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Abstract

Developing scalable coordination algorithms for multi-agent
systems is a hard computational challenge. One useful ap-
proach, demonstrated by the Coverage Set Algorithm (CSA),
exploits structured interaction to produce significant compu-
tational gains. Empirically, CSA exhibits very good anytime
performance, but an error bound on the results has not been
established. We reformulate the algorithm and derive an on-
line error bound for approximate solutions. Moreover, we
propose an effective way to automatically reduce the com-
plexity of the interaction. Our experiments show that this is
a promising approach to solve a broad class of decentralized
decision problems. The general formulation used by the algo-
rithm makes it both easy to implement and widely applicable
to a variety of other AI problems.

1 Introduction
The success of Markov decision processes in modeling
stochastic decision problems motivated researchers to ex-
tend the model to cooperative multi-agent settings. In these
settings, several agents – each having different partial infor-
mation about the world – must cooperate with each other
in order to achieve some joint objective. Such problems
are common in practice, but despite recent progress in this
area, state-of-the-art algorithms are generally limited to very
small problems (Seuken & Zilberstein 2005). This has mo-
tivated the development of algorithms that either solve a
simplified class of problems (Kim et al. 2006) or pro-
vide approximate solutions (Emery-Montemerlo et al. 2004;
Seuken & Zilberstein 2007).

One promising approach – called the Coverage Set Al-
gorithm (CSA) (Becker et al. 2004) – was developed
for domains with limited interaction between the agents.
The problem is formalized as a decentralized Markov deci-
sion problem with transition and observation independence,
which we denote as DEC-MDP. The objective is to maxi-
mize the cumulative reward over some finite horizon with
no discounting. Essentially, the two agent case consists of
two MDPs with an overall reward function that depends on
both states. CSA works by first enumerating the policies of
one agent that are best responses to at least one policy of the
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other agent, that is, policies that are not dominated. Then the
algorithm searches over these policies to get the best joint
policy for all agents.

Empirically, CSA was shown to be quite efficient, solving
relatively large problems. It also exhibits good anytime per-
formance (Becker et al. 2004). When solving a multi-rover
coordination problem, a solution value within 1% of optimal
is found within 1% of the total execution time on average.
Unfortunately, this is only known in hindsight once the op-
timal solution is found. Additionally, the algorithm has sev-
eral drawbacks. It is numerically unstable and its complex-
ity increases exponentially with the number of best-response
policies. Runtime varies widely over different problem in-
stances. Finally, the algorithm is limited to a relatively small
subclass of distributed coordination problems.

This paper makes several key contributions. First, we
present a reformulation of CSA – using separable bilinear
programs (Horst & Tuy 1996) – that is more general, more
efficient, and easier to implement. Then, we derive an er-
ror bound using the convexity of the best-response function,
without relying on the optimal solution. This generalizes
similar approximate methods for POMDPs (Lovejoy 1991;
Pineau et al. 2006). In addition, we propose an improve-
ment of the algorithm based on the elimination of regions of
the search space. The new algorithm exhibits excellent any-
time performance, making it suitable for time-constrained
situations. For clarity, we limit the discussion to cooperative
two-agent problems, but the approach works for any number
of agents and it requires only a minor modification to work
in competitive settings.

The paper is organized as follows. First, we describe
how to represent a DEC-MDP as a separable bilinear pro-
gram. Then we outline the algorithm and derive the on-
line error bound. A detailed description of the algorithm
comes next. We then present the automatic dimensionality-
reduction procedure. Finally, we compare our algorithm to
the original CSA and mixed-integer linear programming on
the original Mars rover problem.

2 Outline of the Algorithm
The algorithm we develop was originally designed for solv-
ing multi-agent coordination problems that arise in the Mars
rover domain (Becker et al. 2004). The domain involves two
autonomous rovers that visit several sites in a given order



and may decide to perform certain experiments. The overall
activity must be completed within a given time limit. The
uncertainty about the duration of each experiment is mod-
eled by a given discrete distribution. While the rovers op-
erate independently and receive local rewards for each com-
pleted experiment, the global reward function depends also
on some experiments completed by both rovers. The interac-
tion between the rovers is limited to a relatively small num-
ber of such overlapping tasks.

