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Abstract

In this paper, we identify rich tractable classesvéighted
Constraint Satisfaction Problems (WCSPSur results stem
from employing a set of transformation techniques—reférre
to as ‘Lifting"—that considers each constrailacally. We
show that, in general, WCSPs are reduciblemmimum
weighted vertex cover problenis tripartite graphs and
many tractable classes of WCSPs can be recognized by their
reducibility to minimum weighted vertex cover probleins
bipartite graphs We examine the implications of our ap-
proach when combined with other mathematical tools, and
provide a framework for tightly characterizing the complex
ity of solving a giveninstanceof the WCSP.

1 Introduction

In many real-life problem domains, we are required to ex-
press natural factors like fuzziness, probabilities, gref

weighted constraints) iminimized It is well known that, in
general, optimally solving WCSPs is NP-hard.

Representationally, WCSPs can model nhumerous impor-
tant combinatorial problems arising in many different ap-
plication domains; examples include (but are not limited to
representing and reasoning about user preferences (Boutil
et al2004), planning with goal preferences (Bbal 2007),
resource allocation, combinatorial auctions, and biainfo
matics. Quite importantly, WCSPs also aris&agrgy Min-
imization Problems (EMPsh probabilistic settings. EMPs
are fundamental to many important applications; in com-
puter vision, for example, tasks such as image restoration,
total variation minimization and panoramic image stitchin
can be formulated as EMPs derived in the context of Markov
Random Fields (MRFs) (Kolmogorov 2005).

In this paper, we identify several rich tractable classes of
WCSPs. Our results stem from employing a set of trans-

ences and/or costs, and are subsequently interested in find-formation techniques—referred to akifting™—that con-

ing an optimal solution with respect to one or more criteria.

siders each constraint orllycally. We show that, in general,

Towards this end, many extensions to the basic CSP model WCSPs are reducible tminimum weighted vertex cover

have been introduced to incorporate non-crisp constraints
probabilities, weights, etc. These include many variakés |
Fuzzy CSPsProbabilistic CSPsindWeighted CSPs

Roughly speaking, a WCSP is a generalization of a CSP in
which the constraints are no longer “hard”, but are extended
by associating non-negativeststo the tuples. The goal is
then to find an assignment of values to all the variables from
their respective domains so that tteal costis minimized
More formally, a WCSP is defined by a triplé¥’, D, C),
whereX = {X;, X, ... Xy} is a set ofvariables andC =
{C1,Cy...Cy\} is a set ofweighted constraintbetween
the variables. Each variablé; is associated with a discrete-
valueddomainD; € D, and each weighted constraifit
is defined on a certain subsgt C X of the variables.S;
is referred to as thecopeof C;; and C; specifies a non-
negativecostfor each possible combination of values to the
variables inS;. An optimal solution is an assignment of
values to all the variables from their respective domains so
that thesumof the costs (as specified locally by each of the
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1These in turn can be viewed as particular instances of cer-
tain meta-frameworks lik¥alued CSP$Schiexet al 1995) and/or
Semiring-based CSKBistarelliet al 1996).

problemsin tripartite graphs and many tractable classes
of WCSPs can be recognized by their reducibilityrdn-
imum weighted vertex cover problenimsbipartite graphs
Our approach yields very simple arguments for establishing
the tractability of several interesting classes of WCSRS th
were: (a) previously known to be tractable, and (b) not pre-
viously known to be tractable—e.g., classes of WCSPs with
general domain sizes of the variables and/or general @ritie
of the weighted constraints. We examine the implications of
our approach when combined with other mathematical tools,
and provide a framework for tightly characterizing the com-
plexity of solving a giverinstanceof the WCSP.

2 Background Resultsin Graph Theory

In this section, we will briefly review some fundamental re-
sults in graph theory, and set up the groundwork for the rest
of the paper. In later sections, we will study the relevarfce o
these results in the context of solving WCSPs.

