Verifying RUP Proofs of Propositional Unsatisfiability

Allen Van Gelder
Computer Science Dept., SOE-3, Univ. of California,
Santa Cruz, CA 95064, http://www.cse.ucsc.edu/~avg

Abstract

The importance of producing a certificate of unsat-
isfiability is increasingly recognized for high perfor-
mance propositional satisfiability solvers. The leading
solvers develop a conflict graph as the basis for deriv-
ing (or “learning”) new clauses. Extracting a resolu-
tion derivation from the conflict graph is theoretically
straightforward, but resolution proofs can be extremely
long. Several other certificate formats have been pro-
posed and studied, but the verifiers for these formats
are beyond any hope of automated verification in their
own rights. However, they enjoy the advantages of be-
ing easy to implement and reasonable in their space re-
quirements. This paper reports progress on developing
a practical system for formal verification of a more com-
pact certificate format, and experimental comparisons
are presented. A format called RUP (for Reverse Unit
Propagation) is introduced and two implementations
are evaluated. This method is an extension of conflict
clause proofs introduced by Goldberg and Novikov.

1 Introduction

With the explosive growth of Sat Modulo Theories
(SMT) in the last few years, the focus in propositional
SAT solvers is shifting to unsatisfiable formulas, be-
cause these are the negated theorems to be proved
in many applications. Producing proofs and indepen-
dently checking them has received limited attention.
Two ground-breaking efforts are Goldberg and Novikov
(Goldberg & Novikov 2003), who built on BerkMin
(Goldberg & Novikov 2002), and Zhang and Malik
(Zhang & Malik 2003b; 2003a), who built on Chaff
(Moskewicz et al. 2001). Sinz and Biere also discuss
proof traces and checking (Sinz & Biere 2006). In all
these cases, the authors are checking their own solvers.
It is important to get our propositional house in order
to provide an adequate foundation for the more sophis-
ticated challenge of producing independently checkable
proofs for SMT.

The author has argued elsewhere (Van Gelder 2002a)
that solvers should be able to produce easily verifiable
certificates to support claims of unsatisfiability. The

Copyright (© 2007, authors listed above. All rights reserved.

gold standard proposed is that the language of certifi-
cates should be recognizable in deterministic log space,
a very low complexity class. Intuitively, an algorithm
to recognize a log space language may re-read the in-
put as often as desired, but can only write into working
storage consisting of a fixed number of registers, each
able to store O(log L) bits, for inputs of length L.

The rationale for such a stringent requirement is that
the buck has to stop somewhere. How are we to trust
a “verifier” that is far too complex to be subjected to
an automated verification system? And how are we to
trust that automated verification system? Eventually,
there has to be a verifier that is so elementary that we
are satisfied with human inspection.

An explicit resolution proof is one in which each de-
rived clause is stated explicitly, along with the two ear-
lier clauses that were resolved to get the current clause.
It is not hard to see that an explicit resolution proof can
be recognized with a fixed number of working-storage
registers, provided they can store indexes to any point
in the input. Thus this language is in deterministic log
space.

The first known attempt to have satisfiability solvers
produce proofs to be verified by an independently writ-
ten verifier occurred in the verification track of the
SAT-2005 solver competition. Results from that track
were initially disappointing because only one solver had
any success, and its proofs were extremely long. How-
ever, a recent short paper shows that this was due to
an inefficiency in that solver; its procedure to generate
a resolution proof from a conflict graph had a surpris-
ing worst case that was exponential in the size of the
conflict graph (Van Gelder 2007a). The procedure was
revised and proofs got shorter by several orders of mag-
nitude, demonstrating that production of proofs and
verification of proofs is now within reach for substan-
tial benchmarks.

A detailed specification for an explicit resolution
derivation (%RES) was used for the verification track
of the SAT—2005 solver competition. We have a verifier
for the %RES format (named checker3) that is able to
handle proofs up to about 750 gigabytes (GB) on cer-
tain available compute servers. The limitation on many
systems is that only 40 bits of memory address are us-

able, which is 1024 GB, although the CPU chip is called
“64-bit”.

The verifier accepts two
mats and one ASCII format. Specification
documents and software are available at:
http://www.cse.ucsc.edu/~avg/ProofChecker/.

Notice that a much more compact format, called res-
olution proof trace (%RPT), states the two operands
needed for each resolution operation, but does not ma-
terialize the clause. This language has little hope for
log-space recognition because there is not enough work-
ing storage for the verifier to materialize a clause. How-
ever, it is useful as an intermediate format that can be
post-processed into the %RES format for final checking
by an independent checker.

For the remainder of this paper, Section 2 reviews
conflict graphs; Section 3 presents an attractive proof
format named RUP for Reverse Unit Propagation that
is easy-to-implement, general, and compact. Section 4
shows some additional properties of RUP and outlines
how to use them to reap the benefits of RUP without
paying a major performance penalty, by using the ideas
of conflict graphs. The ideas are implemented in the
program rupToRes. Section 5 experimentally compares
several approaches for proof generation and checking,
and Section 6 draws conclusions.