This problem was formulated as a transition- and
observation-independent decentralized Markov decision
process (DEC-MDP). The problem is composed of two
MDPs with state-sets S1, S2 and action sets D1, D2. The
functions r1 and r2 define local rewards for action-state
pairs. The initial state distributions are α1 and α2. The
MDPs are coupled through a global reward function defined
by the matrix R. Each entry R(i, j) represents the joint re-
ward for state-action i by one agent and j by the other.

Any DEC-MDP can be formulated as a bilinear mathe-
matical program as follows. Vector variables x and y rep-
resent the state-action probabilities for each agent, as used
in the dual linear formulation of MDPs. Given the transi-
tion and observation independence, the feasible regions may
be defined by linear equalities A1x = α1 and x ≥ 0, and
A2y = α2 and y ≥ 0. The matrices A1 and A2 are the same
as for dual formulation of finite-horizon MDPs (Puterman
2005). That is, they represent the following equations:∑
a′∈D1

x(s′, a′)−
∑
s∈S1

∑
a∈D1

P [s′|s, a]x(s, a) = α1(s′),

for every s′ ∈ S1. This results in the following formulation
of the problem.

maximize rT1 x+ xTRy + rT2 y

subject to A1x = α1 x ≥ 0

A2y = α2 y ≥ 0

(1)

A policy may be extracted from a solution of Eq. (1) in the
same way as for the dual formulation of discounted infinite-
horizon MDPs (Puterman 2005). Briefly, in state s, the pol-
icy is to take action a if and only if x(s, a) > 0. This can be
further abstracted as the following mathematical program.

maximize f(x, y, ŷ) = rTx+ xTCy + sTy + tT ŷ

subject to Ax ≤ b B1y +B2ŷ ≤ c
(2)

This formulation – generally known as a (separable) bilin-
ear program – is used in our algorithm, making it both sim-
ple to present and more general. In addition to multi-agent
coordination, it can be used to solve a variety of problems
such as robotic manipulation (Pang et al. 1996), bilinear
separation (Bennett & Mangasarian 1992), and even general
linear complementarity problems (Mangasarian 1995).

For general C, the problem was shown to be NP com-
plete (Becker et al. 2004). The membership in NP follows
from that fact that there exists an optimal solution that cor-
responds to some vertex of the feasible region (Horst & Tuy
1996; Mangasarian 1995).

A large number of algorithms have been developed for
solving Eq. (2), modeling it as a linear complementar-
ity problem (Murty 1988) or a mixed integer linear pro-
gram (Petrik & Zilberstein 2007). An iterative algorithm,
which does not guarantee optimality, is described in (Ben-
nett & Mangasarian 1992). A good overview of other algo-
rithms can be found in (Horst & Tuy 1996). We focus here
mostly on improving CSA rather than on a comprehensive
comparison of these methods. Moreover, our approach fo-
cuses on problems in which the function C is constant in
most dimensions due to the limited interaction.

In Eq. (2), variable x is an m-dimensional vector and y is
n-dimensional. For simplicity, we denote the feasible sets as

X = {x Ax ≤ b} Y = {y B1y +B2ŷ ≤ c},
which represent the feasible solutions for variables x and y
respectively. We also implicitly assume that x ∈ X and
y ∈ Y . To develop the algorithm, we need the following
assumption.
Assumption 1. Feasible sets X and Y are bounded.

The assumption does not present a significant limitation,
since often in practice, the variables can be bounded by finite
intervals. As mentioned before, the main idea in CSA is to
compute a finite subset X̃ of X that contains only those el-
ements that satisfy necessary optimality conditions. Specif-
ically, x is optimal for at least one element of Y . The algo-
rithm then solves the following modified problem:

maximize f(x, y, ŷ)

subject to x ∈ X̃ B1y +B2ŷ ≤ c
(3)

The latter problem can be solved easily by enumerating
all x ∈ X̃ and solving for y using a linear program. It is
possible since the set X̃ is finite (Mangasarian 1995). In
some cases, such as when the agents are competitive, y ∈ Y
needs to be replaced by y ∈ Ỹ . As a result, the approx-
imation bounds we present later are doubled. The actual
procedure to obtain X̃ is described in the next section.