Given an undirected grapl = (V, E), amatchingis a
subset of edged/ C E such that no two edges i share
a common end-point. Anaximum matchings a matching

2Here, the minimum Energy setting corresponds meeximum
a-posteriorilabeling of the variables.
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Figure 1: The left-hand side shows a node-weighted undirected
graph. The weights oiX4 and X are set t®3 and2 respectively;
and all other weights are assumed tolbeThe projection of the
minimum weighted vertex cover problem onto the independett
{X1, X4} yields a table as shown on the right-hand side. For ex-
ample, the entry?’ written against{ X1 = 0, X4 = 1} indicates
that whenX; is prohibited from being in the minimum weighted
vertex cover butX, is necessarily included in it, then the weight
of the minimum weighted vertex cover{Xs, X3, X4, X7} or
{X2, X3, X4, X5, X} in this case—is equal to.

of maximum cardinality. Avertex coveis a subset of nodes
U C V such that every edge iR has at least one of its end-
points included inU. A minimum vertex coves a vertex
cover of minimum cardinality.

While the problem of computing the maximum match-
ing can be solved using very efficient polynomial-time al-
gorithms (Micali and Vazirani 1980), the problem of com-
puting the minimum vertex cover is NP-hard in general.
Nonetheless, fdvipartite graphsthe minimum vertex cover
problem can be solved very efficiently @(|V'|?-5) time
using amaxflowcomputation (Cormeset al 1990). More-
over, even in the general case, the minimum vertex cover
can be approximated within a factordin polynomial time;
and this approximation factor can further be improved to

— % for k-partite graphs(Hochbaum 1983). It is also
well known that the size of a maximum matching serves as
alower boundor the size of a minimum vertex cover (Cor-
menet al 1990). Finally, the above results can be extended
to the “weighted” case in which the nodes/edges of the graph
G are associated with non-negative weights. Treximum
weighted matching then defined to be a matching of max-
imum total weight on its edges, and thenimum weighted
vertex covers defined to be a vertex cover of minimum total
weight on its nodes.

3 Projections of Minimum Weighted Vertex
Cover Problemsonto Independent Sets

In this section, we will first introduce the idea gbroject-
ing” the minimum weighted vertex cover problem onto an
independent satf the given graplG = (V, E).> We will
then illustrate and prove a number of interesting propgrtie
of these projections. Our study of these projections moti-
vates a special set of transformation techniques—reféored
as ‘Lifting"—that we will use to reason about WCSPs by
considering each weighted constraint oldgally.

Consider an undirected gragh = (V, F). LetU =
{u1,us...ux} be an independent set 6f. We say that a
k-bit vectort imposes the following restrictions: (a) thié

3An independent saif a graph is a subset of nodes no two of
which are connected by an edge.

bit ¢; = 0 indicates that the nodg; is necessarilgxcluded
from the minimum weighted vertex cover, and (b) iHebit

t; = 1 indicates that the node; is necessarilyncludedin

the minimum weighted vertex cover. Tlpeojectionof the
minimum weighted vertex cover problem onto the indepen-
dent setU is then defined to be a table of si2& with en-
tries corresponding to each of tB& possiblek-bit vectors
M, +@ . .+(2Y): the value of the entry corresponding to
t\9) is set to be equal to the weight of the minimum weighted
vertex coverconditionecon the restrictions imposed by .
Figure 1 presents a simple example to illustrate the idea of
projecting the minimum weighted vertex cover problem onto
an independent set of the given gréph.

Given an undirected grapf¥ = (V,E) and an inde-
pendent set/ = {ui,uz...ur}, let Pgu denote the
projection of the minimum weighted vertex cover problem
onto U; and letPg (t) denote the value of the entry
corresponding to thé-bit vector¢. We will now prove
some basic algorithmic properties of the projectiBa, s
(see Figures 2 and 3).

Lemma 1. ‘COMPUTE-PROJECTION-VALUE’ (Figure

2) compute$P ¢ (t) for a givenk-bit vectort.

Proof: In step 2(a) of the algorithm, we notice thatif= 0
then the weight ofi; is set toco. This ensures the exclusion
of u; from the minimum weighted vertex cover computed in
steps 3 and 4. In step 2(b) of the algorithm, we notice that if
t; = 1 thenu; is included in the minimum weighted vertex
cover (computed in step 4). Further, in this case, all the
edges that are incident any are removed from the graph
(step 2(b)); this reflects the fact that these edges would now
be covered by the inclusion af. The truth of the Lemma
then follows simply from the definition dP¢ 7 (¢).

