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Abstract

In machine learning, the new-class discovery problem
remains an open challenge, especially for emergent rare
classes. However, the challenge is of crucial impor-
tance for applications such as detecting new financial
fraud patterns, new viral mutations and new network
malware, most of which ‘hide’ among vast volumes of
normal data and observations. This paper focuses on
a new approach, based on local-topology density esti-
mation, applicable to discovering examples of the rare
classes rapidly, despite non-separability with the ma-
jority class(es). The new method, called ALICE, and
its variant MALICE, are shown effective both theoret-
ically and empirically in outperforming other methods
in the literature, both on challenging synthetic data
and on real data sets.

1 Introduction

Supervised machine learning methods require labeled
training examples for each class (Mitchell 1997). Semi-
supervised methods such as co-training (Blum &
Mitchell 1998), and active learning (Donmez & Car-
bonell 2007) share the same requirement, although the
former also utilizes unlabeled examples, and the latter
optimizes sampling strategies to obtain additional la-
bels. However, both assume that at least one or more
instance of each class is given – i.e., they do not address
the new-class discovery challenge.

In many real world problems, we are interested in
rapidly discovering examples of rare classes, which are
known to be existent in the data set a priori. Often
times very small rare classes obfuscated to appear as
members of known majority classes. For instance, the
vast majority of financial transactions are legitimate,
but a small number may be fraudulent; detecting early
instances of new fraud patterns is a major first step
towards systematically finding and stopping such illicit
activity (Bay et al. 2006). Another example is network
intrusion detection; systematically finding the early on-
set of new malicious network activities among huge vol-

umes of routine network traffic is a critical unmet chal-
lenge (Wu et al. 2007). If we sample the data at ran-
dom, we will need to examine a very large number of
routine majority-class examples before discovering the
emergent rare classes. This problem is also a bottle-
neck in reducing the sample complexity of active learn-
ing (Balcan, Beygelzimer, & Langford 2006) (Dasgupta
2005).

Compared with the rich literature on unbalanced-
category classification, up until now, only a few meth-
ods have been proposed to address the rare class discov-
ery challenge. For example, in (Pelleg & Moore 2004),
the authors assumed a mixture model to fit the data,
and selected examples for labeling according to differ-
ent criteria; in (Fine & Mansour 2006), the authors
proposed a generic consistency algorithm, and proved
upper bounds and lower bounds for this algorithm in
some specific situations. Scalability in new-class dis-
covery was addressed in (Carbonell et al. 2006). On-
line new-topic assignment for documents in a stream
was proposed in (Blei & Lafferty 2006). Whereas the
above evidence a recent surge of interest in new class
discovery, these methods in general require that the
majority classes and the rare classes be separable or
nearly-separable to work well. However, in real appli-
cations, the support regions of the majority classes and
the rare classes often overlap strongly (sometimes due
to intentional obfuscation).

In this paper, we propose a new active learning method
for rapid rare-class discovery, named ALICE. It works
in the cases where we know the existence of some rare
classes, but do not have any labeled examples from
these classes. Different from existing methods on class
exploration, in our method, the rare classes may over-
lap with the majority classes. However, different rare
classes should be distinct from each other. Intuitively,
for each class, ALICE makes use of the local topology
defined by nearest neighbors to measure local density
around each example based on class-specific radii. Then
it selects an example with the maximum change in local
density on a certain scale, asks an external oracle for
its label, and gradually increases the scale until it finds



an example from that class. The core ALICE is proven
to be effective theoretically. In practice, to avoid re-
peatedly sampling the same class once discovered, we
have modified ALICE to produce MALICE, which per-
forms much better than existing methods in our set of
experiments, both on synthetic and real data.

The rest of the paper is organized as follows. In Section
2, we introduce ALICE and MALICE with theoretical
justifications. Then we give some experimental results
to demonstrate their effectiveness in Section 3. Finally,
we conclude the paper in Section 4.

2 Class Exploration Method

2.1 Notation

Given a set of unlabeled examples S = {x1, . . . , xn},
xi ∈ Rd, which come from m distinct classes, i.e.
yi ∈ {1, . . . ,m}. For the sake of simplicity, assume
that there is one majority class with prior p1, which
corresponds to yi = 1, and all the other classes are rare
classes with priors p2, . . . , pm, p1 À pi, i 6= 1. Without
loss of generality, suppose that we are only interested
in the rare classes, and the goal is to find at least one
example from each rare class by requesting as few total
labels as possible.