To quantify the approximation error when using X̃ , we
define the following best-response and approximate best-
response functions:
g(y) = max

x∈X
rTx+ xTCy, g̃(y) = max

x∈X̃
rTx+ xTCy

Both g(y) and g̃(y) are maximum of a set of linear func-
tion, and as a result they are convex. Clearly we have
g̃(y) ≤ g(y). This function defines the maximal objective
value for any fixed value of y and it is used to determine the
maximal bound on the current approximation error. We de-
scribe the properties of g(y) and how to approximate it in
the following sections. When the difference between g(y)
and g̃(y) is at most ε, then the difference between optimal
solutions of Eqs. (2) and (3) is also at most ε.

Let f(x∗, y∗, ŷ∗) be the optimal solution. The maximal
error when using Eq. (3) can be bounded as follows. As-
suming g̃(y) ≥ g(y)− ε, for all y ∈ Y , then

f(x∗, y∗, ŷ∗) = max
x∈X

f(x, y∗, ŷ∗) ≥

≥ max
x∈X̃,B1y+B2ŷ≤c

f(x, y, ŷ)− ε.



The difference g(y)− g̃(y) can be bounded using the con-
vexity of these functions. As we describe in more detail
later, we construct the set X̃ such that for some y ∈ Y we
actually have g(y) = g̃(y). As a result, we can get the max-
imal difference ε using the following upper bound based on
Jensen’s inequality.
Lemma 1. Let yi ∈ Y for i = 1, . . . , n + 1. Then
g
(∑n+1

i=1 ciyi

)
≤
∑n+1
i=1 cig(yi), when

∑n+1
i=1 ci = 1 and

ci ≥ 0 for all i.

3 Best-Response Calculation
We describe now in greater detail the algorithm to determine
X̃ . Some alternative approaches are discussed in the last
section. The algorithm grows X̃ by evaluating g(y) for mul-
tiple y ∈ Y and by adding the corresponding best-response
x into X̃ . The choice of y is organized in a hierarchical fash-
ion. The algorithm starts with evaluating y1 . . . yn+1, the
vertices of a polytope that contains Y , which exists based
on Assumption 1. Given Lemma 1, we can now find such
y0 where the approximation error is maximal. Next we
get n + 1 new polytopes by replacing one of the vertices
by y0, (y0, y2, . . .), (y1, y0, y3, . . .) . . . (y1, . . . , yn, y0). The
old polytope is discarded and the above procedure is then
repeatedly applied to the polytope with the maximal approx-
imation error.

This procedure differs from the original CSA mainly in
the choice of y0. CSA does not keep any upper bound and
evaluates g(y) on all intersection points of planes defined
by the current values in X̃ , leading eventually to g(y) =
g̃(y) (Becker et al. 2004). Consequently, the number of
these points rapidly increases with the increasing number of
elements in X̃ . In contrast, our approach is more selective
and focuses on rapidly reducing the error bound.

For clarity, we simplified the above pseudo-code and did
not address efficiency issues. In practice, g(yi) could be
cached, and the errors εi could be stored in a prioritized heap
or at least in a sorted array. In addition, a lower bound li
and an upper bound ui are calculated and stored for each
polytope Si = (y1 . . . yn+1). The function e(Si) calculates
their maximal difference on polytope Si and the point where
it is attained.

Let matrix Z have yi as columns, and let L =
{x1 . . . xn+1} be the set of the best responses for its ver-
tices. We can represent a lower bound l(y) for g̃(y) and an
upper bound u(y) for g(y) as

l(y) = max
x∈L

rTx+ xTCy

u(y) = [g(y1), g(y2), . . .]T (Z + En+1)−1y,

where En+1 is a zero matrix with (n + 1)-th row of ones.
The upper bound correctness follows from Lemma 1. Notice
that u(y) is a linear function. That enables us to use a linear
program to determine the maximal-error point.

