of individual variables
and the presence/absence of certain nodes in the minimum
weighted vertex covers.

5.2 Higher Domain Sizes and Constraint Arities
We begin this subsection by proving an interesting result rel-
evant to more general scenarios where variables can take
values from the set{0, 1 . . .K}. (K is allowed to be dif-
ferent for different variables.) We show that it is possibleto
efficiently solve theminimizationproblem over these vari-
ables for any objective function that can be expressed as
a bounded-degree multivariate polynomial with the positive
coefficients being restricted to terms of degree≤ 1.11

Figure 9 illustrates how to construct the bipartite graphs
equivalent to any of the terms in the multivariate polynomial

11This is equivalent to dealing with interesting real-life situa-
tions that pose linear “biases” on the values of individual variables
in addition to potential functions/weighted constraints (of bounded
arities) that prefer the participating variables to have higher values.

(of the above-mentioned kind). We useK nodes to represent
the value of a variable with domain{0, 1 . . .K}; and we use
the convention that the value of this variable is equal to the
number of nodes (amongst theseK nodes) that are present in
the minimum weighted vertex cover. The leftmost diagram
in Figure 9 shows that any linear termw · X (w may be
+ve or -ve) has a simple bipartite graph representation. The
middle diagram in Figure 9 illustrates the more interesting
cross-productconstruction of a bipartite graph for a given
-ve term. Consider a term−w · (X · Y · Z) (wherew ≥ 0).
Suppose that the domain sizes ofX , Y andZ are4, 4 and3
respectively; we would have3 nodes representing the value
of X , 3 nodes forY , and2 nodes forZ. It is easy to see
that if the values assigned toX , Y andZ are0 ≤ k1 ≤ 3,
0 ≤ k2 ≤ 3 and0 ≤ k3 ≤ 2 respectively, then the size of the
minimum weighted vertex cover isw · (18−k1k2k3)+k1 +
k2 + k3. Factoring out the additive constants and treating
the linear terms as shown before, the bipartite graph (in the
middle diagram of Figure 9) essentially represents the term
−w · X · Y · Z as required. Similar arguments are used to
establish the validity of thecross-productconstruction for
any given -ve term in the multivariate polynomial.

5.3 Tools: Change of Variables and Taylor Series
We will now briefly comment on a few more implications
of the foregoing discussions. First, we note that a simple
graph-theoretic trick allows us to substitute(|Di| − 1−Xi)
for Xi; here |Di| is the domain size ofXi. The right-
most diagram in Figure 9 illustrates how this is done for
an example variableY by introducing an intermediate level
of nodes with large weights on them. We also note that
although this technique—in conjunction with thecross-
product construction—allows us to create +ve nonlinear
terms in a multivariate polynomial,12 the graph is no more
bipartite; instead, it becomes tripartite (as shown in the fig-
ure). The only case when the graph continues to be bipartite
is when all the participating variables in the constraint un-
dergo this transformation. Such a case yields terms of the
kind−w · (3−X) · (3−Y ) · (2−Z) which are still tractable
for their bipartite graph representations. Moreover, these
nonlinear terms are monotonicallyincreasingwith respect
to the variables—unlike the monotonicallydecreasingterms

12Lower degree terms are cancelled recursively.
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Figure 9:The leftmost diagram shows the bipartite graph equivalent to w · X; here, we setw1 andw2 so thatw1 − w2 = w. The middle
diagram illustrates thecross-productconstruction of the bipartite graph for the term−w · (X · Y · Z); here,w ≥ 0. The rightmost diagram
illustrates the construction of the tripartite graph for the termw · (X · Y · Z); here,w ≥ 0.

of the form−w · X · Y · Z (which were previously shown
to have bipartite graph representations). A proper blend of
these monotonically increasing and decreasing terms allows
us to construct even richer classes of tractable functions.

We also remark that in many discrete combinatorial opti-
mization problems, the objective function involves analytic
functions of various kinds. TheTaylor series expansions of
such functions relates well to our foregoing discussion of
(multivariate) polynomials. A variety of analytic functions
(e.g. hyperbolic functions like−sinh(3X + 4Y )) have only
-ve nonlinear terms in theirTaylor series expansions, and
can therefore be approximated well by tractable polynomi-
als with bipartite graph representations. Further, the “change
of variable” method enriches the class of analytic functions
that are amenable to these bipartite graph representations.

5.4 Solving a Given Instance of the WCSP
We will now illustrate how any weighted constraint can
be represented as a multivariate polynomial.13 Consider
the example binary weighted constraint in Figure 10. The
constraint can be encoded as a multivariate polynomial of
degree1 in X and degree2 in Y .14 The coefficients of the
polynomial can be computed by using a standardGaussian
Elimination procedure for solving systems of linear equa-
tions. The linear equations arise from substituting different
values to the variablesX andY , and equating the results to
the corresponding entries in the (weighted) constraint. We
also observe that the number of terms in the multivariate
polynomial is equal to the size of the constraint; and the
size of thecross-productconstruction (for the terms in this
multivariate polynomial) is only polynomial in the size of
the weighted constraint.