2.2 Method

The proposed method ALICE is presented in Algorithm
1. ALICE works as follows: Given the priors for the
rare classes, we first estimate the number Ki of in-
stances from class i in the set S. Then, for class i,
at each example, we record its distance from the Kth

i
nearest neighbor, which could be realized efficiently by
kd-trees (Moore 1991) for medium or low input-space
dimensionality. The minimum distance over all the ex-
amples is the class specific radius, and is assigned to
r′i. Next, we draw a hyper-ball centered at example xj

with radius r′i, and count the number of examples en-
closed by this hyper-ball, which is denoted as ni

j . ni
j

is roughly in proportion to the local density. To find
examples from class i, in each iteration of Step 10, we
subtract the local density of neighboring points from ni

j ,
and let the maximum value be the score of xj . The ex-
ample with the maximum score is selected for labeling
by the oracle. If the example is from class i, stop the it-
eration; otherwise, enlarge the neighborhood where the
scores of the examples are re-calculated and continue.

To intuitively understand ALICE, assume that the rare
classes are concentrated in small regions and the prob-
ability density function (pdf) of the majority class is
locally smooth. Firstly, since the support regions of the
rare classes are very small, it is important to find their

scales. The r′i values obtained in Step 3 will be used to
calculate the local density ni

j . Since r′i is based on the
minimum Kth

i nearest neighbor distance, it is never too
large to smooth out changes of local density, and thus
it is a good measure of the scale to begin with. Sec-
ondly, in each iteration of Step 8, the score of a certain
point, corresponding to the change in local density, is
the maximum of the difference in local density between
this point and all of its neighboring points. In this way,
we are not only able to select points on the boundary
of the rare class i, but also points in the interior, given
that the support region of class i is small. Finally, by
gradually enlarging the neighborhood where the scores
are calculated, we can further explore the interior of the
support region, and increase our chance of finding rare
class examples.

Algorithm 1 Active Learning for Initial Class Explo-
ration (ALICE)
Require: S, p2, . . . , pm

1: Initialize all the rare classes as undiscovered.
2: for i = 2 : m do
3: Let Ki = npi, where n is the number of examples.
4: For each example, calculate the distance between

this example and its Kth
i nearest neighbor. Set r′i

to be the minimum value among all the examples.
5: end for
6: for i = 2 : m do
7: ∀xj ∈ S, let NN(xj , r

′
i) = {x|x ∈ S, ‖x − xj‖ ≤

r′i}, and ni
j = |NN(xj , r

′
i)|.

8: end for
9: for i = 2 : m do

10: If class i has been discovered, continue.
11: for t = 2 : n do
12: For each xj that has been selected, si

j =
−∞; for all the other examples, si

j =
max

xk∈NN(xj ,tr′i)
(ni

j − ni
k).

13: Select and query the label of x =
arg maxxj∈S si

j .
14: If the label of x is equal to i, break; otherwise,

mark the class that x belongs to as discovered.
15: end for
16: end for

2.3 Justification

In this subsection, we prove that if the rare classes are
concentrated in small regions and the pdf of the ma-
jority class is locally smooth, ALICE will repeatedly
sample in the regions where rare class examples occur
with high probability.

Let fi(x) denote the pdf of class i, where i = 1, . . . , m
and x ∈ Rd. To be precise, we make the following
assumptions.



Assumptions

1. The pdf fi(x) of rare class i is uniform within a hyper-
ball Bi of radius ri

1 centered at bi, i = 2, . . . ,m, i.e.
fi(x) = 1

V (ri)
, if x ∈ Bi; and 0 otherwise, where

V (ri) ∝ rd
i is the volume of Bi.

2. f1(x) is bounded and positive in Bi, i = 2, . . . ,m,
i.e. f1(x) ≥ ci1pi

p1V (ri)
, ∀x ∈ Bi and f1(x) ≤ ci2pi

p1V (ri)
,

∀x ∈ Rd, where ci1, ci2 > 0 are two constants.2

Furthermore, for each rare class i, i = 2, . . . ,m, let
ri2 = ri

(1+ci2)
1
d
; and let OV ( ri2

2 , ri) be the volume of the

overlapping region of two hyper-balls: one is of radius
ri; the other one is of radius ri2

2 , and its center is on
the sphere of the previous one. We have the following
theorem, which proves the effectiveness of ALICE.