Using all of X̃ instead of only L would lead to a tighter
bound. This is easy to show in three-dimensional exam-
ples. However, this would substantially increase the compu-
tational complexity. Now, the maximal error on a polytope

Algorithm 1 Best-response function approximation
S1 ← (y1 . . . yn+1), Y ⊆ S1

X̃ ← {arg maxx∈X f(x, yi, 0) i = 1, . . . , n}
(ε1, φ1)← e(S1)
j ← 1
while maxi=1,...,j εi ≥ ε0 do
i← arg maxk=1,...,j εk
y ← φi
X̃ ← X ∪ {arg maxx∈X f(x, y, 0)}
for k = 1, . . . , n+ 1 do
j ← j + 1
Sj ← (y, y1 . . . yi−1, yi+1, . . . yn+1)
(εj , φj)← e(Sj)
εj ← min{εi, εj}

end for
εi ← 0

end while
return X̃

S may be expressed as:
e(y) ≤ max

y∈S
u(y)−l(y) = max

y∈S
u(y)−max

x∈L
rTx+xTCy

= max
y∈S

min
x∈L

u(y)− rTx+ xTCy.

We also have
y ∈ S ⇔

(
y = Zz ∧ z ≥ 0 ∧ eT z = 1

)
.

As a result, the point with the maximal error may be deter-
mined using the following linear program:

maximize ε

subject to ε ≤ u(Zz)− rTx+ xTCZz ∀x ∈ L
eT z = 1 z ≥ 0

(4)

Here e is a vector of all ones. The formulation is correct be-
cause all feasible solutions are bounded below the maximal
error and any maximal-error solution is feasible.
Proposition 1. The optimal solution of Eq. (4) is equivalent
to maxy∈S |u(y)− l(y)|.

The maximal difference is actually achieved in points
where some of the planes meet, as suggested in (Becker et
al. 2004). However, it can be expected that checking these
intersections is in fact very similar to running the simplex
algorithm. In general, the simplex algorithm is preferable to
interior point methods for this program because of its small
size (Vanderbei 2001).

It remains to show that the iterative procedure of refining
the polytopes is valid. This trivially implies that the maxi-
mal error is just the maximum of all errors on all polytopes.
In addition, it shows that the polytopes do not overlap, and
therefore there is no additional inefficiency in this regard.
Proposition 2. In the proposed triangulation, the polytopes
do not overlap and they cover the whole region.

The proof is straightforward. Note that the calculated
bound is not necessarily tight and thus it may actually in-
crease rather than decrease. However, because the true er-
ror does not increase over successive iterations, the previous
bound can be used when the new one is higher.



4 Dominated Region Elimination
In this section, we improve the algorithm by refining the se-
lection of y0. The main idea is to take advantage of the fact
the goal is to maximize the f and not precisely approximate
the best-response function g. We first introduce a compact
form of the bilinear program to facilitate the analysis.
Definition 1. We say that a bilinear program is in a semi-
compact form if t is a zero vector.

Any bilinear program (2) may be put in a semi-compact
form as follows.

maximize rTx+ [x, x̂]T Ĉ[y; z] + sT y

subject to Ax+B1w = b B1y +B2ŷ = c

x̂ = 1 z = sT2 ŷ

x, y, ŷ ≥ 0,

(5)

where
Ĉ = [C, 0; rT , 1].

Vector 0 denotes a zero vector with the appropriate dimen-
sionality. Clearly, feasible solutions of (2) and (5) have the
same objective value when ŷ is set appropriately. Notice that
the dimensionality of C increases by 1 for both x and y. We
use z in place of ŷ in the following to avoid confusion.

In the remainder of this section we assume that the bilin-
ear program is in a semi-compact form. Then, given a bilin-
ear program, we define a subset of Y in which the current
best solution h can be improved:

Ŷh = {y g(y) ≥ h, y ∈ Y }.

The importance of the semi-compact form is that for these
bilinear programs, we have:

g(y) = max
x∈X

f(x, y).

Then, to bound the error bound the pivot point y0 only needs
to be found in the set Ŷ . This improves both the error bound
and eliminates examining pivot points that cannot lead to
the improvement of the solution. The correctness of this
selection method is stated in the following proposition.
Proposition 3. Let w̃, x̃, ỹ, z̃ be the approximate optimal
solutions and x∗, y∗, z∗ be the optimal solution. Also let
f(x∗, y∗, z∗) ≥ h and Z ⊇ Ŷh. The approximation error is
then bounded by:

f(x∗, y∗, z∗)− f(x̃, ỹ, z̃) ≤ max
y∈Z

g(y)− g̃(y).

