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Abstract

We show that there is a close connection between the con-
struction of the perfect kernel of H? class via the intera-
tion of the Cantor-Bendixson derivative through the ordinals
and the construction of the well-founded semantics for logic
programs via Van Gelder’s alternating fixpoint construction.
This connection allows us to transfer known complexity re-
sults for the perfect kernel a9 classes to to give new com-
plexity results for various questions about the well-founded
semanticsv fs(P) of a logic programP.

1 Introduction

In this paper we shall study the complexity of the well-
founded semantics of infinite propositional logic programs.
The well-founded semantics was introduced by Van Gelder,
Ross, and Schlipf (Van-Gelder, Ross, & Schlipf 1991). It
provides a 3-valued interpretation to logic programs with
negation and it can be viewed as an approximation to the
stable semantics as defined by Gelfond-Lifschitz (Gelfond
& Lifschitz 1988), see (Van-Gelder, Ross, & Schlipf 1991)
and (Fitting 2002). The stable model semantics is defined
by means of a fixpoint of an anti-monotone operator of-
ten denoted byGLp(-). Van Gelder (Van-Gelder 1989)
showed that the well-founded semantics can be defined as
the alternating fixpoint oiGLp. The relationship between
the well-founded semantics and inductive definition was
studied by Denecker and his collaborators (Denecker 1998;
Denecker, Bruynooghe, & Marek 2001).

It is known that the well-founded semantics for a finite
propositional logic program can be computed in polyno-
mial time (Van-Gelder 1989) while the problem of deciding
whether a finite propositional program has a stable model
is N P-complete (Marek & Truszcski 1991). The basic
results for the complexity of the well-founded semantics of
infinite logic programs can be found in (Schlipf 1992) and
(Fitting 2002). Complexity results for the stable model se-
mantics of infinite logic programs can be found in (Marek,
Nerode, & Remmel 1994). Basically, the both the well-
founded semantics and the stable logic semantics for recur-
sive logic programs can capture aHy set. For example,
there are recursive programs for which the well-founded se-
mantics isl1}-complete set (Schlipf 1992) and the problem
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of deciding whether a recursive program has a stable model
is X21-complete (Marek, Nerode, & Remmel 1994).

In what follows, we will assume that the atoms appearing
in all programs come from a fixed countable set of atoms
Do, P1, - - .- We shall implicitly identifyp; with the integer
so that we can think of the atoms appearing in our programs
as integers. This will allow us to give precise definitions of
recursive and recursively enumerable programs.

In this paper, we shall develop a number of index set re-
sults for the well-founded semantics for logic programs. In-
dex set results provide for a finer classification of the com-
plexity of various decision problems. For example, suppose
that¢, is the partial recursive function computed by thth
Turing machine andi, is domain ofp.. Thus¢g, ¢1, ... is
a list of all partial recursive functions ardy, W,...is a
list of all recursively enumerable (r.e.) sets. Itis well known
that there is no uniform procedure which givewill decide
whetherW, is non-empty, finite, or recursive. However,
the complexity of deciding whether a given r.e. $gt is
non-empty, finite, or recursive are not the same. That is, let
Non = {e : W, is non-empty, Fin = {e : W, is finite},
and Rec = {e : W, isrecursivé. Then it is well-known
that Non is ©.{-complete,Fin is ©9-complete, andRec is
¥9-complete; see (Soare 1987).

We shall be interested in the index sets associated with
various properties of the well-founded semantics of recur-
sively enumerable logic programs. That isLiP,, LP, . ..
is an effective list of all recursively enumerable proposi-
tional logic programs whose set of atoms is contained in
the natural numbers andR is some property of the well-
founded semantics, then we are interested in classifying the
complexity of the set of akk such that the well-founded se-
mantics of LP. had propertyR. We shall show that there
is a close connection between the well-founded semantics
of recursively enumerable logic programs and the Cantor-
Bendixson derivatives dil! classes contained &2t In par-
ticular, we shall show that for each primitive recursive binary
treeT,, there is a recursively enumerable logic progrBm
such that ifA is either a limit ordinal or 0 and is finite,
then the complexity of tha + 2a-th level of the Van Gelder
alternating fixed point construction of the well-founded se-
mantics ofP, is equivalent to the complexity of the+ a-th
derivative of thell! class of all infinite paths through,,