Theorem. If

1. For rare class i, i = 2, . . . ,m, let B2
i be the hyper-ball

centered at bi with radius 2ri. The minimum distance
between the points inside Bi and the ones outside B2

i
is not too large, i.e. maxm

i=2 min{‖xj − xk‖|xj , xk ∈
S, ‖xj − bi‖ ≤ ri, ‖xj − bi‖ > 2ri} ≤ α.

2. The rare classes are far apart, i.e. if xj , xk ∈ S,
‖xj − bi‖ ≤ ri, ‖xk − bi′‖ ≤ ri′ , i, i′ = 2, . . . ,m, and
i 6= i′, then ‖xj − xk‖ > α.

3. f1(x) is locally smooth, i.e. ∀x, y ∈ Rd, |f1(x) −
f1(y)| ≤ β‖x−y‖

α , where β ≤ minm
i=2

p2
i OV (

ri2
2 ,ri)

2d+1V (ri)2
.

4. The number of examples is sufficiently large,
i.e. n ≥ max{maxm

i=2
1

2c2
i1p2

i
log 3m−3

δ ,

maxm
i=2

1
2(1−2−d)2p2

i
log 3m−3

δ ,

maxm
i=2

1
p4
1β4V (

ri2
2 )4

log 3m−3
δ }.

then with probability at least 1−δ, in every iteration of
Step 8, after d 2α

ri2
e rounds of Step 10, ALICE will query

at least one example whose probability of coming from
a rare class is at least 1

3 .

Proof. To prove the theorem, we need the following
simple lemma.

Lemma. For each rare class i,
i = 2, . . . , m, ∀εi, δi > 0, if n ≥

1This is the actual radius, as opposed to the class specific
radius r′i.

2Notice that here we are only dealing with the hard case
where f1(x) is positive within Bi. In the separable case
where the support regions of the majority class and the rare
classes do not overlap, we can use other methods to detect
the rare classes, such as the one proposed in (Pelleg & Moore
2004).

max{maxm
i=2

1
2c2

i1p2
i

log 3m−3
δ , maxm

i=2
1

2(1−2−d)2p2
i

log 3m−3
δ ,

maxm
i=2

1
ε4V (

ri2
2 )4

log 3m−3
δ }, then with probability at

least 1 − δ, ri2
2 ≤ r′i ≤ ri and |n

i
j

n − E(ni
j

n )| ≤ εV (r′i),
1 ≤ j ≤ n.

Proof. First, notice that for each rare class i,
the expected proportion of points falling inside Bi,
E( |NN(bi,ri)|

n ) ≥ (ci1 + 1)pi, and that the maximum ex-
pected proportion of points falling inside any hyper-ball
of radius ri2

2 , max
x∈Rd

[E( |NN(x,
ri2
2 )|

n )] ≤ 2−dpi. Then

Pr[∃i, s.t. r′i > ri OR ∃i, s.t. r′i <
ri2

2

OR ∃i, ∃xj ∈ S s.t. |n
i
j

n
− E(

ni
j

n
)| > εV (r′i)]

≤
m∑

i=2

Pr[r′i > ri] +
m∑

i=2

Pr[r′i <
ri2

2
]+

m∑

i=2

Pr[r′i ≥
ri2

2
AND ∃xj s.t. |n

i
j

n
− E(

ni
j

n
)| > εV (r′i)]

≤
m∑

i=2

Pr[|NN(bi, ri)| < Ki]

+
m∑

i=2

Pr[max
x∈Rd

|NN(x,
ri2

2
)| > Ki]

+
m∑

i=2

n Pr[|n
i
j

n
− E(

ni
j

n
)| > εV (r′i)|r′i ≥

ri2

2
]

=
m∑

i=2

Pr[|NN(bi, ri)
n

| < pi]

+
m∑

i=2

Pr[max
x∈Rd

|NN(x, ri2
2 )

n
| > pi]

+ n

m∑

i=2

Pr[|n
i
j

n
− E(

ni
j

n
)| > εV (r′i)|r′i ≥

ri2

2
]

≤
m∑

i=2

e−2nc2
i1p2

i +
m∑

i=2

e−2n(1−2−d)2p2
i

+ 2n

m∑

i=2

e−2nε2V (r′i)
2

where the last inequality is based on Hoeffding bound.

