
More Flexible Term Schematisations via Extended Primal Grammars

Vincent Aravantinos, Ricardo Caferra and Nicolas Peltier
CNRS, INPG

LIG, 46 avenue Félix Viallet
38031 Grenoble Cedex

France
Vincent.Aravantinos@imag.fr, Ricardo.Caferra@imag.fr,

Nicolas.Peltier@imag.fr

Abstract

We propose an extension of primal grammars (Her-
mann & Galbavý 1997). Primal grammars are term
grammars with a high expressive power and good com-
putational properties. The extended grammars have
exactly the same properties but are more modular,
more concise, and easier to use, as shown by some
examples. An algorithm transforming any extended
primal grammar into an equivalent primal grammar is
provided.

1 Introduction
Schematising sets of objects by abstracting their general
structure is a very important, and frequently necessary,
task in almost all intelligent activities (e.g. deductive
and inductive reasoning, learning, explanation,. . .). In
automated deduction, it is natural to try to schematise
terms or formulas yield by theorem provers. Despite the
obvious advantages of such capability to improve exist-
ing systems (to prevent divergence, extract lemmata,
enrich the input languages. . .) relatively few works
have addressed the problem (Chen, Hsiang, & Kong
1990; Salzer 1992; Hermann 1992). This is mainly due
to the fact that specifying the structure of (possibly in-
finite) sets of objects with mechanizable formalisms is
a very ambitious aim.

Term schematisations are formalisms that allow one
to express infinite sets of structurally similar terms in
a finite way1. These formalisms have been proposed
since the 90’s, essentially to address divergence prob-
lems in symbolic calculi (such as e.g. Knuth-Bendix
completion or SLD resolution). Several schematisation
languages have been defined with various expressive
powers: recurrent terms (Chen, Hsiang, & Kong 1990),
terms with integer exponents (Comon 1995), R-terms
(Salzer 1992), primal grammars (Hermann & Galbavý
1997). (Hermann 1994) provides a detailed survey of
term schematisation. Each of those formalisms permits
the construction of term schemas by applying itera-
tively a certain inductive context over a base term. For

Copyright c© 2007, authors listed above. All rights reserved.
1This may remind the reader of tree automata (Comon

et al. 2005) that show many similarities with term schema-
tisations. But the denoted languages are very different.

instance, the terms sequence a, f(a), f(f(a)), . . . , fn(a)
can be obtained by iterating n times the context f(. . .)
from the base term a. This is usually denoted by
f(�)n.a (the symbol � denoting a “hole”). It must be
observed that n denotes an arithmetic variable, not a
fixed natural number. This makes the whole difference
with usual first order terms as f(�)n.a is not a classical
term but a schema of terms.

The language of primal grammars is the most ex-
pressive formalism for term schematisation. It allows
one to iterate arbitrary contexts along several positions,
and these contexts may depend on the iteration rank
in the sequence, making possible e.g. to denote a list
of the form [1, 2, 3, 4, . . . , n] or [n, n − 1, . . . , 1]. This
feature is particularly important in the context of for-
mula schematisation. For instance, it allows to express
a clause of the form

∨n
i=1 pi or a set of clauses of the

form {pi∨qi+1 | i ∈ [1..n−1]}, which is impossible using
less expressive formalisms (see (Aravantinos 2007)).

The first order theory of primal grammars is known
to be decidable (Peltier 2004). However, this formalism
is very cumbersome and difficult to use. This is under-
standable knowing it has been developed with the goal
of being as expressive as possible without loosing the
decidability of unification. This imposes conditions on
the contexts that are rather strong and not very intu-
itive (we shall illustrate this point in more details af-
ter introducing the necessary definitions: see Section 3
and Examples 2 and 3 on page 3). In this paper, we
show that it is possible to relax significantly some of
these conditions while preserving the good computa-
tional properties of the formalism. More precisely, we
introduce a notion of extended primal grammar, in
which the conditions on the allowed contexts are much
weaker. We provide a transformation algorithm reduc-
ing any extended primal grammar to a standard one.
The obtained grammar is equivalent to the original one,
but the latter is in general much simpler, and defined
on a less complex signature, which makes it easier to
handle for the user.

Why primal grammars ?
We start with genetic descriptions of objects and we

are looking for their structural descriptions, e.g.

(∀x)p(x, a)
(∀x, y)p(f(x), y)⇒ p(x, f(y))

}
: start point

(∀x)p(x, fn(a)): target representation
Between the start point and the target representation,
arithmetic appears. How to deal with it ? The most
natural way is to enrich term grammars with (decidable
fragments of) arithmetic. Primal grammars seem to
be a reasonable, though “heavy”, solution. The next
natural step is to simplify the formalism in order to
make it easier to use. Our work is a first technical
(partial) solution to this problem.