Lemma 2: Procedure ‘COMPUTE-MIN-PROJECTION’
(Figure 3) computeargmin, Pg. 7 (t) andmin, Pe ().

Proof: First, we note that the conditions imposed by any
k-bit vectort restricts the candidate space for optimization;
and thereforePg (t) > W. Second, let the assignment

returned by the algorithm in Figure 3 be From step 2/

is consistent withS on the membership af;, us ... uy in

the minimum weighted vertex cover; converselyis a can-
didate vertex cover in the space for optimization assodiate
with Py (t)—establishing the conditio®g ¢ (f) < W.
Putting the two results together, we have that for arlyit
vectort, Peu(t) > Peu(t). This proves that is the
required optimal vector of assignments; and clearly, this
also proves that’ = min, Pg 1 (t) as required.

We note that both ‘COMPUTE-PROJECTION-VALUE’
and ‘COMPUTE-MIN-PROJECTION' make use of just one
call to the minimum weighted vertex cover problem. While

41t is worth noting that the projection is well defined only whe
U is an independent set. If this is not the case, then therésexis
some edgéu;, ,ui,) for ui,, ui, € U. The entry corresponding
to anyk-bit vector that disallows both;, andu;, from being in the
minimum weighted vertex cover then becomes undefined becaus
the edg€g(u;, , ui, ) cannot be covered in any way.



{u1,us...ux} CV; (c)ak-bit vectort.

(1) S1 — {}.
(QFori=1,2...k:
(a) If t; = 0: set the weight of; to oc.

(5) RETURN: Pg i/ (t) — W.
END ALGORITHM

ALGORITHM: COMPUTE-PROJECTION-VALUE
INPUT: (a) a node-weighted undirected gra@h= (V, E); (b) an independent sét =

OUTPUT: the value of the projectio® /().

(b) If t; = 1: S1 < S1U{u;}; removeu; (and all edges incident on it) from the grap
(3) Let S, be the minimum weighted vertex cover computed for the respgraph.
(4) Let W be the sum of the weights on all the nodes$inJ Ss.

Figure 2: Shows an algorithm for computinB¢, v (). The algorithm makes use of one call to the problem of comgutiie minimum

weighted vertex cover.

{ur,us...ux} CV.
OUTPUT: (a) the optimalt* such thatt* =
PQU(t*).

(2) Forallu; € U:
(@) If u; € S: sett] — 1.
(b) If u; ¢ S: setty — 0.

END ALGORITHM

ALGORITHM: COMPUTE-MIN-PROJECTION
INPUT: (a) a node-weighted undirected gra@h= (V, E); (b) an independent sét =

(1) Compute the minimum weighted vertex cover®@nlLet S be the set of nodesinclude
in this cover, and letV be the total weight of the nodes i

(3) RETURN: (a)t*: optimal assignment vector; (b): optimal value.

argmin, P v (t); (b) the optimal valug

Figure 3:Shows an algorithm for computing the optintalsuch that*

= argmin, Pg,v(t); the optimal valueP¢ 7 (¢*) is also returned.

We note that the algorithm makes use of just one call to theleno of computing the minimum weighted vertex cover.

Figure 6: lllustrates the critical problem associated with choos-
ing maximum weighted matchings for providing lifted reet-
tions of the weighted constraints. The first two diagramsgfay
coming from trying to represent two different weighted doaisits)
show the variableéX and the auxiliary variabled; and A, respec-
tively. “Combining” the combinatorial structures by margithe
edges that represeii leads to a scenario (as shown in the right-
most diagram) where spurious constraints are introductgees
the auxiliary variables; in particular, bot, and A, are unneces-
sarily disallowed from being set to ‘True’ (‘1) simultanesdly (as
the edges representing them now share a common end-point).

this observation follows merely from the definition of a pro-
jection for the former algorithm, it is much more interegtin
in the case of the latter algorithm.