[T.]. Moreover, it will be case that ik + n is the ordinal at



which the iteration of the Cantor-Bendixson derivative ap-
plied to [T.] reaches the perfect kerné&l(|T.]), then the
Van Gelder alternating fixed point of construction applied
to P. will give the well-founded semantics df. at level
A + 2n. Now there are many results in the literature about
the complexity of index sets associated with the construc-
tion of the perfect kernel dfl! classes. Our correspondence
T. — P, allows us to transfer such complexity results to
produce new complexity results for the well-founded seman-
tics of r.e. programs. For example, we can show that the set
of all e such that the true sentences under the wff-semantics
of LP, is recursive orA} is all}-complete set. Thus the
problem of deciding whether the well-founded semantics of
an r.e. program is recursive istB complete problem. We
also prove some index set results for properties that imply
the well-founded semantics is relatively simple. For exam-
ple, we show that the set efsuch that the true sentences
under the wff-semantics of P, is empty isII{ complete,
the set o such the false sentences under the wff-semantics
of LP, is empty isII complete, and the set efsuch that
the true sentences under the wff-semantick Bf is just the
least model of the Horn part of the progranii$ complete.
The outline of this paper is as follows. In section 2, we
shall provide the basic definitions from logic programming
and recursion theory that we will need to state our results.
In section 3, we shall give our correspondence between the
well-founded semantics and the Cantor-Bendixson deriva-
tive of I1Y classes. In section 4, we shall derive index set
results for logic programs for which the well-founded se-
mantics is especially simple.

2 Basic Definitions

In this section, we shall provide the basic definitions of the

stable and well founded semantics as well as give precise
definitions of recursive and recursively enumerable (r.e.)

programs. We shall also give some basic definitions from

recursion theory and state some key complexity results due
to Cenzer and Remmel (Cenzer & Remmel 1998a) which
will be used to prove our main results.

2.1 Definitions of Stable and Well-founded
Semantics

A logic programming clause is a construct of the form

C:p<_QIv---7Q7rza_‘T1a---7_‘T7L-

The literalsqy, . . ., ¢m, -1, - .., r, form thebodyof C
and the atony is called theheadof C. A logic program
P is a set of logic programming clauses. We say that a set
of atomsM is a model of a clausé€’ if either M does not
satisfy the body of” or M satisfies the head af. M is
said to be a model of a logic program if M is a model
of each of the clauses d?. Clauses” wheren = 0 are
calledHorn clauses.P is said to be adorn programif all

its clauses are Horn clauses. A Horn progrBralways has
aleast modeL M (P). Itis constructed by iterating the one-
step provability operatdfp for P. That is, given a sef of
atoms, we lef'»(I) be equal to

{p:3C=p<—ay,...,an € P:ay,...,a, € I}.

Then the least model d?, LM (P), equals
Tp(0) To= | TE®).

n>1

Next assumeP is a logic program with negated atoms in
the body of some of its clauses. Then following (Gelfond &
Lifschitz 1988), we define thetable modelsf P as follows.
AssumeM is a collection of atoms. Th&elfond-Lifschitz
reductof P by M is a Horn program arising frorf® by first
eliminating those clauses iR which contain— r with r €
M. In the remaining clauses, we drop all negative literals
from the body. The resulting progra6iL,,(P) is a Horn
program. We call\/ a stable modebf P if M is the least
model of GL, (P). For a Horn progran®, there is a unique
stable model, namely, the least modelraf

Assume that we are given a logic progréhand the set of
atoms ofP is contained inV. We letP(N) denote the set of
all subsets ofV and for any sefi/ C N, letM = N — M.
Then we define the operatdrp : P(N) — P(N) by

Ap(M) = LM(GL(P)).

It is well known thatAp is anti-monotone, i.e$§ C T im-
plies Ap(T) C Ap(S). Thus the operatol/p = A% is
monotone. Also the operatdf defined by

Vp(M) = Up(M)

is monotone. Next we defings andVg for any ordinala

UJ(M) =M,V (M) = M,
U1 (M) = Up(UR(M)), Ve (M) = Vp(VE (M)

Up(M) = | Up(M)), VM) = | V(M)
a< a<
for X a limit ordinal.

It follows from the Knaster-Tarski Theorem (Tarski 1955)
that bothUp and Vp must have least fixed points. Then
we can define the set atoms that are true under the well-
founded semantics to &, ;s (P) = Ipf(Up) and the set of
atoms which are false under the well-founded semantics to
be F,;s(P) = lfp(Vp). Itis also not difficult to see that
Furs(P) = Ap(Tuwss(P)). _

Van Gelder (Van-Gelder 1989) gave the following alter-
nating fixed point algorithm to compute the well-founded
semantics.

