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Abstract

In this paper we provide a new method to generate hard
k-SAT instances. Basically, we construct the bipar-
tite incidence graph of a k-SAT instance where the left
side represents the clauses and the right side represents
the literals of our Boolean formula. Then, the clauses
are filled by incrementally connecting both sides while
keeping the girth of the graph as high as possible. That
assures that the expansion of the graph is also high. It
has been shown that high expansion implies high res-
olution width w. The resolution width characterizes
the hardness of an instance F of n variables since if ev-
ery resolution refutation of F has width w then every

resolution refutation requires size 2Ω(w2/n). We have
extended this approach to generate hard n-ary CSP
instances. The experimental investigation conducted
on complete and incomplete solvers confirms that the
expansion of the graph is indeed a key factor in order
to obtain harder instances than other approaches.

1 Introduction

Providing challenging benchmarks for the SAT and the
CSP problems is of a great significance for both the
experimental evaluation of SAT and CSP solvers and
for the theoretical computer science community. Every
year new benchmarks are submitted to the SAT and
CSP competitions. Our aim is to provide a method for
generating hard k-SAT and n-ary CSP instances.

In order to do that we look at the field of proposi-
tional proof complexity, where it turns out that graph
expansion has been established as a key to hard formu-
las for resolution (e.g. (Ats04)), but also for other proof
systems like the polynomial calculus (AR01). Roughly
speaking, an expander graph is a graph G=(V ,E) that,
for any, not too big, subset of vertices S, its set of neigh-
bors in V \S is big, compared with |S|. In other words,
if we view G as a network transmitting information
(where information retained by some vertex propagates,
say in 1 unit of time, to neighboring vertices), then the
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expansion measures the quality of G as a communi-
cation network. If the expansion is high, information
propagates well (DSV03).

Basically, our approach is based on creating a bipar-
tite graph with a high expansion, and then from this
graph we generate the k-SAT and n-ary CSP instances.
In particular, for the k-SAT instances one of the par-
titions of the graph represents the set of clauses and
the other one the set of literals. Edges represent which
literals belong to which clauses. We call this graph the
literal incidence graph of a SAT instance. Analogously,
for the CSP instances on partition represents nogood
tuples and the other one pairs (variable, value).

The way our method tries to get a high expansion on
the bipartite graph is to incrementally build the graph
while keeping the girth as high as possible. The girth
is the length of the shortest cycle of the graph. It is
known that high girth implies high expansion (Kah93).

The instances we generate with this method can be
used to test the efficiency of SAT and CSP solvers.
Moreover, expander graphs have many other applica-
tions, like efficient communication networks (Chu78;
KM06) and linear-time decodable low density parity
check codes (SS96). A very interesting recent one is the
use of expander graphs to define secure cryptographic
hash functions, (i.e. that are collision resistant), where
particular families of expander graphs are considered
as candidates to build hash functions due to their high
expansion and high girth (CGL07).

We have compared our approach against other meth-
ods in the SAT Community (BS96; BDIS05) which try
to get hard SAT instances by balancing the occurrences
of literals, and thus the degrees of the vertices at the
literal incidence graph become also balanced. Previ-
ous results, e.g. (SS96), show that balanced bipartite
graphs also tend to have a high expansion. Our empir-
ical results confirm that our method generates harder
instances. Besides, we get a higher lower bound on the
expansion, which we compute using spectral graph the-
ory methods. Computing the expansion of a graph is a
co-NP Complete problem (BKO+81), so it is intractable
to get the exact expansion.

In the CSP field there are four standard methods,
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denoted A, B, C and D, for generating hard random bi-
nary CSPs (SD96; GMP+01). In (AKK+97) the model
E was introduced in order to overcome some deficien-
cies of the previous models. For n-ary CSPs some ex-
tensions of random binary CSPs models have been de-
fined (XBHL05). At the section of experimental results
we compare our method against the n-ary version of
Model E, because the set of parameters in model E
(domain size, number of variables and total number of
nogoods) is the same as in our high-girth model, thus
giving a natural comparison.

The rest of the paper is organized as follows. Sec-
tion 2 introduces a set of previous definitions. Sec-
tion 3 discusses the related work. Section 4 presents
our method for generating hard k-SAT and n-ary CSP
instances. Finally section 5 shows the experimental in-
vestigation on SAT and CSP solvers.