2 A Quick Review of Conflict Graphs

Most, if not all, leading SAT solvers use a conflict graph
data structure to infer conflict clauses. This section
reviews them briefly, for self-containment.

Figure 1 illustrates a conflict graph. Our nota-
tion varies from other papers (Zhang et al. 2001;
Beame, Kautz, & Sabharwal 2004) to better reflect the
actual data structures used by the programs; e.g., ar-
rows indicate the reference direction in the data struc-
tures rather than the implication direction. Also, the
conflict vertex is associated with a clause containing
y (rather than a separate vertex for y), in agreement
with the data structures and the original presentation
(Marques-Silva & Sakallah 1999).

Each graph vertex is associated with a different lit-
eral, no complementary literals appear, and the conflict
vertex is associated with the constant false, denoted by
“1.” The vertex for each implied literal (in circles), in-
cluding false, is labeled with an “input” clause, called
the antecedent clause. Decision literals (in boxes), also
called assumed literals or guessed literals, do not have
an antecedent clause. Solid arrows point to vertices as-
sociated with the current (highest) decision level, while
dotted arrows point to vertices that were assumed or
implied at earlier (lower) decision levels. Each decision
literal is on a different decision level.

For our purposes an “input” clause is either a clause
in the original formula or a clause that was derived be-
fore the most recent decision literal was guessed, hence
the quotes.

Recent papers have observed the connection between
conflict graphs and resolution (Goldberg & Novikov

binary for-

1UIP Clause Conflict Antecedent

(1, X2, X3, yl

Decision Clause

[paQ7_'b] . [p7_'.a7t}

[X1,%2, %3]
FirstNewCut Clause

[p,—a,—b]
RelSat Clause

Figure 1: Conflict graph with several cuts shown.

2003; Zhang & Malik 2003b; Beame, Kautz, & Sab-
harwal 2004; Van Gelder 2005). Given a cut, the an-
tecedent clauses on the conflict side of the cut (i.e., the
side containing false) logically imply the conflict clause,
which consists of the negations of those reason-side lit-
erals that are adjacent to some vertex on the conflict
side (e.g., in the figure, for the first UIP cut, —p, a,
and —t¢ are adjacent to some conflict-side vertex). Of
course, by the completeness of resolution there must be
a resolution derivation of the conflict clause from the
antecedent clauses. In the discussion, we shorten “res-
olution derivation” to “derivation”.

2.1 Trivial Resolution Derivation (TVR)

Several restricted forms of resolutions have been defined
and studied over the years. A linear derivation is one
in which the first clause is an “input” clause, called
the top clause, and each resolution operation has the
previous clause in the derivation as one operand; the
other operand may be an “input” clause or an earlier-
derived clause of the linear derivation. It is well known
that linear resolution comprises a complete system, i.e.,
every unsatisfiable set of clauses has a linear refutation.

An input derivation is a linear derivation with the
further restriction that the “other” operand must be an
“input” clause; earlier-derived clauses of the same linear
derivation are not acceptable. This does not provide
completeness.

Beame et al. (Beame, Kautz, & Sabharwal 2004)
define a trivial resolution derivation (TVR) to be an
input derivation with the further restriction that no
clashing variable occurs in more than one resolution
operation. They show (their Proposition 4) that the
conflict clause can be derived by a trivial resolution
derivation using the antecedent clauses as the “input”
clauses, and using the antecedent of the false vertex
as the top clause. Using a correct order is crucial to
achieve a successful trivial resolution derivation.

A difficulty with TVR scheme is that a correct or-
der is not readily accessible from the data structure of
the conflict graph. To obtain a valid TVR order, the
following rule should be obeyed:

Cut-Crossing Rule:

Choose a literal all of whose incoming edges originate
from a vertex whose literal has already been resolved
upon, or from the false vertex (reworded from Beame
et al., op cit.).

Some other data structure is needed to provide or com-
pute an appropriate order, and several orders may work.

Many solvers, based on the grasp/chaff strategy,
create a sequence of “implied” literals in the chrono-
logical order in which they entered the conflict graph.
(This sequence is needed to undo variable assignments
during backtracking.) It is not difficult to show that
one order that satisfies the cut-crossing rule is the re-
verse chronological order. Thus TVR is implemented
in such solvers, at least implicitly, in the procedure that
constructs conflict clauses.

2.2 Pseudo-Unit Propagation (PUP)

Although TVR uses the minimum number of resolu-
tion operations (exactly one for each vertex other than
false on the conflict side), it might produce a deriva-
tion whose length is quadratic in the size of the conflict
graph, because clause sizes can range up to the num-
ber of vertices in the conflict graph. We now describe a
different extraction method, which we call pseudo-unit
propagation (PUP). It uses more operations, but pro-
duces shorter clauses, in most cases. PUP is of interest
also because it is a natural order, in a sense that will
be explained shortly.

We define a pseudo-unit clause on = at a particular
vertex z of the conflict graph to be a clause containing
only the literal x and some subset of the literals of the
conflict clause being derived. No other literals in the
conflict graph are present. Therefore, if the conflict
clause has w literals, a pseudo-unit clause has at most
(w + 1) literals, by definition. If the conflict clause is
the empty clause, then pseudo-unit clauses are true unit
clauses.