Designing algorithms allowing to represent (possibly)
infinite sets of structurally similar terms can clearly
qualitatively improve the capabilities of theorem provers
and can be also useful in other AI tools. This allows one
to handle some parts of the input formula directly in the
unification algorithm which makes the task of the in-
ference system easier and yields proofs that are shorter
and simpler (in particular the proof procedure should
terminate more often); this is also useful in structur-
ing proofs. It is therefore worth taking steps in this
direction.

2 Primal grammars
Our definition is essentially the same (though slightly
simpler) as in (Hermann & Galbavý 1997) except that
we use a multisorted signature. We refer to (Hermann
& Galbavý 1997) for details, additional explanations
and examples.

2.1 Syntax
A signature is a pair (S,Σ) where S is a set of sorts
and Σ a set of function symbols. Each function symbol
is associated to a profile of the form s1×· · ·× sn → sn+1

where s1, . . . , sn+1 are sorts.
Definition 1 (Primal signature).
A primal signature is a signature

• containing the int sort;
• containing the usual function symbols of Presburger
arithmetic:

0 : −→ int

s : int −→ int

+ : int× int −→ int

• and such that the profiles of the other function sym-
bols are of the form:

intn × s1 × · · · × sk −→ sk+1

where n ≥ 0 and ∀i ∈ [1..k+1], si 6= int. If n = 0 then
the symbol is called a constructor symbol, otherwise
it is called a defined symbol.
Defined symbols will be denoted by f̂ , ĝ, . . . n is called
the counter arity of the symbol, denoted by Arc(f̂).

Let (S,Σ) be a signature and let X be a countable
set of variables, together with a function mapping each
variable x in X to a sort in S. The set of terms of sort
s is inductively defined as follows:

• each variable x ∈ X of sort s is also a term of sort s;

• for each f : s1 × · · · × sn → s ∈ Σ and for all terms
t1, . . . , tn of respective sorts s1, . . . , sn, f(t1, . . . , tn) is
a term of sort s.

The whole set of terms is denoted by A(S,Σ,X)
A position is a finite sequence of natural numbers. ε

denotes the empty position, p.q denotes the concatena-
tion of p and q and ≤ denotes the prefix ordering. The
set of positions in a term t is defined as follows: ε is a
position in t and if t = f(t1, . . . , tn), i ∈ [1..n] and p is
a position in ti, then i.p is a position in t. If A is a set
of positions in t, then t[s]A denotes the term obtained
by replacing in t the subterms occurring at any position
p ∈ A by s.

Definition 2 (Primal term algebra).
A primal term is a term built on a primal signature

whose sort is different from int.

Terms of sort int are called counter expressions. Each
counter expression will be written in bold face from now
on. Variables of sort int are called counter variables.
The other variables are called standard variables.
CVar(t) will denote the set of counter variables oc-

curring in the primal term t.
Primal terms not containing defined symbols are

called standard terms.
We call redex 2 terms the terms whose root is a de-

fined symbol. They will be written as follows:

f̂(c1, . . . , cn; t1, . . . , tk)

where:

• c1, . . . , cn are counter expressions;

• t1, . . . , tk are primal terms;

• “;” is used to distinguish counter arguments from
standard ones.

Definition 3 (Regular term).
A primal term t is called regular if for any redex

f̂(~c; ~u) occurring in t, ~u is a vector of standard terms
(i.e. without redexes).

2.2 Semantics

The semantics of defined symbols are specified using a
convergent system of rewrite rules, which reduces all
ground terms to standard terms. This system satisfies
some additional properties in order to ensure that the
unification problem between primal terms is decidable.

2Because they will be reduced by a term rewrite system.

Presburger Rewrite Systems
• We assume given a precedence ≺ on defined symbols.
• Given two vectors ~t = (t1, . . . , tn) and ~s =

(s1, . . . , sm), we say that ~s is a subvector of ~t iffm ≤ n
and there exists an increasing function η : [1..m] →
[1..n] s.t. si = tη(i).