Algorithm Fy(P) := () and
Ty(P) := Ap(Fp) = LM(GL(P)).

F.1(P)=T,and

Tas1(P) = Ap(Fari(P) = LM(GL P)).

Fa+1(P)(
For X a limit ordinal,
FA(P) = Uyy Fa(P) and

T\(P) = Ap(Fx(P)) = LM(GLy 5(P)).




Then F,5s(P) = Fo(P) and Tyts = To(P) where
«is the least ordinal such that, (P) = F,11(P).

We will be most interested in the “even” stages of the al-
ternating fixed point construction. Note that it is easy to see
that for all o,

Foia(P) = Tos1(P) = Ap(Fot1(P))
= Ap(To(P)) = Ap(Ap((Fu(P)))
= Vp(F,(P))and

Tos2(P) = Ap(Fat2(P)) = Ap(Tat1(P))

Ap(Ap(Far1(P))) = Ap(Ap(Ta(P))

Thus forn finite and\ a limit ordinal, Fs,, (P) = V2 (0),
F\(P) VA(0), and Fyi2,(P) = VaT™(0). Simi-
larly, Th, (P) = Up(To(P)), Ta(P) = Up(Ty(P)), and
Ti20(P) = Upt™(To(P)).

2.2 Basic Definitions from Recursion Theory

Letw = {0,1,2,...} denote the set of natural numbers, let
w<¥ denote the set of all finite sequences framand let
2<v denote the set of all finite sequenced)sfandl’s. Let
c(xy,x9,...,2,) be the standard coding of finite sequences
into natural numbers as in (Cenzer & Remmel 1998Db).

of functions is all?-class if there is a recursive predicdte
suchthatd = {f: w — w : YV, (R((f(0),..., f(n)))}. Itis
not difficult to see that ifA is aIl{-class, themd = [T for
some recursive treé€ C w<«.

One of the goals of this paper is develop a close con-
nection between the well-founded semantics and Cantor-
Bendixson derivatives on closed sé&tgontained ire*. The
Cantor-Bendixson derivativ®(Q) is defined to be the set
of nonisolated members @. The perfect kernek (Q)
is defined to be the (possibly empty) largest perfect subset
of Q. Thus K(Q) is empty if and only ifQ is countable.
K(Q) may be obtained by iterating the derivative through
the recursive ordinals, wher®*+t1(Q) = D(D*(Q))
and DX(Q) = N, D*(Q) for limit ordinals Q. Then
K(Q) =, D*(Q), where the intersection ranges over all
ordinals. The Cantor-Bendixson rank(Q) is the least or-
dinal o such thatD"(c%) = K(Q). For all classQ, it is
known thatrk(Q) < w$ ¥, the least nonrecursive ordinal.

To establish our connection between the well-founded se-
mantics and the Cantor-Bendixson derivative, we consider
index sets for stron@l® binary classes and also index sets
for the cardinality of the Cantor-Bendixson derivatives. We
only consider binary classes. These problems were first
studied in the context of Polish spaces by Kuratowski, see
(Kuratowski 1970), where the Cantor-Bendixson derivative
is viewed as a mapping from the space of compact subsets
of {0, 1} to itself. Kuratowski showed that the derivative

We shall assume that the atoms of the programs that we js 5 Borel map of class exactly two. In particular, he showed
consider are contained in the natural numbers. Thus given a that the family D~ ({0}) of finite closed sets is a univer-

program clause

C:PHQ17~-~,Qm7ﬁ7'17---7_‘7“n (1)
we define the code of C, code(C), to be
clm,n,p,e(qry -y Gm), c(T1,. . ). Then we say