Among the literals of the pseudo-unit clause that are
also in the conflict clause, one might be the negation of
a unique implication point (UIP) literal (Marques-Silva
& Sakallah 1999), while the others are literals that were
falsified at lower decision levels. The UIP literal might
be the decision literal at the current decision level.

The extraction method works as follows: Visit ver-
tices on the conflict side of the cut in a reverse topo-
logical order (using edge orientations illustrated in Fig-
ure 1). A topological order may be found by a depth-
first search from the false vertex, or other means. When
visiting vertex z, derive a pseudo-unit clause on z, if
necessary, which we’ll call pup(z).

If the chronological sequence in which the vertices
were implied into the conflict graph is known, the
derivation of pseudo-unit clauses can be performed in
forward chronological order. In this case it closely mim-
ics the solver’s unit-clause propagation, so is a natural
order in this sense.

To derive pup(z), suppose the antecedent clause is

ante(z) = [z,71, ..., k). Then for 1 < i <k, either 7;
is in the conflict clause being derived or y; is a vertex
in the conflict graph (and on the conflict side) whose
pseudo-unit clause has been derived already. Start a
linear derivation with ante(z). If no y; are on the con-
flict side, we are done, and pup(z) = ante(z). Oth-
erwise, for each y; on the conflict side, resolve pup(y;)
with the current resolvent in the linear derivation. The
final resolvent is pup(z). At the false vertex, false can
be discarded from pup(false), leaving the conflict clause
that was to be derived. The number of resolution oper-
ations is the number of edges to vertices on the conflict
side.

2.3 Comparison of TVR and PUP

In summary, both the TVR and PUP methods guaran-
tee that total derivation size is polynomial in the size
of the conflict graph, but have nonlinear worst cases.
Either method might be an order of magnitude better
than the other for a particular conflict graph.

Experimental data on industrial benchmarks (not
presented in detail) shows that PUP derivations are
60% longer than TVR on average and are longer on
about 74% of the benchmarks tested. The significance
of this data and take-home message is: A program that
generates resolutions “on-line” during unit clause prop-
agation does essentially the same resolutions as a PUP
after-the-fact system, and most likely produces more
verbose resolution derivations (aside from the on-line
resolutions that turn out to be unneeded), compared to
the after-the-fact TVR method.

3 Reverse Unit Propagation (RUP)
Proofs

Reverse Unit Propagation (RUP) proofs are based
on the idea of conflict clause proofs from Goldberg
and Novikov (Goldberg & Novikov 2003). A clause
C =z, ..., zt] is a RUP inference from formula F' if
adding the unit clauses [z;], for 1 < i < k, to F' makes
the whole formula refutable by unit-clause propagation.
A RUP proof from an initial formula Fy is a sequence
of clauses C;, for ¢ > 1, such that for all ; C; is a RUP
inference from F;_1, where F; = F;_1 U{C}}, for j > 1.
If some C; is the empty clause, the sequence is called a
RUP refutation.

Goldberg and Novikov considered only the case where
all conflict clauses C; are added to the initial formula
Fy, in chronological order, giving a sequence of formu-
las, F; = F;_1U{C,}. They stated without proof (using
different terminology) that clause C; is a RUP inference
from Fj_; for all j > 1; that is, the sequence of all de-
rived conflict clauses is a RUP proof. (They probably
envisioned a PUP proof of the empty clause for each
RUP inference, as described in Section 2.3, and consid-
ered the observation to be obvious.) Later, Beame et
al. (Beame, Kautz, & Sabharwal 2004) proved (again,
using different terminology, their Propositions 3 and 4)
that

Proposition 3.1 A conflict clause defined by any cut
in a conflict graph is a RUP inference from the for-
mula consisting of the antecedent clauses in the conflict
graph, and moreover, the conflict clause could be de-
rived with a “trivial resolution derivation,” as discussed
in Section 2.1.]

Our definition generalizes Goldberg and Novikov only
to the extent that we do not require the derived clauses
to be conflict clauses (i.e., clauses based on a cut of some
conflict graph induced by unit-clause propagation in the
solver). This opens the door for solvers using other data
structures and inference rules to use the RUP format.

In general, search-based solvers use reasoning to re-
duce searching that can be classified as pre-order or
post-order (Van Gelder 2002b). (Recently the term
“look-ahead” has been used for pre-order reasoning.)
Conflict analysis (also called clause learning and sev-
eral other names) is post-order, whereas binary-clause
analysis and equivalent-literal analysis and similar op-
erations are pre-order. The RUP format can be used
to record both kinds of reasoning; it is not limited to
programs that only perform conflict analysis.

We have developed a detailed specification of a RUP
refutation (fileformat rup.txt at the URL in Sec-
tion 1 and elsewhere), which was accepted in the verifi-
cation track of the SAT-2007 solver competition. The
main point of this section is to argue that a RUP refu-
tation can be verified to the same level of confidence
as an explicit resolution proof (see Section 1), i.e., in
deterministic log space.