The approximation of a primal term f̂(~c; ~x) (denoted
by Apx(f̂(~c; ~x))) is defined as the set:

Apx(f̂(~c; ~x)) =

ĝ(~c′; ~x′)

∣∣∣∣∣∣
f̂ � ĝ
~c′ is a subvector of ~c
~x′ is a subvector of ~x


Definition 4.
A rewrite system is called Presburger if it contains

the usual rules of Presburger arithmetics, and for each
defined symbol f̂ it contains:
• a unique base rule of the form:

f̂(0,~c; ~x)→ rf̂1

• a unique inductive rule which is either of the form:
f̂(s(i),~c; ~x)→ rf̂2 [f̂(i,~c; ~x)]A
or
f̂(s(i),~c; ~x)
→ rf̂2 [f̂(i, c1, . . . , ck−1, s(ck), ck+1, . . . , cn; ~x)]A

and such that:
1. A is a finite, non-empty, subset of parallel non empty

positions in rf̂2 ;

2. rf̂2 [f̂(i, c1, . . . , ck−1, s(ck), ck+1, . . . , ck; ~x)]A and
rf̂2 [f̂(i,~c; ~x)]A are regular terms;

3. all rf̂1 and rf̂2 redexes are in Apx(f̂(i,~c; ~x));
i is called principal counter and, in the inductive rule,

ck the auxiliary counter.
Property 1 (Convergence).

Any Presburger system R is convergent,
i.e. each term t has a unique normal form denoted by

t↓R (or simply by t↓ if no confusion is possible).

Proof. See (Hermann & Galbavý 1997).

Primal Grammars
Definition 5.
A primal grammar is a 3-tuple (Σ,R, t?) where:

• Σ is a primal signature,
• R is a Presburger rewrite system,
• t? is a primal term built on Σ, called start symbol.
Example 1.

The following is a primal grammar:
• a primal signature:

ŝ : int −→ t

s : t −→ t

0 : −→ t

• the following Presburger system:

ŝ(0)→ 0

ŝ(s(i))→ s(ŝ(i))

• and the start symbol ŝ(n).

Intuitively, this example shows how to encode the
set of natural numbers with primal grammars. ŝ(n)
is sn(0) where n is the value of n, while ŝ(s(s(0))) is
s2(0), i.e. the standard term s(s(0)) (notice the different
typesetting between counters and standard terms).

As this example is often used, ŝ hereby denotes the
above primal grammar.

3 Motivations for the extension
The requirements in Definition 4 are quite restrictive, in
particular Condition 3 which imposes rigid conditions
on the redexes occurring in the contexts.
Example 2.

Assume that one wants to denote the list of the natural
numbers [m...n + m], in reverse order. The most natural
way to proceed would be to define the following rules:

f̂(0,n)→ [ŝ(n)]

f̂(s(m),n)→ [ŝ(n + m + 1)|f̂(m,n)]

where ŝ ≺ f̂ . But the obtained rule is not a Presburger
rewrite system, because the redex ŝ(n + m + 1) is not in
the approximation of f̂(m,n) (n + m should be n or m, or
the list of arguments should be empty).

Fortunately, in this particular case, it is possible to denote
the same list using another function symbol of arity 2:

f̂(0,n)→ [ŝ(n)]

f̂(s(m),n)→ [ŝ′(m,n)|f̂(m,n)]

where:
ŝ′(0,n)→ s(ŝ(n))

ŝ′(s(m),n)→ s(ŝ′(m,n))

Here ŝ′(m,n) encodes ŝ(m + n + 1).

However, this process is not very natural and the
obtained system is bigger and more difficult to under-
stand, due to the presence of additional parameters and
defined symbols. Note that a similar behaviour can be
observed with auxiliary counters.

We give another example that illustrates a similar,
but slightly different aspect.
Example 3.

Assume that we want to denote the list of the n first even
natural numbers. We construct the following schematisa-
tion:

f̂(0,m)→ []

f̂(s(n),m)→ [ŝ(m + m)|f̂(n, s(m))]

Then f̂(n,0) gives the desired result. Unfortunately the
above system is not a Presburger rewrite system due to the
fact that ŝ(m + m) is not in the approximation of f̂(n,m).

In order to transform this system into a Presburger
rewrite system, we have to replace ŝ(m + m) by a redex
of the form ĝ(m). Obviously, this is possible only if the

context corresponding to ŝ is “unfolded”, i.e. if one iteration
of ĝ corresponds to two iterations of ŝ. More precisely, we
get:

ĝ(s(m))→ s(s(ĝ(m)))

ĝ(0)→ 0

At this point, a very natural issue arises: is it pos-
sible to automatize the above transformations ?
The goal is to provide an algorithm that transforms the
systems written above into Presburger rewrite systems,
instead of assigning this task to the user.

In case the answer is positive, what are the con-
ditions on the redexes that guarantee that this trans-
formation is sound (i.e. yields an equivalent Presburger
rewrite system) ? Allowing arbitrary redexes will not
be satisfactory, because the good properties of primal
grammars will be lost. For instance, let us consider the
system:

f̂(s(n),m, l)→ s(f̂(n,m + l, l))

f̂(0,m, l)→ ŝ(m)

The reader can easily check that f̂(n,m, l) denotes the
term ŝ(m + (l× n) + n). Therefore, multiplication can
be easily encoded. Since Peano arithmetic is not decid-
able, this immediately implies that this system cannot
be transformed into an equivalent Presburger rewrite
system. Consequently, additional conditions are re-
quired.