that a programP consisting of clauses of the form of (1)
is recursive (r.e., etc.) if the set of codes of its clauses
is recursive (r.e., etc.). We leforn(P) denote the set
of Horn clauses ofP. Thus if P is recursive (r.e.), then
Horn(P) will be recursive (r.e.). Lep. denote the partial
recursive function computed byth Turing machineM,
so thatgyg, ¢1, . .. is an effective enumeration of all partial
recursive functions. We define theth re. setiW, to
be the domain ofp. so thatW,, Wi,... is an effective
enumeration of all r.e. sets. We |&tP, denote the set of
all z in W, such thatz is a code of a clause of the form of
(). ThusLP,, LPy,... is an effective enumeration of all
r.e. logic programg’ whose set of atoms is a subset
Givena = (ai,...,a,) andps = (61, ..., 5) in w<¥,
we writea C (3 if « is initial segment of3, that is, ifn < k
anda; = g; for i < n. For any finite sequence € {0,1}*,
let I[lo] = {z € {0,1}* : ¢ C x}. For the rest of this
paper, we identify a finite sequenae= (aq,. .., a;,) with
its codec(«). We let0 be the code of the empty sequence
(). Thus, when we say a s8tC w<¥ is recursive, r.e., etc.,
we mean the sefc(a): o € S} is recursive, r.e., etc. A
tree T is a nonempty subset of<“ such thatT" is closed
under initial segments. A functiofi: w — w is an infinite
path throughT if for all n, (f(0),...,f(n)) € T. We let
[T] denote the set of all infinite paths throu@ih A set A

sal ¥ class and posed the problem of determining the exact
Borel class of the iterated operatbf*. Cenzer and Mauldin
showed in (Cenzer & Mauldin 1982) and that the iterated op-
erator D™ is of Borel class exactlgn for finite n and that

for any limit ordinal A\ and any finiten, DA*" is of Borel
class exactlyx + 2n + 1. In particular it is shown that for
any«, the familyT,, of closed setd( such thatD*(K) = ()

is a universak9 , set. Lempp gave effective versions of this
result in (Lempp 1987).

Let Ty, T1, . .. be an effective list of all primitive recur-
sive tree contained if0,1}. Then it is well known that
[To], [T1], - . . is an effective list of allll) classes. For any
fixed setX, we let [T;%], [T5],... enumerate the binary
classes which arH{ in X. That s, letrX be thee-th func-
tion primitive recursive inX and

TeX ={0tu{o: (vVr < O’)?Ti((<’7'>) 1}.

For any propertyR, let IX (R) = {e : [TX] satisfies R}.
The following result was proved by Cenzer and Remmel
(Cenzer & Remmel 1998a).

Theorem 2.1. For any setX,

1. TX (empty) is 29~ complete,

2. I¥(=1)is 13~ complete.

. For any integerc > 0, I (> ¢) is ng complete and
IX(=c+1)is DI* complete.

4. I¥ (finite) is ©9~ complete. O



The XY sets may be defined for any recursive ordinal o* with o € {0, 1}* so that the we can identify the Herbrand
and the strondI?_ , classes may be defined as set of in- base ofP, with the set of natural numbess This given, we
finite paths through &2 tree. To classify index sets con-  define the logic progran®. to consist of the following set
nected with the transfinite Cantor-Bendixson derivatives of Of clauses.
ik cla_sses, Cenzer and Remmel (Cenzer & Remmel 1998a) (i) o — foro ¢ T,
established a correspondence betweenIifie, ; classes

and thea-th Cantor-Bendixson derivatives of) classes. () 0o 0,071 forallo

Whena = X\ + n for a limit ordinal A and finiten, define (i) o* «— 207770, 71 for all o andr
2a:)\+2n,2a+1:)\+2n+1,and2/\71:)\ (iV)U<—_|0'* for all o.

Theorem 2.2. For any recursive ordinakv and any r. b. The intended model here ) = {o : I(0) N K([T,]) =

119, classQ, there exists @19 classP of sets and a home- 0} " : :

. U{o* : Ilo]NK([T¢]) # 0}. We claim that}/ is a stable
omorphismA from @ onto D(P) such thate < H(z) <
2602 Lorall z € Q. model of P.. Clearly,GL,(P.) has the rules

Cenzer and Remmel (Cenzer & Remmel 1998a) proved () o foro ¢ T.
the following. (i) 0 —070,071 forall o
Theorem 2.3. For any computable ordinak, (i) o* — for all o such that there existszasuch that
1. {e: D*([T.]) is empty is 229, complete and T 0 ands™771 are both not il

{e: D*([T.]) is nonemptyis 19, ; complete. (iv) o —  forallo suchthav™ ¢ M.

2. {e: card(D*([T.])) = 1} isI3,,, complete. If o € M, theno™ ¢ M sothate € LM (GLy (Fe) by
3. For any positive integer, {e : card(D*([T,])) < c} is rule (iv). If o € M, theno has an infinite extension €
9., complete ande : card(D*([T,])) > ¢} isT1Y,, ., K ([Te]). Thus sinceX([T]) is perfect, there exists such
complete. that bothc™770 ando ™71 both have infinite extensions
. Pa e TTO in K([T.]). It follows that bothc™770 ande ™71 are
4 e ga([f;e]) IS :ff!?'te.} g 2t CO”‘Iplete and notin M, so thato™ € LM(GLa (P.)) by clause (ii).