2 Preliminaries

We first introduce some definitions from graph theory
in order to explain the graph expansion concept.

Definition 1 An undirected graph G is a pair (V,E)
where V is the set of vertices and E is the set of undi-
rected edges {u, v}. The degree d(u) of a vertex u is
the number of edges with an endpoint in u. A k-regular
graph is a graph where the degree of any vertex is k.

Definition 2 A bipartite graph G is a pair (L∪R,E),
where L is the left partition and R is the right partition
of the set vertices, such that any edge is of the form
(l, r) with l ∈ L and r ∈ R. A (k1, k2)-regular bipartite
graph is a bipartite graph (L∪R,E) such the degree of
any l from L is k1 and the degree of any r from R is k2.
Observe that |L|k1 = |R|k2. We have a (k1,−)-regular
bipartite graph if we only fix the degree of vertices in L
to k1, but the degrees for R are unfixed.

Definition 3 The girth of a graph G (g(G)) is the
length of the shortest circuit in G. If G is acyclic then,
by definition, g(G) = ∞.

There is a limit on how large the girth can be, for
a graph with V vertices and minimum degree d. This
limit is 2 logd−1(|V |) (DSV03).

Definition 4 We say that a family F of k-regular
graphs has high girth if, for some constant 0 < C < 2,
∀G ∈ F , g(G) ≥ (C + o(1)) logk−1 |V |.

Random k-regular graphs have an expected girth
slightly greater than 3 (MWW04), but there exist con-
structions of graphs with high girth. The one with the
highest girth is that of (ALS88) where they achieve
girth (4/3) logk−1(|V |).

Definition 5 The expansion of a subset X ⊆ V in
G = (V,E) is defined to be the ratio |N(X)|/|X|, where
N(X) = {w ∈ V \ X | ∃v ∈ X, {v, w} ∈ E} is the set
of outside neighbors of X.

When all the neighbors of X are inside X, we have
expansion 0. We consider a set high expanding when
its expansion is greater than 1, that means that the set
of different outside neighbors of X is larger than X, so
it is well connected with the rest of the graph.
Definition 6 An (α, c)-expander is a graph (V,E)
such that every subset of size at most α|V | has expan-
sion at least c.
Usually, smaller sets will have better expansion, the
limit being for α ≥ 0.5, where expansion cannot be
greater than 1. For bipartite graphs we are mainly in-
terested on the expansion of subsets of the left part. So,
we have the next definition.
Definition 7 A left (α, c)-expander is a bipartite graph
(L ∪ R,E) such that every subset of L of size at most
α|L| has expansion at least c.
Next, we give the definitions of the SAT and CSP prob-
lems.
Definition 8 A constraint satisfaction problem (CSP)
instance is defined as the triplet 〈X, D,C〉, where
X = {x1, . . . , xn} is a set of variables, D =
{d(x1), . . . , d(xn)} is a set of domains containing the
values the variables may take, and C = {C1, . . . , Cm}
is a set of constraints. Each constraint Ci = 〈Si, Ri〉
is defined as a relation Ri over a subset of variables
Si = {xi1 , . . . , xik

}, called the constraint scope. The
relation Ri may be represented extensionally as a sub-
set of the Cartesian product d(xi1) × · · · × d(xik

). El-
ements ∈ Ri are called good tuples, and elements
∈ ((d(xi1) × · · · × d(xik

)) \ Ri) are called nogood tu-
ples.
Definition 9 An assignment v for a CSP instance
〈X, D,C〉 is a mapping that assigns to every vari-
able xi ∈ X an element v(xi) ∈ d(xi). An assign-
ment v satisfies a constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C iff
〈v(xi1), . . . , v(xik