Proof. First, f(x∗, y∗, z∗) = g(y∗) ≥ h and thus y∗ ∈ Ŷ .
Then:

f(x∗, y∗, z∗)− f(x̃, ỹ, z̃) =
= max

y∈Ŷ
g(y)−max

y∈Y
g̃(y) ≤ max

y∈Ŷ
g(y)− g̃(y).

Assuming a given Ŷ , an obstacle is that it is not necessar-
ily convex. Thus, we approximate it for every polyhedron.
This is done by projecting Y \ Ŷ , or its approximation, onto

the edges of each polyhedron. This is possible because at
least one vertex of the polyhedron is in Y \ Ŷ . At least one
vertex of each polyhedron is in Y \ Ŷ because of the pivot
selection procedure. The procedure is described in Algo-
rithm 2. The preceding discussion may be summarized in
the following proposition.
Proposition 4. The resulting polygon in Algorithm 2 is a su-
perset of the intersection of the polygon with the complement
of Ŷ .

Algorithm 2 Polyhedron cutting algorithm.
Given a polyhedron y1, . . . , yn+1

Let y1 ∈ Y \ Ŷ
for i = 1,. . . ,n do
yi ← y′1 + maxβ{β(yi − y1) β(yi − y1) ∈ Y \ Ŷ }

end for
Replace the original polyhedron by the convex hull of
y1, . . . , yn+1, y

′
2, . . . , y

′
n+1

We propose the following two approaches to identifying a
tight superset Z of Ŷh:

1. Use the upper bound u(y) on g(y). That is Z =
{y u(y) ≥ h, y ∈ Y }.

2. Use linear inequalities that define Y \ Ŷ as described be-
low.
The first option is simple to implement and to compute.

The second option is more computationally intensive, but
leads to a greater reduction of the polyhedron size. We de-
scribe this method in the following and also use it in the
final experiments. It is based on the same principle as α-
extensions in concave cuts (Horst & Tuy 1996). The set
Y \ Ŷh may be expressed as:(

max
y,z

max
x

rTx+ yTCTx+ sT y

)
≤ h

Ax ≤ b

B1y +B2z ≤ c

x, y, z ≥ 0
Now, to get a set with linear constraints we change the inner
optimization problem to its dual with the variable λ. This
enables us to eliminate the bilinear term, resulting in the fol-
lowing.

max
y,z

min
λ
bTλ+ sT y ≤ h

Aλ ≥ r + yTCT

B1y +B2z ≤ c

λ, y, z ≥ 0

Finally, in terms of linear inequalities, Y \Ŷ is the following.

bTλ+ sT y ≤ h

Aλ ≥ r + yTCT

B1y +B2z ≤ c

λ, y, z ≥ 0



5 Dimensionality Reduction
Experimental results suggest that the performance of the
approach degrades significantly with the increasing dimen-
sionality of Y . Therefore, it is very important to repre-
sent problems with very low dimensionality of Y in Eq. (2).
While this is straightforward in some cases, it is not trivial in
general. Thus, to make the algorithm more useful, we derive
a procedure for automatic dimensionality reduction.

Intuitively, the dimensionality reduction removes those
dimensions where g(y) is constant, or almost constant. In-
terestingly, these dimensions may be recovered based on the
eigenvectors and eigenvalues of CTC. To achieve this, we
need the following assumption.
Assumption 2. For all x ∈ X and y ∈ Y , their norms
satisfy ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1.

Given a problem represented using Eq. (2), let F be a
matrix whose columns are all the eigenvectors of CTC with
eigenvalues greater than λ. Let G be a matrix with all the
remaining eigenvectors as columns. Notice that together, the
matrices span the whole space and are real, since CTC is a
symmetric matrix. Assume without loss of generality that
the eigenvectors are unitary. Let the number of columns of
F be f . The original problem may now be compressed as
follows.

maximize f̃(x, y1, y2, ŷ) = xTCFy1+
+rTx+ sT [F,G][y1; y2] + tT ŷ

subject to Ax ≤ b B1[F,G][y1; y2] +B2ŷ ≤ c
(6)

The following theorem quantifies the maximal error when
using the compressed program.