Answering the above questions is the subject of the
present paper. Our results significantly extend the
scope of primal grammars because some sets of rules
that do not satisfy the condition of Definition 4 on the
preceding page can now be automatically compiled into
a Presburger rewrite system. This is also very useful if
the system is generated automatically because in this
case, it is difficult to ensure that the conditions of Def-
inition 4 on the previous page are satisfied.

4 Extended Primal Grammars
We now introduce our new definition. It can be viewed
as a higher level term schematisation language. We
show evidence of this easiness and prove the equivalence
with standard primal grammars.

The basic idea is to replace the notion of approxima-
tion by a more “high level” and refined notion (and thus
more sophisticated): the potential counters. Once this
is done, Presburger rewrite systems can be extended in
a very natural way.

4.1 Potentially Principal Counter
A counter variable is a potentially principal counter if
it only occurs in first parameters of redex subterms —
or does not occur at all. Formally:

Definition 6.
Let t be a primal term. We denote by CX the set of

counter variables.

The set of potentially principal counters of t, denoted
by PPC(t), is inductively defined in the following way:

PPC(f̂(c0, . . . , ck; . . .)) def= CX \
⋃
i 6=0

Var(ci)

PPC(f(u1, . . . , uk)) def=
⋂
i

PPC(ui) if Ar(f) > 0

PPC(f) def= CX if Ar(f) = 0

Example 4.
Consider the following signature:

f̂ : int× int× t −→ t

ĝ : int× int −→ t

h : t× t −→ t

a : −→ t

x denotes a variable of type t.
Then (counters that appear in other parameters than the

first are marked with a frame):
• h(a, x): any counter variable is a potentially principal

counter ;
• f̂(c1, c2 ; x) and h(h(a, x), f̂(c1, c2 ; x)) both have any

counter other than c2 as a potentially principal counter ;
• h(ĝ(c1, c2), ĝ(c3, c4)) has any variable other than c2

and c4 as a potentially principal counter;
• h(ĝ(c1, c2), ĝ(c2, c2)) has any variable other than c2

as a potentially principal counter (even though c2 also
appears as a first parameter).

4.2 Potentially Auxiliary Counter
A counter variable is a potentially auxiliary counter if
it occurs in at most one parameter of a redex subterm.
Formally:
Definition 7.
The set of potentially auxiliary counters of a primal

term t denoted by PAC(t), is inductively defined as fol-
lows:

PAC(f̂(c0, . . . , ck; . . .)) def= CX \
⋃
i 6=j

(Var(ci) ∩ Var(cj))

PAC(f(u1, . . . , uk)) def=
⋂
i

PAC(ui) if Ar(f) > 0

PAC(f) def= CX if Ar(f) = 0

Example 5.
With the signature of Example 4,

• h(a, x): any counter variable is a potentially auxiliary
counter;

• f̂(c1, c2) and t = h(a, f̂(c1, c2)) both have c1 and c2 as
potentially auxiliary counters;

• t = f̂(c1 + c2 , c2 + c3): here, c2 occurs in two differ-
ent parameters of f̂ , therefore c2 6∈ PAC(t); however, c1

and c3 are potentially auxiliary counters;
• h(ĝ(c1, c2), ĝ(c2 , c2)): c2 is not a potentially auxiliary

counter for a subterm, thus neither can it be one for the
whole term; but c1 is a potentially auxiliary counter (as
is any counter other than c2).

4.3 Extended Presburger Systems
We can now define extended Presburger systems, which
are intended to replace Presburger systems. The defi-
nitions of both notions are almost the same and their
differences are highlighted:
Definition 8.
A rewrite system (R) is said extended Presburger if

for each defined symbol f̂ it contains:
• a unique base rule of the form:

f̂(0,~c; ~x)→ rf̂1

• a unique inductive rule which is either of the form:
f̂(s(i),~c; ~x)→ rf̂2 [f̂(i,~c; ~x)]A
or
f̂(s(i),~c; ~x)
→ rf̂2 [f̂(i, c1, . . . , ck−1, s(ck), ck+1, . . . , cn; ~x)]A

and such that
1. A is a finite subset of parallel non empty positions in

rf̂2 ;

2. rf̂2 [f̂(i, c1, . . . , ck−1, s(ck), ck+1, . . . , ck; ~x)]A
and rf̂2 [f̂(i,~c; ~x)]A are regular terms;

3. i is a potentially principal counter of rf̂2 ;

4. ck is a potentially auxiliary counter of rf̂1 and
rf̂2 ;

5. each defined symbol occurring in rf̂1 or rf̂2 is
lower than f̂ ;
It is worth mentioning that the standard terms oc-

curring in the redexes in rf̂1 and rf̂2 are not restricted;
this is an important difference with standard primal
grammars.