)〉 ∈ Ri.
Definition 10 Propositional variables are denoted
p1, . . . , pn and can be assigned truth values 0 (or F )
or 1 (or T ). A literal is an expression of the form pi

or ¬pi, where pi is a propositional variable. The com-
plement of a literal l of the form pi (¬pi), denoted by
l, is ¬pi (pi). A clause is a disjunction of literals. A
CNF formula is a conjunction of clauses.
Definition 11 A truth assignment for a CNF formula
is a mapping that assigns to every propositional variable
to value T or F. An truth assignment I satisfies a literal
pi (¬pi) iff pi = T (pi = F ), satisfies a clause C iff it
satisfies at least one of the literals in C, and satisfies
a CNF formula Γ iff it satisfies all clauses in Γ. The
SAT problem consists of deciding whether there exists a
truth assignment to the variables such that the formula
becomes satisfied.
For this work, the following three concepts are the main
tools used to link complexity with structural properties
of k-SAT and n-ary CSP instances.
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Definition 12 Given a k-SAT instance F with set of
clauses C, set of variables V and set of literals L,
G(F ) = (C ∪ V,E) is its bipartite variable incidence
graph such that (c, v) ∈ E if and only if variable v ap-
pears in clause c. LG(F ) = (C ∪ L,E) is its bipartite
literal incidence graph such that (c, l) ∈ E if and only
if literal l appears in clause c.

Observe that if LG(F ) = (C ∪ L,E) is a left (α, c)-
expander, then G(F ) = (C ∪ V,E), will be, at least, a
left (α, c/2)-expander.

Definition 13 Given a CSP instance P = 〈X, D,C〉,
we define the literal incidence graph as the bipartite
graph LG(P ) = (NG∪L,E), where for every constraint
Ci and every nogood tuple associated with Ci there is a
vertex ∈ NG, and vertices from L represent all the pairs
(xi, j), where xi ∈ X and j ∈ d(xi). Edges represent
the pairs (xi, j) associated which each nogood tuple.

3 Related Work
In this section we survey some previous theoretical re-
sults about the expansion of random graphs, and the
related work in the SAT and CSP communities.

3.1 Expansion of random graphs
The problem of checking whether a graph is an ex-
pander is co-NP complete (BKO+81). However, lower
and upper bounds on the expansion of a graph have
been obtained using spectral graph theory results.
Given the adjacency matrix A(G) of G = (V,E) we
denote their eigenvalues by λ0 ≥ λ1 ≥ . . . ≥ λn−1,
where n = |V |. When G is k-regular, then λ0 = k. If
G is connected then λ0 > λ1.

The (combinatorial) Laplacian L(G) is the matrix
D − A(G), where D is the diagonal matrix in which
Di,i is the degree of vi. We denote the eigenvalues of
L(G) by µ0 = 0 ≤ µ1 ≤ . . . ≤ µn−1. When G is
k-regular, then we have that µi = k − λi. But in gen-
eral, the two sets of eigenvalues can be very different.
For non regular graphs, the spectrum of L(G) provides
more information about the connectivity of the graph.
For example, for general graphs we have the following
expansion lower bound (CS03):

|N(X)|
|X|

≥ 4µ1(1− α)
∆ + 4µ1α

(1)

where α = |X|/|V |. Observe that for α ≤ 0.5, the
higher µ1 is, the higher this lower bound is. There are
also upper bounds on expansion based on the eigenval-
ues of the normalized Laplacian of the graphs (Chu96).

For k-regular graphs, we have more precise expansion
lower bounds that depend on λ1, such that the lower
λ1 is the higher the expansion. Asymptotically (as n →
∞), there is a limit (2

√
k − 1) on how small λ1 can be

for a family of k-regular graphs (AB88). The value
λ0 − λ1 is called the spectral gap, and asymptotically
for k-regular graphs the best we can hope for this value

is to tend to k−2
√

k − 1. Friedman (Fri03; Fri04) shows
that for random k-regular graphs and any ε > 0:

limn→∞Pr(λ1 ≤ 2
√

k − 1 + ε) = 1

k-regular graphs with λ1 ≤ 2
√

k − 1 are called Ramanu-
jan graphs (ALS88). So, asymptotically, a random k-
regular graph will get very close to be a Ramanujan
graph. Kahale (Kah95) gave an expansion lower bound
that shows that Ramanujan k-regular graphs can have
expansion as high as k/2 for small sets. Thus, Ramanu-
jan graphs (and random k-regular graphs) with k ≥ 3
are excellent expander graphs.