4 Lifted Representations for WCSPs

We will now presentimportant results that relatejections
to the computational aspects of solving WCSPs. As a first
step, we make the simple observation that the result of pro-

jecting the minimum weighted vertex cover problem onto an
independent séf of the given graph produces atable of size
2IUI: in some sense, this table can be viewed as a weighted
constraint ovetU| Boolean variables. Conversely, given a
weighted constraint, we can think about designing a “lifted
representation for it so as to be able to view it as the projec-
tion of a minimum weighted vertex cover problem in some
intelligently constructed node-weighted undirected grap
Later in the paper, we will show how we can build such a
lifted representation for any given weighted constraint us
ing atripartite graph For now, however, we will concen-
trate only on the computational aspects of solving WCSPs
when the lifted representations for each of the weighted con
straints are already given to us.

Figure 4 shows an example WCSP over 3 Boolean
variables. Here, there aBeunary weighted constraints and
3 binary weighted constraints; and their lifted representa-
tions (as projections of minimum weighted vertex cover
problems) are shown next to each of them. Further, the
figure also illustrates how aomposite graphis obtained
from the individual graphs corresponding to each of the
weighted constraints. In the composite graph, nodes that
represent the same variable are simply “merged’—along
with their edges—and every “composite” node is given a

5This graph can involve other auxiliary nodes.
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Figure 4: Shows an example WCSP. Tiseunary/binary weighted constraints are shown along witlir tiféed representations in the

rightmost two columns. The composite graph is shown ir2ttferow of the1** column; and the arguments used in the proof of Lemma 3 are
illustrated in the3™ row of the1®* column. The encircled subgraphs are indicative of the iaddpnce of the corresponding subproblems
when all theX -variables are instantiated.

weight equal to the sum of the individual weights. Figure X, X5...Xy are instantiated in the composite graph, the
5 presents the procedure for constructing the composite optimal values for the auxiliary variables coming from one

graph; and the following Lemmas prove some very inter-
esting properties of the composite graph in the generaltase

Lemma 3. Consider a complete assignmept(i.e., an
assignment of values to all the variables from their re-
spective domains). The cost gfcan be computed simply
by running ‘COMPUTE-PROJECTION-VALUE’ on the
composite graph.

Proof: The cost ofg is given by the sum of the costs
defined locally by each weighted constraint. From Lemma
1, the cost defined locally by’; can be computed by
running ‘COMPUTE-PROJECTION-VALUE’ onH; (see
procedure in Figure 5). Therefore, it suffices for us to prove
that running ‘COMPUTE-PROJECTION-VALUE’ on the
composite graph is equivalent to running it on each of the
individual graphst, Hs ... Hy; and summing the results.
Consider the total weight contributed by tkenodes—say,
X, (1 < r < N)in particular. WhenX,. = 0, the total
weight contributed byX, in any H; is 0, and this is also
the case in the composite graph. WhEp = 1, the total
weight contributed byX.. is equal to the sum of the weights
associated with it in each of the individual graphs that it
appears in. By construction (step 2(a)(B) in Figure 5), this
total weight is equal to the weight contributed Ky in the
composite graph. Now consider the total weight contributed

graph aréndependendf the optimal values for the auxiliary
variables coming from any other graph; and this establishes
that any auxiliary variable—say, coming from the graph
H;—is chosen to be in the minimum weighted vertex cover
of the composite graph if and only if it is chosen to be in the
minimum weighted vertex cover df;. Therefore, the total
weight contributed by the auxiliary nodes also remains the
same in the composite graph—hence proving the Lemma.

Lemma 4: The optimal (minimum) cost complete as-
signment ¢* (for the given WCSP) can be computed
simply by running the procedure ‘COMPUTE-MIN-
PROJECTION'’ on the composite graph.

Proof: From Lemma 2, the assignment returned by running
the procedure ‘COMPUTE-MIN-PROJECTION’ (on the
composite graph) is optimal with respect to the composite
graph. From Lemma 3, the cost of any complete assignment
can be computed from the composite graph. Put together,
the returned assignment is optimal for the given WCSP—
hence proving the Lemma.