Digraph reachability cannot be recognized in deter-
ministic log space, and it is easily reduced to unit clause
propagation. Therefore, at first blush, verifying a RUP
proof is necessarily in a higher complexity class (e.g.,
P-complete). We claim that our supporting software
provides sufficient extra information to permit a RUP
proof to be verified in log space.

The system works as follows. The input consists of a
formula Fy and a sequence of clauses C;, 1 < ¢ < k that
is claimed to be a RUP refutation of Fj. One program
composes two sequences of extended formulas,

F;, = F;_1U{C;} .

where ?J denotes the set of unit clauses obtained by
negating C;. A second program attempts to refute each
G; for 1 < j <k, using only unit-clause resolution, and
outputs an explicit resolution proof if it is successful;
call this proof P;.

Neither of these programs fits the log-space criterion.
But now, our trusted verifier checker3 is invoked to
verify that P; is a correct refutation of G;. This re-
moves the need to trust the program that produced P;.

If this whole system checks P; for 1 < j < k with-
out detecting an error, then the RUP proof of C} has
been verified, subject to correctness of the generated
sequences F; and G;. If Cj is the empty clause, the
RUP refutation of F;y has been verified.

It remains to verify that the sequences F; and G|
produced by the first program are what they purport
to be, i.e., that they satisfy their defining equations,
(1). Of course, we do not even think about trusting the
program that generated these sequences! It’s csh and
awk scripts, for goodness sake! However, given a reason-
able encoding of Fy, C}, Fj, and Gy, it can be checked
in log space that the sequences F; and G satisfy their
defining equations.

Partly as a by-product of being in log space, the
checking system is massively parallel: each j can be
processed independently. Also, as pointed out by Gold-
berg and Novikov, by starting the checking at 7 = £ and
working backwards, it might be determined that some
RUP clauses are not used to derive any later RUP clause
(including the empty clause), and such clauses need not
be checked. Unfortunately, it is not straightforward to
use this optimization in conjunction with paralleliza-
tion.

4 Have Your Cake and Eat It Too?

The RUP format is reasonably compact, is the easi-
est to implement of all formats proposed to date, and
has flexibility to accommodate various solver strategies.
Section 3 showed that RUP proofs can be transformed
into a form that can be checked in log space, which
is theoretically appealing. However, the procedure is
redundant, and in terms of time, practical experience
shows that it is excessively slow.

The main point of this section is to argue that the
RUP format can also be expanded efficiently into the
“%RES” format (which then can be checked in log space).
Essentially we show that the converse of Proposition 3
from Beame et al. (Beame, Kautz, & Sabharwal 2004)
holds (see Proposition 3.1 in Section 3). This provides
hope that we can have our cake (an easy and flexible
RUP implementation) and eat it too (efficiently check
the output).

Continuing with the notation of Section 3, let C; =
[z, 1 <i < k] be a RUP inference from formula F;_;.
First, apply unit-clause propagation to F;_; (this can
be incremental from the result of unit-clause propaga-
tion on Fj_p for j > 2). Each derived unit clause is
associated with an antecedent clause, as usual. Now
put unit clauses z; (1 < i < k; this is the negation
of C;) in the queue for further unit-clause propagation
and let it run to completion. All unit-clauses derived
(including false), both during this process and during
the “preprocessing” of F;_1, are possible vertices of the
resulting conflict graph. If false is not derived, C; does
not qualify as a RUP inference. Otherwise, the actual
conflict-graph vertices are those reachable from false
through a chain of antecedents.

As described in Section 2.1 and implemented in
zchaff and similar solvers, by accessing the vertices
in the reverse of the chronological order in which their
unit clauses were derived, a correct order for a “trivial
resolution derivation” of C; is achieved.

To keep the process incremental, once C; has been
derived by resolution, the unit clauses derived after
putting z; in the queue need to be backed out; earlier-
derived unit clauses can be kept and re-used for Cj;.
Now add C; to F;j_; as though it were a conflict clause;
in particular, if two literals to “watch” cannot be found,
either a conflict or a new unit clause is derived in Fj.
Otherwise, the unit-clause “preprocessing” of F;_; car-
ries over to F; intact.

We developed a prototype implementation of the
above proof transformation, called rupToRes, using
zchaff as a base. The main idea is to enqueue the
unit clauses z; all at decision level 1 as though they
were decision literals, or “guesses”. All earlier-derived
unit clauses are associated with decision level 0. As
“decision literals,” the z;’s do not have antecedents. If
some of the z;’s were derived as unit clauses at level 0
earlier (and this does happen in practice), they are not
enqueued redundantly. Then the derived clause actu-
ally subsumes C;.

The big difference from normal operation is that
zchaff and similar solvers expect each succeeding guess
(z1, T2, ...) to be at a higher decision level. But the
conflict analysis uses first UIP, and would not derive
the desired clause if each z; were at its own decision
level. Referring to Figure 1, the “Decision Cut” would
be needed, instead of the “First UIP Cut”, which is
implemented.