Theorem 6: Any given WCSP can be reduced to the
minimum weighted vertex cover problem in a tripartite
graph; and the size of this tripartite graph is only polynomial
in the size of the WCSP.
Proof: We know that any weighted constraint can be cast
as a multivariate polynomial; further, the -ve/+ve terms in

13This is a common technique in coding/complexity theory.
14In general, if the domain of a variable is{0, 1 . . . K}, then the

polynomial is of degreeK in this variable.

this polynomial can be given lifted representations as bipar-
tite/tripartite graphs (as shown in Figure 9). Now, similar
to the arguments used in Theorem 5, when every weighted
constraint in a WCSP has a lifted bipartite/tripartite graph
representation with theX-variables belonging to the same
partition, then the composite graph is tripartite with all the
X-variables belonging to the same partition. The truth of
the Theorem then follows from the observation made above.

We can now see that the complexity of solving a given
instance of the WCSP is exponential only in the size of
the smallestpartition—in terms of the number of nodes—
of the tripartite graph constructed for it. This is because the
minimum weighted vertex cover problem can be solved in
polynomial time for a bipartite graph; and every possible
combination of decisions to include/exclude the nodes of the
smallest partition in the vertex cover can be evaluated to find
the optimal one. We note that one of these partitions consists
of the originalN variables—leading us to the obvious upper
bound of characterizing the problem to be exponential inN .
However, this partition may not be the smallest—in which
case, our framework yields a much tighter characterization;
in particular, when there is sufficientnumericalstructure in
the weighted constraints, the composite graph is only bi-
partite, and such WCSPs can be solved in polynomial time.
Even when the composite graph is not bipartite, our frame-
work allows us to computationally leverage thenumerical
structure of the weighted constraints—when, for example,
they look more like the polynomial-time solvablemin-st-cut
constraints than the NP-hardmax-cutconstraints.

6 Related Work
The works of several researchers in the AI/Theory commu-
nities are related to the work presented in this paper. First,
a lot of recent work in AI has been motivated by the prob-
lems that relate to detecting “hidden” variables, determining
their relationship to other variables, etc.15 Second, recent
works in the Theory community report on manylift-and-
projectmethods for constructing projection-based represen-

15We note that in our approach, we are primarily concerned
with thenumericalstructure of the weighted constraints/potentials
rather than the structure of thevariable-interactiongraph.



tations of general 0-1 polytopes. These include the pro-
cedures of Sherali-Adams, Lovász-Schrijver and Lasserre
(Lasserre 2001). These methods involve a sequence of Lin-
ear Programming relaxations, and in the worst case, could
require lifting the original problem to a space with an ex-
ponential number of dimensions. Many combinatorial prob-
lems have been studied for the presence of additional struc-
ture that may obviate the exponential number of dimensions;
an efficient approximation algorithm for themax-cutprob-
lem, for example, uses only a polynomial number of addi-
tional dimensions. For the kinds of problems that we dealt
with in this paper, however, the lifting techniques that we
proposed are more direct and relevant. Further, interesting
connections to graph-theoretical results are also manifested
in our approach.

The works of several other researchers also relate to more
specific details of the work presented in this paper. First, the
arguments underlying our lifting techniques are akin to those
used inloop-cutset conditioningfor Bayesian network infer-
ence (Pearl 1986) and/or graph-based search strategies for
solving CSPs (Dechter 1992). Second, several interesting al-
gorithms have been reported for efficiently solving EMPs on
certain kinds of MRFs. For example, the reduction of EMPs
on convexMRFs to instances of themin-st-cutproblem is
reported in (Ishikawa 2003). Several other related recent
advances are mentioned in (Kolmogorov 2005). Another re-
cent development is thetree-reweighted max-product mes-
sage passing (TRW)algorithm (Wainwrightet al 2003).
TRW procedures are inspired by the problem of maximiz-
ing a lower bound on the Energy; however, as in the case of
ordinarybelief propagationprocedures, they do not always
converge (Wainwrightet al2003).

7 Conclusions and Future Work
We identified rich tractable classes of WCSPs based on a
special set of transformation techniques referred to as “Lift-
ing”. We showed that WCSPs are reducible to minimum
weighted vertex cover problems in tripartite graphs; and
many tractable classes of WCSPs can be recognized by their
reducibility to minimum weighted vertex cover problems in
bipartite graphs. We examined the implications of our ap-
proach when combined with other mathematical tools, and
provided a framework for tightly characterizing the com-
plexity of solving a given instance of the WCSP (using our
approach). Several lines of thought are of interest to us for
our future work. Some of these are: (1) a thorough un-
derstanding of the implications of our approach on theap-
proximability of different kinds of WCSPs, (2) an evalua-
tion of thelower boundsgenerated by computing the max-
imum weighted matchings on the composite graphs, and
(3) the idea of constructing bipartite graphs the minimum
weighted vertex covers of which can best “fit” the weighted
constraints/potentials of a given WCSP/EMP (so that subse-
quent combinatorial tasks on it can be done efficiently).
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