Also notice that the condition on approximation is
replaced by conditions 3, 4 and 5 while the remaining
conditions (1 and 2) are not really restrictive.
Example 6.

We express the informal term schema:

[[n, n + 1, . . . , n + k], [n + 1, n + 2, . . . , n + k], . . . , [n + k]]

by the following primal grammar (ŝ ≺ ĝ ≺ f̂):

f̂(0, j)→ []

f̂(s(i), j)→ [ĝ(s(i), j)|f̂(i, s(j))]

ĝ(0, j)→ [ŝ(j)]

ĝ(s(i), j)→ [ŝ(j)|ĝ(i, s(j))]

with axiom:
f̂(k,n)

We check that it is well-defined:

1. Principal counters
• for f̂ , i is indeed a potentially principal counter since

it occurs only in the first arguments;

• for ĝ and ŝ all counters are potentially principal coun-
ters (each redex term only has one parameter).

2. Auxiliary counters
• for both f̂ and ĝ, j occurs only once in each redex term

and thus is a potentially auxiliary counter;
• ŝ does not have any auxiliary counter.

3. the other conditions are easily checked (and are the same
as those required for usual primal grammars).

4.4 Extended Primal Grammars
Definition 9.
An extended primal grammar is a 3-tuple (Σ,R, t?)

where:

• Σ is a primal signature,
• R is an extended Presburger rewrite system,
• t? is a primal term built on Σ, called start symbol.

Property 2.
Any primal grammar is an extended primal grammar.

Proof. Immediate : the condition of approximation
implies that the principal (resp. auxiliary) counter
is indeed a potentially principal (resp. auxiliary)
counter.

Two extended primal grammars (Σ,R, t?) and
(Σ′,R′, t?′) are said to be equivalent if for any ground
substitution of the counter variables σ:

t?σ↓R = t?′σ↓R′

Theorem (Equivalence).
There exists an algorithm transforming any extended

primal grammar (Σ,R, t?) into an equivalent primal
grammar (Σ′,R′, t?′).

Proof. Some basic transformation rules are provided
in Figure 1 on the next page in order to give a taste of
the algorithm. Section A on page 7 contains a detailled
proof and proposes a strategy ensuring its termination
and correctness.

It can be shown that the time complexity of our trans-
formation algorithm is linear in the sizes of all counter
expressions plus the number of defined symbols occur-
ring in the whole extended primal grammar i.e. the
grammar and all the grammars it involves.

The number of defined symbols added by the algo-
rithm is linear in the sizes of counter expressions —
each “+” occurring in a counter expression generates a
new defined symbol.

4.5 A higher-level language
Here are examples that show what can be done with
extended primal grammars but not with primal gram-
mars:
Example 7.

f̂(n + m,~c) −→ f̂ ′(n,m,~c)

where

{
f̂ ′(0,m,~c)→ f̂(m,~c)

f̂ ′(s(n),m,~c)→ f̂(s(n + m),~c)

f̂(k× n,~c) −→ f̂ ′′(n,~c)

where

{
f̂ ′′(0,~c)→ f̂(0,~c)

f̂ ′′(s(n),~c)→ f̂(k + k× n),~c)

Figure 1: Transforming an extended primal grammar
into a standard one: rules are applied on terms oc-
curring in the start axiom or in the Presburger rewrite
system, and combined with the inductive and base rules
of f . f ′, f ′′ denote new (“fresh”) defined symbols.

1. Use of any term as a parameter of a redex term.
More precisely, any of the following rules:

f̂(0)→ ĝ(s(0))

f̂(0, j)→ ĝ(s(j))

f̂(0, j,k)→ ĝ(j + k)

would be allowed in an extended Presburger system but
not in a standard Presburger system. Indeed each right
member in the above rules involves a redex term whose
parameter is any term, not necessarily a variable. Thus
none of the right members are in the approximation of its
corresponding left member.
Here is a detailed example:

f̂(0, j,k; x)→ ĝ(k, j + k; r(x, a))

f̂(s(i), j,k; x)→ r(ĝ(i + j, s(k); a), f̂(i, s(j),k; x))

We check that i (resp. j) is a potentially principal (resp.
auxiliary) counter:
• in both rules, only k cannot be a principal counter;

thus i is indeed a potentially principal counter.
• in each redex term in which it appears, j occurs only

in one parameter, and thus is a potentially auxiliary
counter.

We assume that ĝ ≺ f̂ , and let the reader check that the
other constraints are respected.