However, by labeling all the z;’s as being at deci-
sion level 1, the already implemented conflict analysis
derives the desired clause, C;. Also, the already im-
plemented procedure for backtracking out of the vari-
able assignments that were made at decision level 1
works without change, as does the already implemented
procedure for adding the newly derived clause to the
database. Some tweaks were needed so the program
did not get upset that there were multiple “decision lit-
erals” at one level, and so that it never tried to make
any guesses of its own.

5 Experimental Results

For verification to become practical it is crucial to
know what magnitude of resources are needed for in-
dustrial benchmarks, or other benchmarks of interest.
Two ground-breaking papers in this area study com-
pact proof formats: Goldberg and Novikov (Goldberg
& Novikov 2003) and Zhang and Malik (Zhang & Malik
2003b). This paper provides the first in-depth data on
explicit resolution proofs as well as comparison of vari-
ous formats. A central question is whether RUP proofs
can viably be post-processed into an explicit resolution
format, relieving implementers of the burden of produc-
ing an explicit format directly out of their solvers.

The conflict clause proofs of Goldberg and Novikov
have been discussed in Section 3. The RUP format
consists of one line per RUP clause, in ASCII DIMACS
format, i.e., O-terminated.

The resolve-trace format reported by Zhang and Ma-
lik consists of one ASCII line for each derived nonempty

conflict clause, in chronological order. That line pro-
vides the index for the new clause and lists the ear-
lier clauses, by their indexes, that should be resolved
in the order listed to produce the new clause. Thus
each such line describes one “trivial resolution,” as de-
fined in Section 2.1. Recall that the order for a triv-
ial resolution is not unique, in general, but also is not
arbitrary. The final derivation of the empty clause is
presented in a different, more involved, format. The
system is implemented as a solver, zchaff, and a veri-
fier zverify_df. The most recent release as of the ex-
periments was 2005.11.15. The trace format proposed
by Sinz and Biere (Sinz & Biere 2006) is essentially the
union of the RUP and resolve-trace formats (with an
option to omit the RUP part).

A “Special Edition” of zchaff, call it zchaffSE, is
dated March 2005 and was entered into the verifica-
tion track of the SAT-2005 competition. It combines
the functionality of zverify_df into zchaff and writes
the full resolution derivation in the binary format spec-
ified for SAT-2005 and identified by a header begin-
ning “%RESL32.”. (Data produced during SAT-2005
for zchaffSE is skewed due to the issues discussed in
(Van Gelder 2007a).) This program accumulates all the
data that allows it to reconstruct derivations of conflict
clauses, then when unsatisfiability has been established,
it identifies which conflict clauses are used to derive the
final level-zero conflict (the unsat core), and only writes
resolution derivations for these clauses. Clearly, this
was a substantial implementation burden, even starting
with zchaff and its companion program zverify_df,
and a major purpose of this study is to see if that bur-
den can be lightened by using the RUP format.

As described in more detail elsewhere (Van Gelder
2007a), there were minor modifications made for
zchaff to include the empty-clause derivation as the
last line, in the same resolve-trace format as the
nonempty clauses, and for zverify df to expect it;
this obviated the need to also provide the final con-
flict graph. Corresponding modifications were made
to zchaffSE. The data reported is for the mod-
ified versions, called zchaffJ07, zverifyJO07, and
zchaffJO7SE, in the tables. A new version of zchaff
and zchaff df (2007.3.12), posted after our experi-
ments were run, gives very similar results.

To facilitate studying RUP derivations, we wrote
scripts to convert resolve-trace files into RUP proofs,
line for line. The version of BerkMin used by Goldberg
and Novikov for their paper is not publicly available.

As described in Section 4, we developed rupToRes
to transform a RUP proof into %RES format. The pro-
gram checker3 was used to verify %RES proofs, using
the standard mmap facility to simulate having the entire
proof file in memory. The %RESL32 format was designed
so the file could be processed in situ as an array of 32-
bit ints on x86 (little-endian) architectures.

Computations were done on AMD Opteron systems
with 2.6 GHz 64-bit dual-core CPUs and 8 GB of real
memory. For checker3, it is best if the system has

Table 1: Proof length comparisons.

Sizes are thousands of literals, numbers, variables, or clauses. Ratios are to length of Full Resolution.