{e: D*([Ze]) s finite} is X3, 5 complete. On the other hand, iF € LM (GLy(P.)), then we can
Theorem 2.4. The following index sets are all argue by induction on the length of the proof schemesfor
1} complete: thato € M. If & comes in by _clause @, the_d_ﬂ ¢ T,
1. {e: K[T.] is countablé = {e : K([T.]) is empty. so certainlyc € M. If o comes in by clause (ii), then by

2 {e: K(II.]) is A1} = {e: K([T.]) is T3} induction bothv ™0 ando 1 are inM, so that

3. {e: K([T¢]) is recursivé. IloelN K([T.]) =
(I[o™0] N K([Te])) U (I[o™ 1] N K([Te]) = 0,

3 The Cantor-Bendixson Derivative and the , ,
and thereforer € M. If o comes in by clause (iv), then

Well-Founded Semantics o* ¢ M, sothatr € M.
In this section, we shall define a simple logic progr&n If o* € LM(GL(P.)), then somes™770 ¢ M, so
for each primitive recursive tre€, such that for any ordi- thatI[o] N K([T.]) D I[c~770] N K([T.]) # 0 and thus
nal A\ which is either a limit ordinal or 0 and any finite o* € M.
Trion(P.) = {o € 2<¢ : I[o] n DMUTD) = ). This The main result of this paper is the following.

sthfwt? f,]ha; ther?f 'St‘i s:nmpllgtgoTnecnonn%e;[}N(re]eg tlge rf:on- Theorem 3.1. For all e and for all recursive ordinalsy of
struction of a perfect kernel iy Classes and van LEIAers — ynq torm )\ + 25 wheren is finite and )\ is either a limit
alternating fixed point construction of the well-founded se-

X ordinal or O,
mantics of r.e. programs. We shall then use the correspon-
dencel, — P, to derive some new index set results for the Taion(P) = {o: I[o] N DM([TL]) =0},  (3)
well-founded semantics by transferring the index set results
given in section 2. Fryon(Po) = {0 : card(I[o]n D " 1([T.])) < 1} (4)

Recall that we have an effective enumeration if n> 0. and
LPy,LPy,... of all r.e. logic programs whose set of '

atoms is contained in the natural numbers For any Fy\(P,) = {o* : card(I[c] N D ([T.])) =0}  (5)
propertyR of logic programs, we let o o )
if A is a limit ordinal. Hence
I.p(R) = {e: LP, has propertyR }. (2
. . was (Pe) - U)\+27LTA+27L(PE)
We shall construct a recursive logic progrdtndepend- = {o:I[o] N K([T.]) = 0).

ing onT,. For each string € {0, 1}*, we will identify any ¢
o which occurs inP, with 2 times its code(c) and anyc™ Proof. Consider the levels ofF,(P.) and T,(FP.).
which occurs inP, with 2¢(o) + 1. It will follow for our GL,_r,(P.) has only clauses (i) and (ii). Now if[o] N

construction that the atoms &t will be the set of all and [T.] = 0, then by Konig’s Lemma, the set af€ T, which



extendo is finite so that we will be able to derive by re-
peated use of the clauses in (i) and (ii). Thus

To(Pe) ={o : Ilo] N [Te] = 0}

ThenG Ly, p,)(P.) has clauses (i) and (ii) together with two
families of clauses. First there at& «— for all & such that
for somer both I[c~770] andI[c™7"1] meet[T.], that
is, if card(I[o] N [T.]) > 2. Finally there are clauses «—
for all o such thatv* ¢ Ty(P.), which is to say for alb.

Thus
T1(Pe) = LM(GL1yp.)(Fe)) =
{0,1}* U{o™ : card(I[o] N [T]) > 2}.
This means that
Fy(P.) =w— LM(GLz,(p,)(Fe)) =
{o" : card(I[o] N [T,]) < 1}.

This establishes the base case.
Next observe that the limit case follows immediately by
induction and compactness. So assume ihiata limit or-

dinal andFy(P.) = {o* : I[o] N D*([T.]) = 0}. Then

F(P.) = {0,1}* U {o" : card(I[o] N DN([T.])) # 0}.