Independently of what can be proved thanks to
eigenvalue methods, probabilistic methods have been
used to show that regular graphs are almost surely
very good expanders (see for example (SS96; Bol01;
AS00)). The particular case of k-regular or (k1, k2)-
regular bipartite graphs have received special attention
in the communications community (e.g. (Chu78; SS96;
Tan84)), and such bipartite graphs are good expanders
almost always. By contrast, we do not have similar
results for sparse G(n, p) and G(n, M) graphs. So, it
seems that regular graphs are more promising towards
obtaining good expanders, although we will see that
almost regular graphs can also be excellent good ex-
panders, even better than regular graphs. For the case
of bipartite graphs we have, for example, that a random
(k,−)-regular bipartite graph (L∪R,E) with |L| = |R|
will be a good expander with probability > 1/2. So,
when only the vertices of one part have the same de-
gree, the expansion properties seem to degrade. Ob-
serve that this last graph can represent the incidence
graph of a random k-SAT instance.

3.2 Theoretical results in SAT community
Concerning the resolution complexity of a 3SAT in-
stance F , Ben-Sasson and Wigderson (BSW01) proved
that if every resolution refutation of F requires width
w, then every resolution refutation of F requires size
2Ω(w2/n). The width of a resolution refutation is the
length of the longest clause in the refutation. Thus,
lower bounds on width imply lower bounds on size. Fi-
nally, there is a connection between graph expansion
and 3SAT resolution complexity based on this width-
size relationship. Consider a 3SAT instance F with set
of clauses C and set of variables V and its bipartite vari-
able incidence graph G(F ) = (C ∪ V,E). Results pre-
sented in (Ats04) imply that any resolution refutation
will have width lower bounded by b((c− 1)α|C|)/((2 +
c)d)c, where d is the maximum right-degree of G(F ), if
G(F ) is a left (α, c)-expander. So, any resolution refu-
tation of F will have exponential size if d = o(|C|) and
c > 1, α > 0, given the width-size relationship. So, the
higher the expansion of the graph and the smaller the
maximum right-degree d, the higher the refutation size
lower bound.

The result is basically established through a connec-
tion between two different combinatorial games, the
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matching game and the existential k−pebble game, and
trough a connection between the k−pebble game and
the width of resolution proofs. To summarize, the re-
sults indicate that the higher the expansion, the higher
the number of fingers needed to win the matching game,
and the higher the number of pebbles k needed to win
the k-pebble game. Then, by considering the encod-
ing of 3SAT as a CSP problem, Atserias connects the
needed number of pebbles k with the width of resolu-
tion proofs thanks to the relation between k−Datalog
programs and the k−pebble game (KV95).

Moreover, the results also imply that more powerful
proof algorithms based on strong k-consistency (for a
bounded level of consistency) will also require exponen-
tial time for solving the 3SAT instance under the same
circumstances.

3.3 Related results in CSP community
For binary CSPs, in (ABFM07) new methods for gen-
erating hard instances were presented, based on bal-
ancing both the constraint language and the constraint
graph. Also, a method for generating a high girth con-
straint graph was introduced and it generated the hard-
est instances. In that work they link the hardness of
the instances to the fact that more balanced graphs
tend to have a higher treewidth, thanks to the result
of (CS03) were the treewidth is linked with the graph
expansion. Previous work has considered the genera-
tion of hard balanced CSPs (see for example (KRA+01;
ABF+06)), but without linking the balance of the con-
straint graphs to their treewidth.

Given the relation between existential k−pebble
games for CSPs and strong k-consistency presented
in (KV00), we can reasonably think that there is a
relation between the expansion of the CSP incidence
graph and the level of k−consistency needed to solve
the CSP. That would be a similar result to the one we
have mentioned at the previous SAT section. As we will
see at the section of experimental results, our method
increases the hardness of n-ary CSPs.

4 Hard SAT and n-ary CSP instances

In this section we introduce our generation method for
hard k-SAT and n-ary CSP instances.