It is worth noting that the arguments used in the proofs
of the above Lemmas are somewhat similar to those used
in loop-cutset conditioningPearl 1986). It is the above
property of thevertex covemproblem that makes it an in-

by the auxiliary nodes. It is easy to see that once the nodes telligently chosen combinatorial problem useful for build

®These Lemmas allow us to reason about each weighted con
straint onlylocally, and this special reduction mechanism is there-
fore given the nameliifting”.

ing lifted representations of the weighted constraints- An
. other combinatorial structure that exhibits this propésty

themaximum weighted independent 98n the other hand,

the maximum weighted matchingoblem (where the val-



(D Fori=1,2...M:

(2)Fori=1,2...N:

(3) RETURN: the resultingomposite graph
END ALGORITHM

ALGORITHM: BUILD-COMPOSITE-GRAPH

INPUT: (a) a WCSP with variableX, X5 ... Xy and weighted constraints;, Cs ... C\y;
(b) lifted graphical representatiorf$,, Hs ... Hys for each of the weighted constraints—the
graphH; corresponds to the weighted constraiht

OUTPUT: acomposite graplthat provides a lifted representation for the entire WCSP.

(a) Give the auxiliary variables ifi/; unique names.

(a) “Merge” all copies ofX; by doing the following:
(A) If X; has an edge to an auxiliary noden any of the graphéf,, H> ... Hy;, then
introduce an edge between the “merged” copykefand A in the composite graph as wel|.
(B) Set the weight on the “merged” copy &f, to be equal to the sum of the weights assigned
toitin each of the individual graphd,, H> . .

. Hy; that it appears in.

Figure 5: A straightforward procedure for building the compositepdrdrom the individual graphs that represent each of the e
constraints in a WCSP. The composite graph provides a liéiptesentation for the entire WCSP.

ues of the Boolean variables in the given WCSP are rep-

resented using the presence/absence of certain edges in the

maximum weighted matching) may be used to representin-
teresting weighted constrairitally, but as Figure 6 shows,
the “combination” of the representations built for diffate
weighted constraints introduces spurious dependencies be
tween the auxiliary variables, and therefore does not suit o
purposes.

5 Computational Resultsfor WCSPs

We will now prove an important Theorem and illustrate the
power of this Theorem in identifying several interesting
tractable classes of WCSPs. We will also discuss the
computational aspects of solving WCSPs in the general
case, and examine the implications of our approach when
combined with other mathematical tools.

Theorem 5. The languageLlpjpartite Of all weighted
constraints that havifted bipartite graph representations
is tractablé’.

Proof: From algorithm ‘BUILD-COMPOSITE-GRAPH’

in Figure 5, it is clear that when every weighted constraint
in a WCSP has a lifted bipartite graph representation with
the X-variables belonging to the same partition, then the
composite graph is also bipartite with all tdé-variables
belonging to the same partition. The truth of the Theorem
then follows simply from the fact that in any bipartite graph
the minimum weighted vertex cover problem can be solved
in polynomial time (Cormemt al 1990).

5.1 Boolean Variables and Binary/Non-Binary
Constraints

We first consider WCSPs with Boolean variables and binary
constraints. Even in this simple case, the kinds of prob-
lems that we can speak about significantly differ in their

"Of course, all theX -variables in any graph are required to have
the same color—i.e., belong to the same partition.

X XoXq
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3w, 3w, + W,

3w, +w, 3w, + 2w,

3w, +w, 2w, + 2w,

2w, + 2w, 3w,

Figure 8: Shows a bipartite graph representing a weighted con-
straint over the Boolean variables{;, Xs and X3. A1, A and
As are the auxiliary variables.

associated tractability results. For example, bothrtfie-
st-cut problem and themax-cutproblem can be encoded
as WCSPs with Boolean variables and binary constréints;
but while the former problem can be solved in polynomial
time, the latter problem is NP-hard. Figure 7 sheds some
light on such WCSPs; in particular, it shows that: (a) any
Boolean unary weighted constraint has a simple lifted bi-
partite graph representation; (b) th@n-st-cutconstraints
are particular cases of weighted constraints that have-a sim
ple lifted bipartite graph representation & atructure; and

(c) themax-cutconstraints are particular cases of weighted
constraints that have a simple lifted representation &s a
structure (that is not bipartit€). The following important
conclusions can be drawn immediately: (a) a generalization
of themin-st-cutproblem with arbitrary unary weighted con-
straints is tractabl&® (b) the entire space of weighted con-
straints resulting from varying the parameters w, and

ws (in the V-structure) is tractable; and (c) the absence of a

8For themin-st-cutproblem, unary weighted constraints &n
and X, ensure that they are assigned the valdesd 1 respec-
tively; and for every edgev;, v;) in the graph, a binary weighted
constraint betweeX; and X; yields a value ofl whenX; # X,
and 0 otherwise. For thenax-cutproblem, the binary weighted
constraints are reversed.