Let e−2nc2
i1p2

i ≤ δ
3m−3 , e−2n(1−2−d)2p2

i ≤ δ
3m−3 and

2ne−2nε2V (r′i) ≤ 2ne−2nε2V (
ri2
2 )2 ≤ δ

3m−3 , we obtain
n ≥ 1

2c2
i1p2

i
log 3m−3

δ , n ≥ 1
2(1−2−d)2p2

i
log 3m−3

δ , and

n ≥ 1
ε4V (

ri2
2 )4

log 3m−3
δ . ¥

Based on this lemma, using condition 4, let ε = p1β, if
the number of examples is sufficiently large, then with
probability at least 1 − δ, for each rare class i, i =



2, . . . ,m, ri2
2 ≤ r′i ≤ r and |n

i
j

n − E(ni
j

n )| ≤ p1βV (r′i),
1 ≤ j ≤ n.

To better prove the theorem, given a point xj ∈ S,
we say that xj is ‘far from all the rare classes’ iff for
every rare class i, ‖xj − bi‖ > 2ri, i.e. xj is not within
B2

i . According to condition 3, ∀xj , xk ∈ S s.t. xj and
xk are far from all the rare classes and ‖xj − xk‖ ≤
α, E(ni

j

n ) and E(ni
k

n ) will not be affected by the rare
classes. Therefore, in iteration i of Step 8 where we aim

to find examples from rare class i, |E(ni
j

n ) − E(ni
k

n )| ≤
p1βV (r′i) ≤ p1βV (ri). Furthermore, since α is always
bigger than ri, we have

|n
i
j

n
− ni

k

n
|

≤ |n
i
j

n
− E(

ni
j

n
)|+ |n

i
k

n
− E(

ni
k

n
)|+ |E(

ni
j

n
)− E(

ni
k

n
)|

≤ 3p1βV (ri) (1)

From inequality (1), it is not hard to see that ∀xj , xk ∈
S, s.t. xj is far from all the rare classes and ‖xj−xk‖ ≤
α, ni

j

n − ni
k

n ≤ 3p1βV (ri), i.e. when tr′i = α,

si
j

n
≤ 3p1βV (ri) (2)

This is because if xk is not far from any of the rare
classes, the rare classes may also contribute to ni

k

n , and
thus the score of xj may be even smaller.

On the other hand, based on conditions 1 and 2, there
exist two points xu, xv ∈ S, s.t. ‖xu − bi‖ ≤ ri, xv

is far from all the rare classes, and ‖xu − xv‖ ≤ α.
Since the contribution of rare class i to E(ni

u

n ) is at

least pi·OV (
ri2
2 ,ri)

V (ri)
, so E(xi

u

n ) − E(xj
v

n ) ≥ pi·OV (
ri2
2 ,ri)

V (ri)
−

p1βV (r′i) ≥ pi·OV (
ri2
2 ,ri)

V (ri)
− p1βV (ri). Since for any ex-

ample xj ∈ S, we have |n
i
j

n − E(ni
j

n )| ≤ p1βV (r′i) ≤
p1βV (ri), therefore

nu

n
− nv

n
≥ pi ·OV ( ri2

2 , ri)
V (ri)

− 3p1βV (ri)

≥ pi ·OV ( ri2
2 , ri)

V (ri)
− 3p1p

2
i ·OV ( ri2

2 , ri)
2d+1V (ri)

Since pi is very small, pi À 6p1p2
i

2d+1 ; therefore, ni
u

n − ni
v

n >
3p1p2

i ·OV (
ri2
2 ,ri)

2d+1V (ri)
≥ 3p1βV (ri), i.e. when tr′i = α,

si
u

n
> 3p1βV (ri) (3)

In Step 10 of the proposed method, we gradually en-
large the neighborhood to calculate the change of lo-
cal density to continue seeking an example of the rare
class. When tr′i = α, based on inequalities (2) and (3),

∀xj ∈ S s.t. xj is far from all the rare classes, we have
si

u > si
j . Therefore, in this round of iteration, we will

pick an example that is NOT far from one of the rare
classes, i.e. there exists a rare class it s.t. the selected
example is within B2

it
. Note that it is not necessarily

equal to i, which is the rare class that we would like to
discover in Step 8 of the method.