4.1 Expansion, balance and girth
To get an idea about what is the typical structure of
a good expander graph, consider the expansion of sub-
sets of the left partition of the two bipartite graphs of
Figure 1. As the vertices in the left partition of both
graphs have degree 3, the expansion when |S| = 1 is 3.
Consider now sets with |S| = 2. In the graph (a), the
set N(S) for any left subset S with |S| = 2 is always
the entire right partition, so the expansion is 4/2. But
for graph (b) the set N({1, 4}) does not contain the
vertex 7, and so the expansion is only 3/2 due to the
poor connectivity of vertex 7. For |S| = 3 the situation
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(a) (3, 3)-regular (b) (3,−)-regular

Figure 1: Example of two bipartite graphs with differ-
ent expansion

is similar. For graph (a) any left subset with |S| = 3
is connected to the whole right partition (its expansion
is 4/3), but for graph (b) N({2, 1, 4}) = {5, 6, 8}, so
the expansion is 1. Thus, we observe that, due to the
unbalanced degrees of the right partition of graph (b),
the vertex expansion of the left subsets is not as good
as in graph (a), where all the degrees are equal.

However, the balance of the degrees does not provide
a complete characterization of good expander graphs.
Kahale (Kah93) shows that high girth (O(logk−1(|V |))
implies high expansion, at least for subsets of size
at most |V |δ, with δ < 1. So, one way to obtain
graphs with good expansion is to get high girth graphs.
In (Cha03) it is presented an algorithm for building
graphs with degrees k − 1, k and k + 1 and high girth.
The algorithm we present in the next subsection follows
the same approach to build bipartite graphs with high
girth. This graph will be used to build hard k-SAT and
n-ary CSPs instances .

4.2 High girth bipartite graphs
The algorithm presented in (Cha03) works for general
(non-bipartite) graphs. It builds the graph by intro-
ducing edges one by one, connecting vertices which are
at large distances in the current graph, in such a way
that the degrees are maintained almost balanced and
the girth obtained is O(logk−1(|V |)). The algorithm
initiates the construction by building a matching be-
tween the vertices, if |V | is even, or a |V |-length cycle,
if |V | is odd.

For building the literal incidence graph of a k-SAT
formula with C clauses and L literals (and similarly
for a k-ary CSP formula), we need to build a (k,−)-
regular bipartite graph (V1 ∪ V2, E), where V1 is C and
V2 is L. The algorithm of Figure 1 does this, but trying
to keep the girth as high as possible, using the same
technique of linking vertices which are at large distances
in the current graph. It starts the process by creating a
random matching from V1 to V2, such that every vertex
from V1 will have degree 1 and every vertex from V2 will
have degree either b|V1|/|V2|c or b|V1|/|V2|c+1. Because
this matching does not create any cycles, it starts with
girth equal to ∞. Then, at every step it selects an edge
from the subset of edges (u, v) with u ∈ V1 and v ∈ V2,
such that degree(u) < k and degree(v) is minimum
among all the current degrees in V2. From this subset of
edges, it selects one (u′, v′) with the maximum distance
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between u′ and v′, because this way the new created
cycle is of maximum length. This process ends when
the graph has |V1|k edges.

Additionally, the degrees of the right vertices (V2) of
the bipartite graph will be almost balanced. Observe
that, when selecting the edge (u′, v′), if we are always
able to pick a vertex v′ from V2 of minimum degree,
then at the end all the vertices of V2 will have degree
either b|V1|k/|V2|c or b|V1|k/|V2|c+ 1. So, only when is
not possible to pick any minimum degree vertex from V2

the algorithm introduces a third degree. However, this
situation can only occur when all the available vertices
from V1 are already linked with all the current minimum
degree vertices from V2, and this can only occur when
we are at the very end of the process, i.e. when the
number of available vertices in V1 is very small and the
number of remaining minimum degree vertices in V2 is
< k (observe that an available vertex from V1 can be
linked at the same time with at most k−1 vertices from
V2). Actually, the instances we have obtained with this
method almost always have only two distinct degrees in
V2, and only exceptionally three distinct degrees.

Algorithm 1: Algorithm for generation of high girth
(k,−)-regular bipartite graphs (V1 ∪ V2, E)

input : V1, V2, k
output: a bipartite (k,−)-regular graph (V1 ∪ V2, E)
Initialize E with a random matching from V1 to V2

(every vertex from V1 will have degree 1)
for i = |V1|+ 1 to k|V1| do

LT := {u ∈ V1 | degree(u) < k}
RT := {u ∈ V2 | degree(u) ≤ degree(v), ∀v ∈ V2}
P := ∅
while P = ∅ do

T := {(u, v) | (u, v) ∈ LT ×RT distance(u, v) ≥
distance(x, y)∀(x, y) ∈ LT ×RT }
dmin := degree(u), where u ∈ RT

P := {(u, v) ∈ T | (u, v) 6∈ E}
if P 6= ∅ then

randomly select a pair (u, v) from P
E := E ∪ (u, v)

else
RT := {u ∈ V2 | degree(u) = dmin + 1}

Regarding the girth, our empirical results show that
it is of the order of logk−1(|V |), where k is the average
degree of the graph, so it is comparable to the girth
achieved by the algorithm for general graphs.