2. The order and duplication of variables does not matter.
i.e. any of the following rule is acceptable in an extended
Presburger system but not in a standard one:

f̂(0, j,k)→ ĝ(k, j)

f̂(0, j,k; x, y)→ ĝ(i, j,k; y, x)

f̂(s(i), j)→ r(ĝ(j, j), f̂(i, j))

The underlined terms show clearly that each redex term
on the right side is not in the approximation of its corre-
sponding left term.
Here is a fully worked out example:

f̂(0, j,k; x, y)→ ĝ(k, j; y, y)

f̂(s(i), j,k; x, y)→ r(ĝ(i,k; y, x), f̂(i, j, s(k); x, y))

Once again we check the extended Presburger system is
well defined:

• i does not occur in the base rule (of course!) and is
the first parameter of each redex term of the induction
rule; hence it is a potentially principal counter.

• j only occurs in the base rule and only once, thus it is
a potentially auxiliary counter.

Why those changes make the system easier to use ?
The considerations below are usual considerations for
judging the quality of a programming language. They
do apply here.
The conditions are easier to check. Even though

the notions of potentially principal and auxiliary
counters can be seen as more intricate than the one of
approximation, they are easier to check. Indeed they
need looking at only one variable: the one intended
to be the principal/auxiliary counter of the defined
symbol we are currently defining. It allows the user
to focus only on the variables that are useful for a
particular definition whereas the notion of approxi-
mation implies to also take care of variables that are
only present for other redex terms.

More modular. Imagine we change the profile of a
particular symbol, for instance if we realize that the
definition of this symbol did not match the intended
meaning, and have to change it. Then we can check
quickly if the other symbols still respect the con-
straints of an extended Presburger system. Indeed,
we have seen that modifying the order of parameters
or duplicating them is possible with extended pri-
mal grammars whereas it is not with standard ones.
Furthermore, since the defined symbols are less de-
pendent, this makes the definitions easier to reuse.

Higher level. The notions of potential counters are
more elaborated and complex than the one of ap-
proximation, but their semantics better reflect their
actual use: when we construct the definition of a sym-
bol we focus on the principal/auxiliary counter; thus
we want to know if the candidates are usable as such.
The new definitions capture this notion more accu-
rately.

Less verbose. The fact that we can use counter terms
and not only variables in the extended Presburger
system allows to express in few defined symbols some
definitions that would usually need much more de-
fined symbols. Furthermore it reduces the number of
parameters.

5 Conclusion and ongoing research
This paper can be seen as a term schematisation mani-
festo as primal grammars are the most powerful of these
formalisms but are not quite used. This fact is a natural
consequence of the intrinsic complexity of this formal-
ism. The main technical result of the paper allows more
flexible use of term schematisation based on (decidable)
fragments of arithmetic, without additional efforts of
the user since a translation algorithm into standard pri-
mal grammars is provided. This is potentially useful in

all aplications where easiness of human/computer inter-
action is capital (as in A.I. and computer-aided math-
ematics). Hopefully, extended primal grammars will
help to popularize the use of term schematisation in
Artificial Intelligence.

As an immediate application, we are currently using
extended primal grammars to schematise infinite sets
of first order formulae produced by resolution theorem
provers, a task for which flexible schematisation for-
malisms are mandatory (Aravantinos 2007).

A Proof of the equivalence
The goal of this section is to demonstrate the equiva-
lence between extended and standard primal grammars.

We already have one implication of the equivalence
by Property 2, i.e. for any primal grammar there is an
equivalent extended primal grammar.

We now show that for every extended primal gram-
mar, there is an equivalent primal grammar.
Lemma 1.

Let (Σ,R, t) be a primal grammar where t = f̂(~p; ~x)
is a redex term, ~p is a vector of counter expressions.

There is an equivalent standard primal grammar
(Σ′,R′, t′) such that every sub-term of type int is a vari-
able.

Furthermore, given a potentially principal (resp.
auxiliary) counter i (and only one) for t, we can impose
that i also be a potentially principal (resp. auxiliary)
counter of t′.

Proof. (sketch) For any i, we note: {c′i,1, . . . , c′i,mi
} =

CVar(pi) (arbitrarily ordered) and {c′0,1, . . . , c′0,m0
} =

CVar(n); we are going to construct a f̂ ′ such that:

f̂ ′(c′0,1, . . . , c
′
0,m0

, c′1,1, . . . , c
′
1,m1

, . . . ; ~x)

≡
f̂(p1, . . . , pk; ~x)

Or, diagramatically:

f̂(n, . . . pk ; ~x)
↓ ↓

f̂ ′(
︷ ︸︸ ︷
c′0,1, . . . , c

′
0,m0

, . . .
︷ ︸︸ ︷
c′k,1, . . . , c

′
k,mk

; ~x)

The structure of every counter expression is encoded
in the structure of f̂ ′. e.g. every addition in a counter
expression is replaced by a defined symbol whose struc-
ture encodes the corresponding addition.