Finally, we show that the probability of picking an ex-
ample that belongs to rare class it from B2

it
is at least 1

3 .
To this end, we need to calculate the maximum proba-
bility mass of the majority class within B2

it
. Consider

the case where the maximum value of f1(x) occurs at
bit , and this pdf decreases by β every time x moves
away from bit

in the direction of the radius by α, i.e.
the shape of f1(x) is a cone in (d+1) dimensional space.
Since f1(x) must integrate to 1, i.e. V (αf1(bit )

β ) · f1(bit )

d+1 ,

where V (αf1(bit )

β ) is the volume of a hyper-ball with ra-

dius αf1(bit )

β , we have f1(bit
) = ( d+1

V (α) )
1

d+1 β
d

d+1 . There-
fore, the probability mass of the majority class within
B2

it
is:

V (2rit)(f1(bit)−
2rit

α
β) +

2rit

α

β

d + 1
V (2rit)

< V (2rit)f1(bit) = V (2rit)(
d + 1
V (α)

)
1

d+1 β
d

d+1

= 2d V (rit)

(V (α))
1

d+1
(d + 1)

1
d+1 β

d
d+1

< (d + 1)
1

d+1 (2d+1V (rit)β)
d

d+1

≤ (d + 1)
1

d+1 (
p2

it
·OV ( rit2

2 , rit)
V (rit)

)
d

d+1 < 2pit

where V (2rit) is the volume of a hyper-ball with radius
2rit . Therefore, if we select a point at random from
B2

it
, the probability that this point is from rare class it

is at least pit

pit+p1·2pit
≥ pit

pit+2pit
= 1

3 . ¥

2.4 Implementational Issues

According to our theorem, in each iteration of Step 8,
with high probability, we may pick examples belonging
to the rare classes after selecting a small number of ex-
amples. However, the discovered rare class it may not
be the same as the rare class i that we hope to dis-
cover in this iteration of Step 8. Furthermore, we may
repeatedly select examples from class it before finding
one example from class i. To address these issues, we
have modified the original ALICE algorithm to produce
MALICE, which is shown in Algorithm 2.

There are two major differences between MALICE and
ALICE. 1) In Step 12 of MALICE, once we have la-
beled an example, any unlabeled example within the
class specific radius of this example will be precluded



Algorithm 2 Modified Active Learning for Initial
Class Exploration (MALICE)
Require: S, p2, . . . , pm

1: Initialize all the rare classes as undiscovered.
2: for i = 2 : m do
3: Let Ki = npi.
4: For each example, calculate the distance between

this example and its Kth
i nearest neighbor. Set r′i

to be the minimum value among all the examples.
5: end for
6: Let r′1 = maxm

i=2 r′i.
7: for i = 2 : m do
8: ∀xj ∈ S, let NN(xj , r

′
i) = {x|x ∈ S, ‖x − xj‖ ≤

r′i}, and ni
j = |NN(xj , r

′
i)|.

9: end for
10: for i = 2 : m do
11: If class i has been discovered, continue.
12: for t = 2 : n do
13: For each xj that has been selected, ∀xk ∈ S,

s.t. ‖xj−xk‖ ≤ r′yj
, si

k = −∞; for all the other
examples, si

j = max
xk∈NN(xj ,tr′i)

(ni
j − ni

k).

14: Select and query the label of x =
arg maxxj∈S si

j .
15: If the label of x is equal to i, break; otherwise,

t = t − 1, mark the class that x belongs to as
discovered.

16: end for
17: end for

from selection. Since we have proved that with high
probability, the class specific radius is less than the ac-
tual radius, this modification will help prevent examples
of the same class from being selected repeatedly. 2) In
Step 14 of MALICE, if the labeled example belongs to
a rare class other than class i, we will not enlarge the
neighborhood based on which the scores of the exam-
ples are re-calculated. This is to increase the chance
that if tr′i is close to α, we will select examples from
B2

i .

3 Experimental Results

In this section, we compare MALICE with the best
method proposed in (Pelleg & Moore 2004) (Interleave)
and random sampling (RS) on both synthetic and real
data sets. In Interleave, we use the number of classes
as the number of components in the mixture model.
For both Interleave and RS, we run the experiments 10
times and report the average results.