GNO3 Input Full Resolution Resolve-Trace RUP rupToRes

Benchmark Vars Cls lits cls nbrs ratio cls lits ratio cls lits ratio cls
5pipe 9 195 15,729 60 219 0.014 13 953 0.061 13 17,590 1.12 268
5pipe_1_ooo 8 188 96,469 276 703 0.007 31 5,067 0.053 31 122,457 1.27 495
5pipe_5_000 10 241 98,566 232 588 0.006 25 2,741 0.028 25 99,383 1.01 470
6pipe 16 395 101,712 242 869 0.009 48 7,726 0.076 48 175,149 1.72 697
6pipe_6_000 17 546 | 509,608 722 1,495 0.003 53 7,942 0.016 53 530,143 1.04 1,260
Tpipe 24 751 334,496 416 | 1,625 0.005 82| 18,332 0.055 82 465,423 1.39 1,260
9vliw_bp_mc 20 179 60,817 254 789 0.013 44 4,447 0.073 44 79,148 1.30 453
exmp’72 44 149| 483,394 1,143| 1,962 0.004 27 3,612 0.007 27 472,453 0.98 1,280
exmp73 61 220|1,796,211 2,100| 4,679 0.003 52| 11,849 0.007 52| 1,608,988 0.90 2,335
exmp74 41 141| 279,970 828 | 1,978 0.007 34 3,235 0.012 34 282,250 1.01 982
exmp’75 85 284| 542,114 1,042| 2,098 0.004 33 3,621 0.007 33 534,820 0.99 1,332
barrel7 4 14 5,243 59 559 0.107 17 1,130 0.216 17 6,076 1.16 74
barrel8 5 20 76,546 213 | 1,996 0.026 36 3,944 0.052 36 76,481 1.00 227
barrel9 9 37 83,886 203 | 1,042 0.012 36 2,726 0.032 36 80,497 0.96 233
longmult12 6 193,223,323 10,042 | 49,940 0.015 493 |117,595 0.036 493|11,672,980 3.62 27,339
longmult13 7 204,004,512 10,328 | 55,124 0.014 545 | 138,413 0.035 545 14,139,745 3.53 30,833
longmult14 7 22]2,662,334 8,226 (39,436 0.015 419| 90,568 0.034 419 | 9,538,940 3.58 23,405
longmult15 8 24| 583,008 3,592|11,609 0.020 199 | 23,256 0.040 199| 1,460,110 2.50 7,400
c3540 3 9 81,789 724 1,871 0.023 42 4,091 0.050 42 202,756 2.48 1,326
c5315 5 15 9,437 359 718 0.076 22 668 0.071 22 13,118 1.39 379
c7552 8 20 23,069 544 | 1,237 0.054 34 1,565 0.068 34 36,279 1.57 695
w1045 17 52 47,186 320 437 0.009 5 294 0.006 5 48,366 1.03 372
w10_60 27 84| 617,611 1,530| 1,956 0.003 14 2,246 0.004 14 619,099 1.00 1,606
w10.70 33 10412,581,594 4,328 | 6,136 0.002 33 7,658 0.003 33| 2,923,503 1.13 4,731
fifo8-200 130 354 | 206,569 697 | 2,377 0.012 47 4,980 0.024 47 215,206 1.04 1,051
fifo8-300 195 531| 601,883 1,336 5,322 0.009 90| 14,511 0.024 90 685,761 1.14 1,891
fifo8-400 260 708|9,148,826 5,258 | 16,038 0.002 201 | 87,096 0.010 201 | 11,905,078 1.30 6,391

an available local disk large enough to store the proof.
Although a remote NFS-mounted disk has been used
successfully to verify a 40 GB proof in 4.6 CPU min-
utes, the CPU utilization was only 3%, and the elapsed
time was well over two hours. Using a local disk brought
CPU utilization up to 10-20%. For proofs that fit in
real memory the CPU utilization was near 100%. The
programs other than checker3 have a much smaller
memory requirement and run easily on 32-bit configu-
rations (which have 4 GB of memory address space).

The benchmarks used are those reported by Goldberg
and Novikov, to facilitate comparisons; many are also
reported by Zhang and Malik. Please see those papers
(Goldberg & Novikov 2003; Zhang & Malik 2003b) for
additional details about them. On some benchmarks
the “000” in the file name is omitted in some papers,
but retained in our tables. Times are in seconds unless
stated otherwise.

5.1 Space Comparisons

The first question is how proof lengths compare for the
various formats. In most cases disk space is more of
a limiting factor than time. Table 1 shows our re-

sults for the 27 benchmarks used by Goldberg and
Novikov. There are wide fluctuations between their
number and ours, benchmark by benchmark, but their
“conflict clause proofs” and our RUPs are of compara-
ble sizes, overall. We also checked the corresponding
numbers in Zhang and Malik, but found no meaningful
correlations: apparently zchaff underwent extensive
tuning since their 2003 paper.

Our first new finding is that our full resolution proofs
are 100 times shorter than the estimates of Goldberg
and Novikov (they had no program to produce such
proofs). Some of this effect might be due to the fact that
our proofs are already trimmed to an unsatisfiable core
(Zhang & Malik 2003a), as far as conflict clauses go. We
conjecture (the BerkMin code with proof generation is
not public) that much of the difference is due to the
Goldberg and Novikov estimates being based on an on-
line PUP method for converting the conflict graph to a
resolution derivation (see Section 2.3).

Another important difference in our results is that
Goldberg and Novikov saw a trend for the relative
size advantage of “conflict clause proof” over resolu-
tion proof to increase dramatically for larger formulas

Table 2: Proof timing comparisons. Times are CPU seconds.