Theorem 1. Let f∗ and f̃∗ be optimal solutions of Eqs. (2)
and (6) respectively. Then:

ε = |f∗ − f̃∗| ≤
√
λ.

Moreover, this is the maximal linear dimensionality reduc-
tion possible with this error without considering the con-
straint structure.

Proof. We first show that indeed the error is at most
√
λ and

that any linearly compressed problem with the given error
has at least f dimensions. Using a mapping that preserves
the feasibility of both programs, the error is bounded by:

ε ≤ |f(x, [F,G][y1; y2], ŷ)− f̃(x, y1, y2, ŷ)| =
∣∣xTCGy2∣∣ .

Denote the feasible region of y2 as Y2. From the orthogo-
nality of [F,G], we have that ‖y2‖2 ≤ 1. Now we have:

ε ≤ max
y2∈Y2

max
x∈X

∣∣xTCGy2∣∣ ≤ max
y2∈Y2

‖CGy2‖2

≤ max
y2∈Y2

√
yT2 G

TCTCGy2 ≤ max
y2∈Y2

√
yT2 Ly2 ≤

√
λ

The result follows from Cauchy-Schwartz inequality, the
fact that CTC is symmetric, and Assumption 2. Matrix
L denotes diagonal matrix of eigenvalues corresponding to
eigenvectors of G.

Now, letH be an arbitrary matrix that satisfies the preced-
ing error inequality for G. Clearly, H ∩ F = ∅, otherwise
there exists y, such that ‖CHy‖2 > ε. Therefore, we have
|H| ≤ n − |F | ≤ |G|, because |H| + |F | = |Y |. Here | · |
denotes the number of columns of the matrix.

In these bounds we use L2-norm; an extension to a dif-
ferent norm is not straightforward. Note also that this
dimensionality reduction technique ignores the constraint
structure. When the constraints have some special struc-
ture, it might be possible to obtain an even tighter bound.
As described in the next section, the dimensionality reduc-
tion technique generalizes the reduction implicitly used in
(Becker et al. 2004).

6 Experimental Results
We now turn to an empirical analysis of the performance of
the algorithm. For this purpose we use the Mars rover prob-
lem described earlier. We compare the presented algorithm
with the original CSA and with a mixed integer linear pro-
gram (MILP), derived for Eq. (2) as in (Petrik & Zilberstein
2007). Though, Eq. (2) can also be modeled as a linear com-
plementarity problem (LCP) (Murty 1988), we do not eval-
uate that option experimentally because LCPs are closely
related to MILPs (Rosen 1986). We expect these two formu-
lations to exhibit similar performance. We also do not com-
pare to any of the methods described in (Horst & Tuy 1996;
Bennett & Mangasarian 1992) due to their very different na-
ture and high complexity, and because some of these algo-
rithms do not provide any optimality guarantees.

In our initial experiments, we applied the algorithm to
problem instances with similar parameters to those used in
(Becker et al. 2004). Each problem instance includes 6 sites.
The time limit is 15 time units. The local reward for per-
forming an experiment is selected uniformly from the inter-
val [0.1,1.0] for each site and it is identical for both rovers.
The global reward, received when both rovers perform an
experiment on a shared site, is 0.5 of the local reward. The
time required to perform an experiment is drawn from a dis-
cretized normal distribution with the mean uniformly chosen
from 4.0-6.0. The variance is 0.4 of the mean. The experi-
ments were performed with the following variants of shared
sites: {2, 3}, {2, 3, 4}, {1, 2, 3, 4},{1, 2, 3, 4, 5}.

In these experiments, the dimensionality of Y in Eq. (1)
is 6 ∗ 15 ∗ 2 = 180. This dimensionality may be reduced to
be one per each shared site using the automatic dimensional-
ity reduction procedure. Each dimension then represents the
probability that an experiment on a shared site is performed
regardless of the time. Therefore, the dimension represents
the sum of the individual probabilities. The same compres-
sion was achieved in (Becker et al. 2004) using compound
events. That is, each compound event represents the fact
that an experiment is performed on some site regardless of
the specific time.