®Note that theX -variables have to be in the same partition.

10Similar problems were identified as being tractable in (Kol-
mogorov and Zabih 2004) using different combinatorial argats.
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Figure 7:(a) shows that any Boolean unary weighted constraint hasial toipartite graph representation; (b) shows the bipagraph
representationl(-structure) for generalizations of timein-st-cutconstraints; (c) shows the tripartite graph represemgfiostructure) for
generalizations of thmax-cutconstraints. Thenin-st-cutandmax-cutconstraints in (b) and (c) respectively become apparenhwhe—=

we = w3 /2 (and the additive constants are factored out).

Y o 1 s E(X.y) = agg+ agy* + agpy? + agoX + apXy + a,xy?
X
0 | Copo | Cou| Cop E(0,0) = ¢y E(0.1) = coy E(0.2) = ¢y,
1lcCp|CulCp E(1,0) = ¢y E(1,1)=c, E(1,2)=c,,

Figure 10: lllustrates how a weighted constraint can be repre-
sented as a multivariate polynomidf( X, Y') is the required poly-
nomial; and its coefficients can be computed by solving tistesy

of 6 linear equations witls unknowns.

lifted bipartite graph representation forax-cutconstraints
is consistent with its intractability.

As a next step, we present a simple example in Figure 8
to illustrate how we can generalize our techniques to rea-
son about non-binary weighted constraints. The mere exis-
tence of the lifted bipartite graph representation esthbb
the tractability of the kinds of ternary weighted consttain
shown in the figure. Further, setting different valuesdaqr
andws, yields different kinds of tractable (convex) functions.
In general, several parameters in the bipartite graphsean b
adjusted to yield a multitude of tractable classes of WCSPs.
These include: (a) theeightson the nodes, (b) thgraph-
ical structuresof the bipartite graphs, and (c) thecod-
ing mechanisnbetween the values of individual variables

(of the above-mentioned kind). We ukenodes to represent
the value of a variable with domaii®, 1. .. K'}; and we use
the convention that the value of this variable is equal to the
number of nodes (amongst thesenodes) that are presentin
the minimum weighted vertex cover. The leftmost diagram
in Figure 9 shows that any linear term - X (w may be
+ve or -ve) has a simple bipartite graph representation. The
middle diagram in Figure 9 illustrates the more interesting
cross-productonstruction of a bipartite graph for a given
-ve term. Consider atermw - (X - Y - Z) (wherew > 0).
Suppose that the domain sizesXfY andZ are4, 4 and3
respectively; we would hav&nodes representing the value
of X, 3 nodes forY, and2 nodes forZ. It is easy to see
that if the values assigned 6, Y and Z are0 < k; < 3,

0 < ky < 3and0 < k3 < 2respectively, then the size of the
minimum weighted vertex coveris- (18 — k1kaks) + k1 +

ko + k3. Factoring out the additive constants and treating
the linear terms as shown before, the bipartite graph (in the
middle diagram of Figure 9) essentially represents the term
—w - X -Y - Z as required. Similar arguments are used to
establish the validity of theross-productconstruction for
any given -ve term in the multivariate polynomial.

5.3 Tools. Change of Variablesand Taylor Series
We will now briefly comment on a few more implications

and the presence/absence of certain nodes in the minimum ¢ ihe foregoing discussions. First, we note that a simple

weighted vertex covers.