GNO3 zchaffJO7 zchaffJO7SE checker3 Res.Trace zverifyJO7 rupToRes +
benchmark Time Increment Time Increment Time checker3 Time
Spipe 11 4 2 4 1 7
Spipe-1_ooo 25 12 13 4 2 32
5pipe_5_o00 29 12 12 11 2 23
6pipe 80 23 12 31 3 61
6pipe_6_ooo 142 58 67 6 4 110
Tpipe 254 54 39 16 5 169
9vliw_bp_mc 39 14 8 2 2 53
exmp72 54 55 56 19 2 86
exmp73 219 179 27 5 4 285
exmp74 70 41 33 24 2 60
exmp75 128 59 64 1 3 114
barrel7 6 1 1 0 0 6
barrel8 27 9 9 1 1 38
barrel9 42 11 11 13 1 23
longmult12 1,102 445 57 143 21 3681
longmult13 1,663 343 89 163 23 4887
longmult14 974 369 44 153 16 3775
longmult15 257 72 69 37 5 625
c3540 11 9 11 2 1 36
c5315 3 2 1 1 0 4
c7552 8 3 3 2 1 11
w1045 4 5 6 0 0 9
w10.60 27 60 73 10 2 88
w10.70 97 250 391 2 4 394
fifo8-200 136 27 27 41 3 56
fifo8-300 370 76 77 66 6 184
fifo8-400 2,737 1,089 397 75 16 2553

in the same family; they cited the pipe and fifo fami-
lies. In our data the trend is much less pronounced, or
absent, for RUP vs. resolution proofs. Again, this may
be due to their estimates assuming a different strategy
for generating resolution proofs.

In terms of economy of disk space, resolve-trace is the
clear winner, hovering around 1% or less of the space
needed for a full 4RES proof. RUP also is quite compact,
typically about 5%.

Another compact binary format for SAT—2005, called
Resolution Proof Trace (%RPT), contains exactly four
numbers per derived clause and is not shown (see the
“Full Resolution cls” column for the numbers of de-
rived clauses). Although %RPT is occasionally shorter
than resolve-trace, it is usually 1.5 to 2 times longer,
by number count. However, %RPT includes the clashing
literal and thereby is able to express a generalization of
resolution (Van Gelder 2005) that cannot be expressed
with resolve-trace.

The last three columns of Table 1 show data for
the JRES proofs generated from the RUP proofs by
rupToRes. In most cases the ratio is near 1.00, but
the maximum is 3.62. This variation occurred although
the same conflict clauses, in the same order, were the
bases for both proofs. This reinforces the observation

that there are many possible resolution derivations of a
given conflict clause from a given set of input clauses,
and their sizes can vary widely.

5.2 Time Comparisons

Table 2 shows some data on CPU times for proof gen-
eration and verification. The first data column shows
solve time without any kind of proof generation. This
is usually the major cost. The overhead to gener-
ate a full (%RES) refutation, shown in the second data
column, is substantial, sometimes exceeding the solve
time. Checking the proof (third data column) usually
requires comparable time.

Again we notice that longmult 12, 13, and 14 behave
differently from the other benchmarks. Here the verifi-
cation time is much less than the proof generation over-
head, whereas usually they are about the same. Also,
the RUP files of these three benchmarks , when trans-
formed by rupToRes into %RES files, were more than 3.5
times the sizes of the original %RES files, whereas most
other benchmarks transformed into %RES files about the
same size as the originals, as noted in Table 1.

The overhead to generate the resolve-trace is more
moderate, but a higher fraction than reported by Zhang
and Malik (Zhang & Malik 2003b); their fractions were

usually 0.04-0.05 with only one exceeding 0.10. On
the other hand, the zverifyJO07 times are considerably
lower, relative to the solve time, than previously re-
ported. This is logical, because the modifications made
for this paper (see beginning of this section) transferred
some of the workload from the verifier to the solver.
Clearly this combination is faster than producing and
checking an explicit %RES proof, mainly due to not writ-
ing to disk and reading back the explicit proof. The
trade-off is that it needs to construct the all the con-
flict clauses in memory, meaning that it is limited by the
sum of real memory and swap space. By using mmap,
checker3 is able to use whatever disk space the file
actually occupies as “memory.” Also, the algorithm is
somewhat more involved, compared to checker3, be-
cause it needs to construct clauses, manage memory,
and so on.

Comparing the last column to the sum of data
columns 2 and 3 shows the time penalty for using the
RUP format to record the proof, followed by rupToRes
and checker3 to verify it, as opposed to producing the
%RES proof directly. In most cases the penalty is negli-
gible to moderate. But for the longmult benchmarks it
is substantial.

Naively verifying RUP clause by clause is very expen-
sive. We include one data point to make this concrete.
For 5pipe, one of the easier benchmarks considered, the
RUP proof had about 13,000 clauses to check. Each
incremental RUP proof was validated as described in
Section 3. We used zchaffJO7SE to generate the %RES
unit resolution refutation, which it does if the conflict is
discovered during “preprocessing.” A flag was added to
tell zchaffJO7SE to fail if it could not derive the empty
clause with unit propagation only. That unit resolution
refutation was then verified with checker3. Although
each program took about 1/2 second per RUP clause,
the total was overwhelming, amounting to 4.2 CPU
hours. In contrast, rupToRes followed by checker3
took 7 seconds.

6 Conclusion

We compared several approaches to verification of
propositional proofs of unsatisfiability. Such proofs
amount to proofs of propositional theorems, and were
considered intractable due to their length, until re-
cently. Our emphasis was on making it practical to
separate the developer from the verifier. All previously
reported efforts we are aware of consisted of the devel-
opers “verifying” their own work and no one else being
compatible.