3.1 Synthetic data sets

Figure 1(a) shows a synthetic data set where there is
only one rare class. The pdf of the majority class

(shown in blue dots) is Gaussian and the pdf of the rare
class (shown in red circles) is uniform within a small
hyper-ball. There are 1000 examples from the majority
class and only 10 examples from the rare class. Using
Interleave, we need to label 35 examples on average; us-
ing RS, we need to label 101 examples on average; and
using MALICE, we only need to label 3 examples in
order to sample one example from the rare class we are
interested in, which are denoted as ‘x’ in Figure 1(b).
Notice that the first 2 examples that MALICE selects
are not from the correct region. This is because the
number of examples from the rare class is very small,
and the local density may be affected by the random-
ness in the data.
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(a) Data Set
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(b) Examples Selected by MALICE, denoted as ‘x’

Figure 1: Synthetic Data Set 1.

In Figure 2(a), the majority class has 3000 examples
(shown in blue dots) with Gaussian distribution. The
4 rare classes (shown in red circles) all have different
shapes, and each has 267, 280, 84 and 150 examples re-
spectively. Using Interleave, we need to label 382 exam-
ples on average; using RS, we need to label 68 examples
on average; and using MALICE, we only need to label



4 examples, each of which is in a different rare class.
The examples selected by MALICE are denoted as ‘x’
in Figure 2(b). Notice that with this dataset, Interleave
is even worse than RS. This is because some rare class
is within the dense region of the majority class. There-
fore, it may take Interleave a long time to finally find
one example from this rare class.
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(a) Data Set
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(b) Examples Selected by MALICE, denoted as ‘x’

Figure 2: Synthetic Data Set 2.

3.2 Real data sets

In this subsection, we compare different methods on
two real data sets: Shuttle (Brazdil & Gama 1991) and
image data set. The first data set consists of 4515 exam-
ples, described by 9 dimensional features. The examples
come from 7 classes: the proportion of the largest class
(majority class) is 75.53%, and the proportion of the
smallest class is 0.13%. The second data set consists
of 5000 images, described by 244 dimensional features
such as color and texture. The examples come from
6 classes: the proportion of the largest class (major-
ity class) is 90.00%, and the proportion of the smallest
class is 2.00%.

In Table 1 and 2, we compare the number of labeled
examples for different methods on the two data sets
respectively. From these tables, we can see that MAL-
ICE is significantly better than Interleave and RS: with
Shuttle data set, to find all the rare classes, Interleave
needs 132 label requests, RS needs 512 label requests,
and MALICE only needs 84 label requests; with image
data set, to find all the rare classes, Interleave needs
662 label requests, RS needs 112 label requests, and
MALICE only needs 49 label requests. This is because
as the number of components becomes larger, the mix-
ture model generated by Interleave is less reliable due
to the lack of labeled examples, thus we need to se-
lect more examples. Furthermore, the majority class
and rare classes may not be nearly-separable, which is
a disaster for Interleave. On the other hand, MALICE
does not assume a generative model for the data, and
only focuses on the change in local density, which is
more effective on the two data sets.

Number of Rare 1 2 3 4 5 6
Classes Discovered

MALICE 6 11 49 71 72 84
Interleave 1 52 107 109 115 132

RS 7 9 13 63 100 512

Table 1: The Number of Labeled Examples for Different
Methods on Shuttle Data Set.

Number of Rare 1 2 3 4 5
Classes Discovered

MALICE 3 4 14 43 49
Interleave 6 114 180 181 662

RS 10 22 39 61 112

Table 2: The Number of Labeled Examples for Different
Methods on Image Data Set.

3.3 Conclusion

In this paper, we have proposed a new active learn-
ing method (ALICE) for rare-class discovery, which is
a very important topic in many real problems, such
as network intrusion detection and financial fraud de-
tection. Different from existing methods, ALICE does
not rely on the assumption that the data is nearly-
separable. It works by selecting examples correspond-
ing to regions with the maximum change in local den-
sity, and depending on scaling, it will select class-
boundary or class-internal examples of the rare classes.
ALICE could be scaled up using kd-trees (Moore 1991).
The effectiveness of ALICE is guaranteed by theoretical
justification, i.e. guarantees on the probability of dis-
covering an example of rare classes, given a sampling
strategy. Furthermore, to avoid repeatedly sampling in
the same class in real applications, we have modified



ALICE accordingly to produce MALICE, which out-
performs existing methods on both synthetic and real
data sets. Future work involves studying the robustness
of MALICE when the parameters provided to it (the
number of rare classes, and the priors of each class) are
unknown or just estimates.
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