5.2 Higher Domain Sizesand Constraint Arities
We begin this subsection by proving an interesting reslt re

graph-theoretic trick allows us to substityt®;| — 1 — X;)

for X;; here|D;| is the domain size of{;. The right-
most diagram in Figure 9 illustrates how this is done for
an example variabl¥ by introducing an intermediate level

evant to more general scenarios where variables can takeOf nodes with large weights on them. We also note that

values from the sef0,1...K}. (K is allowed to be dif-
ferent for different variables.) We show that it is possitole
efficiently solve theminimizationproblem over these vari-

although this technique—in conjunction with tlegoss-
product construction—allows us to create +ve nonlinear
terms in a multivariate polynomiaf, the graph is no more

ables for any objective function that can be expressed as bipartite; instead, it becomes tripartite (as shown in tbe fi

abounded-degree multivariate polynomial with the positive
coefficients being restricted to terms of degreé.!?

Figure 9 illustrates how to construct the bipartite graphs
equivalent to any of the terms in the multivariate polyndmia

"This is equivalent to dealing with interesting real-lifeusi-
tions that pose linear “biases” on the values of individwaiables
in addition to potential functions/weighted constraimtsi{ounded
arities) that prefer the participating variables to haxghbr values.

ure). The only case when the graph continues to be bipartite
is when all the participating variables in the constraint un
dergo this transformation. Such a case yields terms of the
kind—w-(3—X)-(3-Y)-(2— Z) which are still tractable

for their bipartite graph representations. Moreover, ¢hes
nonlinear terms are monotonicallycreasingwith respect

to the variables—unlike the monotonicatlgcreasingerms

2| ower degree terms are cancelled recursively.
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Figure 9:The leftmost diagram shows the bipartite graph equivalent t X; here, we setv; andws so thatw; — w2 = w. The middle
diagram illustrates theross-productonstruction of the bipartite graph for the termw - (X - Y - Z); here,w > 0. The rightmost diagram

illustrates the construction of the tripartite graph fae thrmw - (X - Y

of the form—w - X - Y - Z (which were previously shown
to have bipartite graph representations). A proper blend of
these monotonically increasing and decreasing terms sillow
us to construct even richer classes of tractable functions.
We also remark that in many discrete combinatorial opti-
mization problems, the objective function involves anialyt
functions of various kinds. Th&aylor series expansions of
such functions relates well to our foregoing discussion of
(multivariate) polynomials. A variety of analytic functie
(e.g. hyperbolic functions like-sinh(3X + 4Y")) have only
-ve nonlinear terms in theifaylor series expansions, and
can therefore be approximated well by tractable polynomi-
als with bipartite graph representations. Further, thahcje
of variable” method enriches the class of analytic funation
that are amenable to these bipartite graph representations

5.4 Solving a Given Instance of the WCSP

We will now illustrate how any weighted constraint can
be represented as a multivariate polynorital Consider
the example binary weighted constraint in Figure 10. The
constraint can be encoded as a multivariate polynomial of
degreel in X and degree in Y.** The coefficients of the
polynomial can be computed by using a standaedissian
Elimination procedure for solving systems of linear equa-
tions. The linear equations arise from substituting défer
values to the variable¥ andY’, and equating the results to
the corresponding entries in the (weighted) constraint. We
also observe that the number of terms in the multivariate
polynomial is equal to the size of the constraint; and the
size of thecross-productonstruction (for the terms in this
multivariate polynomial) is only polynomial in the size of
the weighted constraint.

Theorem 6: Any given WCSP can be reduced to the

minimum weighted vertex cover problem in a tripartite

graph; and the size of this tripartite graph is only polynaimi

in the size of the WCSP.

Proof: We know that any weighted constraint can be cast
as a multivariate polynomial; further, the -ve/+ve terms in

3This is a common technique in coding/complexity theory.

In general, if the domain of a variable§s, 1. .. K}, then the
polynomial is of degreds in this variable.

- Z); herew > 0.

this polynomial can be given lifted representations astbipa
tite/tripartite graphs (as shown in Figure 9). Now, similar
to the arguments used in Theorem 5, when every weighted
constraint in a WCSP has a lifted bipartite/tripartite drap
representation with thé& -variables belonging to the same
partition, then the composite graph is tripartite with akt
X-variables belonging to the same patrtition. The truth of
the Theorem then follows from the observation made above.