Although the dimensionality reduction is intuitive in the
rover problem, it is less obvious in other domains such as the
multi-agent broadcast channel (Petrik & Zilberstein 2007).
That problem involves two agents that share a communica-
tion channel. Each agent could have several messages to
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Figure 1: Comparison of the mean approximation error
across 200 problems for various numbers of shared sites for
algorithm without (left) and with (right) elimination of the
dominated regions.

transmit stored in a buffer, but only one message can be
transmitted at a time. In this case, the dimensionality can
still be reduced to 3 regardless of the buffer length. Intu-
itively, the dimensions in this problem roughly approximate
the sum of the probabilities that a message is sent, ignoring
the number of messages in the buffer.

Figure 1 compares the performance of the algorithm with-
out and with the elimination of the dominated regions. It
shows the error bound (ratio of the optimal value) achieved
as a function of the number of iterations, that is, points for
which g(y) is evaluated. While it is possible that even the
first iteration discovers the optimal solution, it still takes
time to get a tight bound. Calculating these 100 iterations
took less than 10 seconds with small dependence on the
number of constraints. The figure shows that within 100
iterations, the solution quality is, on average, within 99%
of the optimal reward when the dominated regions are not
eliminated. However, with the dominated region elimina-
tion, most problems are solved optimally within 30 itera-
tions. Figure 2 shows the average time needed to solve the
problems within error of 10−6, which we consider as opti-
mal. This remaining error is due to imprecisions from solv-
ing the linear programs.

In a very similar problem setup with at most 4 shared sites,
CSA solved only 76% of the problems, and the longest so-
lution took approximately 4 hours (Becker et al. 2004). In
our case, all 200 problems with 4 shared sites were solved
with 98.8% of the optimal solution in less than 20 seconds.
And while CSA also offers very good anytime performance,
it does not provide any guarantees of solution quality before
it finds the optimal solution.

We also performed experiments with CPLEX – a state-of-
the-art MILP solver. CPLEX was not able to solve any of the
problems within 30 minutes, no matter how many of the sites
were shared. The main reason for this is that it does not take
any advantage of the limited interaction. Nevertheless, it is
possible that some specialized MILP solvers may perform
better.

In addition, it is likely that significant performance gains
can be achieved by further tuning of the algorithm. Our ex-
periments also showed that the algorithm’s performance sig-
nificantly depends on the implementation. For example, al-
most 3-fold speedup may be achieved using simplex instead
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Figure 2: Time to solve the problem optimally when elimi-
nating dominated regions.

of an interior point algorithm to solve program Eq. (4). We
used linear programming algorithms from MOSEK.

7 Conclusion
We introduce a general algorithm for solving bilinear pro-
grams, especially ones that model decentralized stochastic
planning problems. The algorithm is inspired by CSA. But
unlike CSA, it provides error bounds. This is important be-
cause the algorithm is able to return near optimal results very
rapidly, but it takes a long time to actually verify that a so-
lution is optimal. In addition, we present a general proce-
dure that reduces the dimensionality of the space. Reducing
the dimensionality is crucial as it makes the algorithm much
more useful in practice. The results we obtain represent a
very significant improvement over the performance of CSA.

Applying the approach to more than two agents requires
some modification. With three agents, for example, the
mathematical program (2) must be modified to a multi-linear
program with variables x ∈ X, y ∈ Y, z ∈ Z. Then, the
best-response function g(y, z) is not necessarily convex and
therefore the method does not apply. This can be remedied
by setting Ŷ = Y ⊗ Z, and ŷ = y ⊗ z. This transforma-
tion increases the dimensionality, but achieves the required
piece-wise linearity. As a result, the algorithm is extensible
to problems with multiple agents. In addition, (Becker et al.
2004) describes an extension of CSA to event-driven DEC-
MDPs. Applying the presented algorithm to event-driven
DEC-MDPs is also straightforward. However, the large di-
mensionality of the space limits the applicability of the al-
gorithm. It is possible, however, that this may be remedied
using the dimensionality reduction technique we introduced.

There are multiple ways in which the algorithm we pre-
sented can be improved. For example, it is possible to con-
sider the actual shape of Y when approximating g(y). Since
typically the initial polytope does not exactly correspond to
Y , it may be useful to restrict the search for the point with
the largest error to only those that are in Y . In addition,
polytopes that do not overlap with Y can be discarded.
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