Proof. (formal) We define n = p0.

• f̂ ’s Presburger system is written:

f̂(0,~c; ~x)→ rf̂1

f̂(s(i),~c; ~x)→ rf̂2 [f̂(i, c1, . . . , cj−1, s(cj), cj+1, . . .)]A

We consider the most general case where f̂ has an
auxiliary counter; indeed, the case without auxiliary

counter can be reduced to it by adding a “dummy”
additional auxiliary counter occurring neither in rf̂1

nor in rf̂2 .
• We prove the result by nœtherian induction on the

lexicographical order (≺,≤), where:
• ≺ is the precedence on defined symbols (see Sec-
tion 2.2 on page 3);
• ≤ is the natural order on the depth of n.
IH(t) denotes the term obtained by applying the
Induction Hypothesis to the term t.
1. if n = 0 or more generally, if n is a closed term:

Then we can rewrite the term according to the
Presburger system of f̂ . The head of every re-
dex occurring in the obtained term is strictly lower
than f̂ according to ≺, thus we can apply the in-
duction hypothesis to each redex term to get the
desired result.
Furthermore, potential counters are trivially kept
through this transformation, by induction.

2. if n is not a closed term and is of the form n′+n′′;
then by commutativity and associativity of addi-
tion we can impose that n′ be a variable; we can
even group all its occurrences: n = k × n′ + n′′

where k is the number of occurrences of n′ in m
(thus n′ does not occur in n′′).
If i occurs in n, we also impose that n′ be i (not to
lose the property of i being a potentially principal
counter).
• Then we denote by:

∗ rf̂k2 the term
rf̂2
{
i←i+k−1
cj←cj

} [
rf̂2

{
i←i+k−2
cj←cj+1

}
[. . . rf̂2

{
i←i

cj←cj+k−1

}
]A
]
A︸ ︷︷ ︸

×k

∗ Rf̂2 the term obtained from rf̂k2 by replacing ev-
ery redex ĝk(~dk; ~yk) by:

IH
(
ĝi(~di; ~yi)

{
i←i+n′′

c1←p1
...

ck←pk

})
∗ c′0,1

def= n′.
• We apply the induction hypothesis on the term
f̂(n′′, ~p; ~x), this is possible since the depth of n′′
is strictly lower than the one of n. This gives us
a term t′ of counter variables ~c. Note that i does
not occur in ~c (since n′ is not in ~c and if i is in
n = n′+n′′ then n′ = i). Thus we introduce a new
defined symbol f̂ ′ associated with the following
rewrite rules::

f̂ ′(0, c′0,2, . . . , c
′
0,m0

, c′1,1, . . . , c
′
k,mk

; ~x)

→ IH
(
f̂(n′′, ~p; ~x)

)
f̂ ′(s(i), c′0,2, . . . , c

′
0,m0

, c′1,1, . . . , c
′
k,mk

; ~x)→
Rf̂2 [f̂ ′(i,~c′, s(c′j,1), . . . ; ~x)]A

where we give f̂ ′ the necessary rank such that the
defined symbols introduced by induction are in
the approximation.
The grouped treatment of all occurrences of a
variable ensures that it is not “dispatched” on
many parameters. Furthermore, if a variable is
a potentially principal counter before the trans-
formation, then we can impose that it still be af-
ter (but if we choose such a potentially principal
counter, the other potentially principal counters
necessarily can’t keep this property; this does not
matter).

• We easily show the equality of the generated lan-
guage:

f̂ ′(n′, c′0,2, . . . , c
′
k,mk

; ~x) ≡ f̂(n′ + n′′, ~p; ~x)

• Hence we define: u′
def= f̂ ′(n′, c′0,2, . . . , c

′
k,mk

; ~x)
which indeed satisfies the property because n′ is
a variable.

3. if n is a variable, cf. 2 on the preceding page taking
n′ = n and n′′ = 0 (because n = n+ 0);

4. if n is of the form s(n′), cf. 2 on the previous page
taking n′′ = s(0) (because s(n) = n+ s(0));

Property 3.
For every extended primal grammar, there is an

equivalent primal grammar.

Proof. (sketch) The goal is to construct a primal gram-
mar from the extended one. Considering both defini-
tions, the main point is to modify the extended gram-
mar so as to respect the approximation constraint.

Three constraints could prevent us to reach our aim:

• The approximation is not defined for a term whose
parameters are not simple variables. Lemma 1 on the
preceding page especially deals with this problem.

• The principal counter shall be in first position in the
profile of a defined symbol. This condition cannot
be satisfied if ever a variable appears before it. The
notion of potentially principal counter is especially
designed to deal with this.