Observe that not every subset of k vertices from V2

gives a valid clause of k literals, since if two selected
literals share the same variable, we get a tautological
clause. However, the number of tautological clauses is
as low as the expected number obtained with a ran-
dom k-SAT model where tautological clauses are not
excluded, that is O(|C|/|V |). So, since the hardest in-
stances occur always around a fixed ratio |C|/|V |, that
depends on k, we simply discard the tautological clauses
obtained. For the literal incidence bipartite graph of k-

ary CSPs, we have an analogous situation. Not every
subset of k vertices from V2 give a valid k−ary nogood.
A valid subset cannot contain two vertices of the form
(xi, j) and (xi, l) with j, l ∈ d(xi). So, invalid nogoods
are also discarded.

5 Experimental investigation

We have divided our experimental investigation into
three sections. The first one presents a comparison of
our method against the most recent k-SAT generators
and the classical random k-SAT generator. The second
one shows a comparison with between model E and our
method high-girth.

Finally, we have checked whether our generation
method produces instances which incidence graph have
a higher expansion than the other generators used in
the experimental investigation.

5.1 Hard k-SAT instances
For generating the k-SAT instances we have used four
methods: the classical random k-SAT (random), the
method described in (BS96)(lit-bal-1), the method de-
scribed in (BDIS05)(lit-bal-2), and our method (high-
girth).

The generation method lit-bal-1 described in (BS96)
for 3-SAT problems can be generalized to k-SAT as fol-
lows. Inputs are the number of variables (n), the num-
ber of clauses (m) and the clauses arity (k). There are
2n possible literals given n variables, so bk·m

2n c occur-
rences of each literal are placed in a bag. A random
set of unique literals is then added to the bag so that
there are exactly k ·m literals in it. To construct each
clause, k literals on distinct variables are removed from
the bag. If there are less than k distinct variables men-
tioned in literals remaining the bag, additional distinct
variables are randomly selected from the set of all vari-
ables and negated with probability 1

2 . The generation
method lit-bal-2 described in (BDIS05) is very similar
to lit-bal-1, being the main difference that with lit-bal-
2 every literal in the resulting formula appears exactly
bk·m

2n c or bk·m
2n c+1 times. By contrast with lit-bal-1 the

occurrences of literals can be less balanced.
We have solved the instances with four SAT solvers:

satz (LA97), minisat (ES03), kcnfs (DD01) and Walk-
SAT (SKC94).

Figure 3 shows the results for the complete SAT
solver kcnfs on 4-SAT and 5-SAT instances. As we
can see high-girth is the best generator, while lit-bal-1
and lit-bal-2 are almost identical. Observe that the dif-
ferences are more significative for 5-SAT. This can be
due to the differences in the expansion of the bipartite
graphs of the different models, because as we increase k
is possible to obtain more drastic differences in the ex-
pansion of the bipartite graphs of the different models.
That is, the higher k, the higher the maximum size of
the set of neighbours N(S) of a subset of clauses S. We
only report the results for the SAT solver kcnfs since
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it was the fastest and it reported the least difference
between the two best generators. For example, for satz
solver we can see in Figure 2 results for 4-SAT instances
with 130 variables. As with kcnfs high-girth is also the
best generator, but performance of satz solver is worse
than that of kcnfs.

We also wanted to check if we could observe the same
behavior when using a local search SAT solver. We fil-
tered out the unsatisfiable instances from sets of 100
instances. Table 1 reports results for the random, lit-
bal-1 and high-girth generation methods on 3-SAT in-
stances located at the underconstrained and the phase
transition zones and solved with the local search SAT
solver WalkSat. We tuned the noise parameter for the
heuristic best to be 30. As we can see, high-girth and
lit-bal-1 behave similarly and clearly outperform the
random generation method.
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Figure 2: Results for 4-SAT with satz for 130 variables.