We can now see that the complexity of solving a given
instance of the WCSP is exponential only in the size of
the smallestpartition—in terms of the number of nodes—
of the tripartite graph constructed for it. This is becaune t
minimum weighted vertex cover problem can be solved in
polynomial time for a bipartite graph; and every possible
combination of decisions to include/exclude the nodes®f th
smallest partition in the vertex cover can be evaluated tb fin
the optimal one. We note that one of these partitions cansist
of the originalN variables—leading us to the obvious upper
bound of characterizing the problem to be exponenti&lin
However, this partition may not be the smallest—in which
case, our framework yields a much tighter characterization
in particular, when there is sufficientimericalstructure in
the weighted constraints, the composite graph is only bi-
partite, and such WCSPs can be solved in polynomial time.
Even when the composite graph is not bipartite, our frame-
work allows us to computationally leverage themerical
structure of the weighted constraints—when, for example,
they look more like the polynomial-time solvabit@n-st-cut
constraints than the NP-hantbx-cutconstraints.

6 Redated Work

The works of several researchers in the Al/Theory commu-
nities are related to the work presented in this paper. ,First
a lot of recent work in Al has been motivated by the prob-
lems that relate to detecting “hidden” variables, detemgn
their relationship to other variables, éfc.Second, recent
works in the Theory community report on matift-and-
projectmethods for constructing projection-based represen-

\We note that in our approach, we are primarily concerned
with the numericalstructure of the weighted constraints/potentials
rather than the structure of tariable-interactiongraph.



tations of general 0-1 polytopes. These include the pro-
cedures of Sherali-Adams, Lovasz-Schrijver and Lasserre
(Lasserre 2001). These methods involve a sequence of Lin-
ear Programming relaxations, and in the worst case, could
require lifting the original problem to a space with an ex-
ponential number of dimensions. Many combinatorial prob-
lems have been studied for the presence of additional struc-
ture that may obviate the exponential number of dimensions;
an efficient approximation algorithm for theax-cutprob-

lem, for example, uses only a polynomial number of addi-
tional dimensions. For the kinds of problems that we dealt
with in this paper, however, the lifting techniques that we
proposed are more direct and relevant. Further, integestin
connections to graph-theoretical results are also maades

in our approach.

The works of several other researchers also relate to more
specific details of the work presented in this paper. Fing, t
arguments underlying our lifting techniques are akin testho
used inloop-cutset conditioninfpr Bayesian network infer-
ence (Pearl 1986) and/or graph-based search strategies for
solving CSPs (Dechter 1992). Second, several interedting a
gorithms have been reported for efficiently solving EMPs on
certain kinds of MRFs. For example, the reduction of EMPs
on convexMRFs to instances of thmin-st-cutproblem is
reported in (Ishikawa 2003). Several other related recent
advances are mentioned in (Kolmogorov 2005). Another re-
cent development is thigee-reweighted max-product mes-
sage passing (TRWAlgorithm (Wainwrightet al 2003).
TRW procedures are inspired by the problem of maximiz-
ing a lower bound on the Energy; however, as in the case of
ordinarybelief propagatiorprocedures, they do not always
converge (Wainwrighet al 2003).

7 Conclusions and Future Work

We identified rich tractable classes of WCSPs based on a
special set of transformation techniques referred td_i “
ing”. We showed that WCSPs are reducible to minimum
weighted vertex cover problems in tripartite graphs; and
many tractable classes of WCSPs can be recognized by their
reducibility to minimum weighted vertex cover problems in
bipartite graphs. We examined the implications of our ap-
proach when combined with other mathematical tools, and
provided a framework for tightly characterizing the com-
plexity of solving a given instance of the WCSP (using our
approach). Several lines of thought are of interest to us for
our future work. Some of these are: (1) a thorough un-
derstanding of the implications of our approach on dpe
proximability of different kinds of WCSPs, (2) an evalua-
tion of thelower boundgyenerated by computing the max-
imum weighted matchings on the composite graphs, and
(3) the idea of constructing bipartite graphs the minimum
weighted vertex covers of which can best “fit” the weighted
constraints/potentials of a given WCSP/EMP (so that subse-
guent combinatorial tasks on it can be done efficiently).
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