• The arguments of every defined symbol must be pair-
wise distinct. Hence it is impossible that a variable
occurs twice as a parameter. The notion of poten-
tially auxiliary counter is especially designed to deal
with this.

Proof. (formal) Let (Σ,R, t?) be an extended primal
grammar..

Let f̂ be a defined symbol of principal counter i and
auxiliary counter j.

We denote by u1, . . . , um the redex subterms of rf̂1
and rf̂2 .

By definition of an extended Presburger system, we
have for any k ∈ 1..m:

1. i (resp. j) is potentially principal (resp. auxiliary)
counter of uk;

2. Head(uk) ≺ f̂ .

We construct a defined symbol f̂ ′ “equivalent to f̂ ”
but with standard Presburger system, by induction on
≺ Let k ∈ 1..m, we denote by uk the term ĝk(nk, ~pk; ~tk).

• We first apply the induction hypothesis to uk gives
a standard Presburger system for ĝk; let’s now con-
struct the Presburger system of f̂ .

• Let’s denote by u′k = ĝ(n, ~p; ~x) the term such that
uk = u′k

{
x1←t1
x2←t2
...

}
; as we now have a standard Pres-

burger system for u′k. Indeed, this transformation
is needed to apply Lemma 1 on the previous page
which requires that the non counter parameters be
variables. Applying this lemma to u′k gives us a term
u′′k = ĝ′(c0, c1, . . . ; ~x) where c0, c1, . . . are counter
variables.

• i is a potentially principal counter of uk, therefore
by Lemma 1 on the preceding page, we can impose
that i is also a potentially principal counter of u′′k ;
hence, either it is the first parameter of u′′k or it does
not occur in it. This ensures that i does not cause
issues for u′′k being in the approximation of f̂(i, . . .).

• Seemingly j being a potentially auxiliary counter of
rf̂1 and of rf̂2 , it occurs at most once in uk.

• Hence we can distinguish two types of counter vari-
ables:
• the ones that appear between i and j (thus before
j), denoted by ~c1;

• the ones that appear after j, denoted by ~c2.
A variable may appear several times and this causes
trouble for the approximation. However, those vari-
ables don’t have any particular role in the Presburger
system (i.e. are neither principal nor auxiliary). So
we can rename them in order to make them distinct;
equalities between variables will be restored outside
the Presburger system.

• Then we define:

f̂ ′(0, ~c1, j, ~c2; ~x)→ rf̂1
where each uk is replaced
by u′′k .

f̂ ′(s(i), ~c1, j, ~c2; ~x)→ rf̂2
where each uk is replaced
by u′′k .

By construction, it is indeed a Presburger system (i.e.
each u′′k ∈ Apx(f̂ ′(i, ~c1, j, ~c2))).
• Eventually we define t′? = t? in which each subterm

of the form f̂(n, ~p; ~x) is replaced by f̂ ′(n, ~p;~t); then
(Σ,R′, t′?) is indeed a primal grammar equivalent to
(Σ,R, t?).

References
Aravantinos, V. 2007. Schémas de preuves
et de formules : vers plus de structure et
d’efficacité en déduction automatique. Master
thesis, Institut National Polytechnique de Greno-
ble & Université Joseph Fourier. Available on:
http://www-leibniz.imag.fr/~varavant.
Chen, H.; Hsiang, J.; and Kong, H. 1990. On fi-
nite representations of infinite sequences of terms. In
Conditional and Typed Rewriting Systems, 100–114.
Springer, LNCS 516.
Comon, H.; Dauchet, M.; Gilleron, R.; Jacquemard,
F.; Lugiez, D.; Tison, S.; and Tommasi, M. 2005. Tree
automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata. release
October, 12th 2007.
Comon, H. 1995. On unification of terms with integer
exponents. Mathematical System Theory 28:67–88.
Hermann, M., and Galbavý, R. 1997. Unification of In-
finite Sets of Terms schematized by Primal Grammars.
Theoretical Computer Science 176(1–2):111–158.
Hermann, M. 1992. On the relation between primitive
recursion, schematization, and divergence. In Proceed-
ing 3rd Conference on Algebraic and Logic Program-
ming, 115–127. Springer, LNCS 632.
Hermann, M. 1994. Divergence des systèmes de réécri-
ture et schématisation des ensembles infinis de termes.
Habilitation, Université Henri Poincaré Nancy 1.
Peltier, N. 2004. The First Order Theory of Primal
Grammars is Decidable. Theoretical Computer Science
323:267–320.
Salzer, G. 1992. The unification of infinite sets of
terms and its applications. In Logic Programming and
Automated Reasoning (LPAR’92), 409–429. Springer,
LNAI 624.