5.2 Hard n-ary CSP instances
For generating the n-ary CSP instances we have used
two methods: the model E described in (AKK+97) and
our method high-girth. We have solved the n-ary CSP
instances with the CSP solver minion (GJM06) using
the dynamic heuristic sdf (smaller domain first). We
also report results on the direct SAT encoding1 of the
n-ary CSP instances for the SAT solvers minisat and
kcnfs (some competitive solvers submitted to the CSP
competition are built on top of minisat). We have gen-
erated two set of instances, one of 25 variables, domain
3, and arity 4, and the other set of 40 variables, domain
3 and arity 3. At Figure 4 we can see again that our
generation method high-girth produces the hardest in-
stances. In this figure, the results are shown in log-scale,
in contrast with Figure 3 for k−SAT, because here the
differences are even more significative than in Figure 3.

1For more details see (Wal00).

330 vars
C m md # inst.

rand 1340/1420 0.14/2.31 0.01/0.07 99/43
lit 1090/1170 0.09/161 0.00/8.24 100/50
hg 1090/1160 0.16/49 0.06/10.5 100/57

400 vars
C m md # inst.

rand 1620/1720 1/6.38 0.02/0.45 100/36
lit 1304/1404 0.083/283 0.001/30.2 100/76
hg 1304/1404 0.03/385 0.03/46.48 100/48

Table 1: 3-SAT instances, 330 and 400 variables. Re-
sults for WalkSat, heuristic = Best, noise = 30. Each
instance solved 30 times. No cutoff. C, m, md and
# inst. stand for clauses, mean, median and number
of satisfiable instances, respectively. Both values (x/y)
represent the underconstrained and phase transition re-
gion.

However, observe that we do not have previous existing
balanced models for n-ary CSPs, like lit-bal-1 and lit-
bal-2 for k−SAT, that are the ones that are closer to
our high girth model for k−SAT.

5.3 Girth and Expansion

In this subsection we compare the girth of the bipartite
literal incidence graph LG = (C ∪ L,E) of the k-SAT
formulas obtained with the different models.

We also lower bound the left-expansion |N(S)|/|S| of
the bipartite graphs using results from spectral graph
theory found in (Chu97). As small subsets will expand
similarly in all the models (because the left degree is the
same for all), where one may find the biggest differences
is with the biggest subsets. In particular, the highest
possible expansion would be N(S) = L for subsets S of
size |L|/k. So, we focus on the case |S| = |L|/k. The
results, obtained for two different C/V ratios, are shown
in Table 2. The ratio of the left subcolumn corresponds
to the peak of hardness for the high-girth model and
the other corresponds to the peak of hardness for the
random model. As we can see, the girth computed for
our generation method high-girth is higher. Concerning
the expansion we also get a higher lower bound. Notice
that this result is significant since, as we have already
mentioned, in previous results, e.g. (SS96), it is shown
that balanced bipartite graphs tend also to have a high
expansion. The generation methods lit-bal-1 and lit-
bal-2 tend to produce almost balanced bipartite literal
incidence graphs. That might suggest that balancing
the incidence graph is not enough to get the highest
possible expansion. Therefore one should also look at
other parameters as the girth.

6
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Figure 3: Comparison of SAT generators: random-k-sat, lit-bal-1, lit-bal-2 and high-girth. 3-SAT, 4-SAT and 5-SAT
instances of 300, 130 and 116 variables respectively.

C=1160 C=1420
g |N(S)| g |N(S)|

random 4 272.6 4 287.7
lit-bal-1 4 272.8 4 288.2
lit-bal-2 4 272.1 4 287.3

high girth 10 283.9 8 303.0

Table 2: Girth and lower bound on expansion |N(S)|
for a left subset S of size |L|/k for the bipartite literal
incidence graphs of 3SAT instances with 330 variables
in the peak of hardness

6 Conclusions

We have proposed a new method for generating hard
k-SAT and n-ary CSP instances. This method is based
on the results that link problem hardness with the ex-
pansion of the incidence graph of the instances. In par-
ticular, in our method we achieve high expansion by
maintaining a high girth during the construction pro-
cess of the incidence graph.
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