We developed a program rupToRes to expand a RUP
proof into an explicit %RES proof, as well as formally
specifying both formats for other developers to use. We
developed a program checker3 that is able to check
%RES proofs up to 750 GB in theory, and we actually
checked a 56 GB proof in 5.5 CPU minutes, although it
was 3.2 hours of elapsed time because the proof resided
on an NFS file system. The data suggests that CPU

time varies linearly with proof length, as predicted by
theoretical analysis.

We found that resolution proofs were much smaller
than estimated by Goldberg and Novikov. For problems
comparable to the benchmarks tested, it is quite practi-
cal to produce RUP proofs, and expand them offline to
%RES proofs which can be checked in deterministic log
space. We regard having a very simple-to-verify format
to be crucial to having complete independence of and
confidence in the verifier.

We found that zverify df was considerably faster
than checker3, after being fixed (be sure to use a ver-
sion dated 2007.3.12 or later). However, the format
in the public version is not formally specified, and is
tuned for zchaff or a very similar solver. To the best
of our knowledge, no other developer has used that for-
mat. Our tests are based on a simplification of the
format used by the public version. Sinz and Biere re-
cently proposed a format that combines our version of
resolve-trace with RUP. We have not had time yet to
experiment with their software.

The RUP format (described in more generality than
Goldberg and Novikov, but essentially the same syntax)
has been shown to be almost as practical to verify as
other formats that are considerably more difficult to
implement.

The work described in this paper has made it possible
for developers to add RUP output routines with rela-
tive ease to their favorite solvers and enter them in the
“verified unsatisfiable” track of the annual SAT Solver
Competitions.

The theme of all the proof options offered in the SAT
Solver Competitions is that we only need to trust one
very simple program: checker3, or another implemen-
tation that does the same task. All the other soft-
ware (e.g., zchaff JO7SE or rupToRes or another solver)
prepares input for checker3, but checker3 checks the
claimed proof against the original CNF formula. If the
proof is correct, the formula is verified to be unsat-
isfiable, and it does not matter if the programs that
prepared the proof are buggy.

Although most of the benchmarks in the suite we
adopted from Goldberg and Novikov behaved pre-
dictably and consistently, longmult 12, 13, and 14 were
outliers. Understanding what aspects of those bench-
marks causes their variant behavior deserves future
study, and might lead to additional insights about solv-
ing such problems, as well as generating proofs.

References

Beame, P.; Kautz, H.; and Sabharwal, A. 2004. To-
wards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Re-
search 22:319-351.

Goldberg, E., and Novikov, Y. 2002. Berkmin: a fast
and robust sat-solver. In Proc. Design, Automation
and Test in Europe, 142-149.

Goldberg, E., and Novikov, Y. 2003. Verification of
proofs of unsatisfiability for cnf formulas. In Proc.
Design, Automation and Test in Europe, 886-891.

Marques-Silva, J. P., and Sakallah, K. A. 1999.
GRASP-a search algorithm for propositional satisfi-
ability. IEEE Transactions on Computers 48:506-521.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT
solver. In 39th Design Automation Conference.

Sinz, C., and Biere, A. 2006. FExtended resolu-
tion proofs for conjoining bdds. In Ist Intl. Com-
puter Science Symp. in Russia (CSR 2006), LNCS
3967. St. Petersburg: Springer-Verlag. (see also
http://fmv.jku.at/tracecheck).

Van Gelder, A. 2002a. Decision procedures should be
able to produce (easily) checkable proofs. In Workshop

on Constraints in Formal Verification. (in conjunction
with CP02).

Van Gelder, A. 2002b. Extracting (easily) check-
able proofs from a satisfiability solver that employs
both preorder and postorder resolution. In Seventh
Int’l Symposium on AI and Mathematics. (Also at
http://cse.ucsc.edu/~avg/Papers/sat-pre-post
.pdf.).

Van Gelder, A. 2005. Pool resolution and its relation
to regular resolution and DPLL with clause learning.
In Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), LNAI 3835, 580-594. Montego
Bay, Jamaica: Springer-Verlag.

Van Gelder, A. 2007a. Verifying propositional
unsatisfiability: Pitfalls to avoid. In SAT-
2007. Lisbon: Springer-Verlag. (preprint at
http://www.cse.ucsc.edu/~avg/Papers/proofs-
sat07.pdf).

Van Gelder, A. 2007b. Verifying rup proofs of propo-
sitional unsatisfiability: Have your cake and eat it too.
http://www.cse.ucsc.edu/~avg/ProofChecker/
proofs-isaim08-long.pdf.

Zhang, L., and Malik, S. 2003a. Extracting small un-
satisfiable cores from unsatisfiable boolean formula. In
Proc. Theory and Applications of Satisfiability Testing.

Zhang, L., and Malik, S. 2003b. Validating sat solvers
using an independent resolution-based checker: Prac-
tical implementations and other applications. In Proc.
Design, Automation and Test in Europe.

Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik,
S. 2001. Efficient conflict driven learning in a boolean
satisfiability solver. In ICCAD.