HenceGLF " )(P) consists of clauses (i) and (ii) plus
e]

the set of allc « such thatl[o] N D ([T,]) = (Z) But

it is easy to see that if bothjc 0] N DA([TE ) =

I[c™1] N DX([T.])) = 0, thenI[o] N D*([T.]) = 0 so that
) =

T\(P.) = LM(GLy 5(Pe)
{o: I[o] N DN([T2]) = 0}.

that Fyo(P.) = {o* : card(I[oc] N DM([T.]) < 1}.
Finally suppose that for any > 1,

Fyyon(Pe) =
{o* : card(I[c] N DM"Y([T.])) < 1}.

Then GLm(Pe) has the rules (i) and (ii) for all

o, and has the rules — for all ¢ such that/[o] N
D =1([T,]) < 1}. It follows that

Trion(Pe) = LM(GLy-) =
{0 : I[o] N DM 1(T]) is finite},

which equals
{o : Ilo] N DM"([T.]) is empty}
as desired.
GivenTy 2, (P.) = {0 : I[o] N DM"([T,]) = 0}, we

seethaGLr, ., (p.)(FPe.)hastherules «— forall o, and
theruless* «—  for all o such that there existsrasuch that
bothI[c~770] andI[c~ 7" 1] meetD**"([T.]), which is
to say thatard(I[o] N D**"([T.]) > 2. Thus

LM(GLTA+2'rL(Pe)(Pe)) =

{0,1}* U {o* : card(I[o] N D™ ([T.])) > 2}.

(i) If « is a limit ordinal, then{(e, a)

Hence
Fxionte =w— LM(GLz,(p,)(Fe)) =
{o* : card(I[o] N D " ([T.])) < 1},
as desired. It now follows that
Tuss(Pe) = UaTa = {0 : Ilo] N K([T.]) = 0}

and henceverystable model of” includes

{o: Ilo]N K(Q) = 0}. O

Before stating our index set results, some more back-
ground is needed from computability theory (Cenzer &
Remmel ; Soare 1987). For an infinite limit ordinaland
natural numben our convention is that(A +n) = A4 2n,
so that2(A +n) +1 = A+ 2n + 1. For a limit ordinalX,

a setd is XY if it is the effective uniond = U,, A4,, of sets
such that eacht,, is £2 for somea < X and a set i1 if
its complement i]. ‘A setA C wis said to bex? com—
pleteif itis ¥0 and for anyx! setB, there is a computable
function ¢ such that, for any,, n € B <= ¢(n) € A.
Similar definitions apply fofl?, and also for{, = II} and
other notions of definability.

Theorem 3.2. LetT, , = To(LP.) and F, , = F,(LP.)
be the sequence of sets defined in the alternating fixpoint
algorithm to compute the well-founded semanticsiét. .
Then for any recursive ordinai,

(i) If ais finite, then{(e,a) : a € F, .} isIIY and{(e,qa) :

aeTw}lsEaJrl
:a € F.,} and
{{e,a) : a € T, o} are bothx?.

(i) If « = A+ n whereX is a limit ordinal andn > 0 is a
Then we can reason exactly as in the base case to conclude

natural number, thef (e, a) : a € F. o} isII}, , , and
{<6a a> a€cT, a} IS E)\Jrn

Proof. First observe that

Brp, (M) = LM(GL,_p(LP,))
is X{ in M so that
Vip. (M) =w— Brp. (M).
isIIY in M.
But then

Fo(LPe) = Vip,(0),

so that the complexity of, now follows from standard in-
ductive definability results (Hinman 1978). In particular,
sinceF\(LP.) = U, Fa(LP.)is X andI' is monotone,
thenFy 1 (LP.)isTIg ;.

Then for any ordinaky, the complexity ofT,,(LP.) fol-
lows from T (LP.) = LM(GL,_p,Lp,)(LP.)). In par-
ticular, Tx1(LP,) is X%, o (LP.). O

In fact, one can use results like Theorem 2.4 to show that
these complexities are exact, that is, each index set is in fact
complete for its level of complexity.

Next we can apply Theorem 2.4 and Theorem 3.1 to de-
rive the following index set results for the well-founded se-
mantics.



Theorem 3.3. Let R be any infinite and coinfinite recursive
set. Then the following index sets are il complete:

(i) {e:Twss(LP.) s recursivg
(i) {e: RCTyss(LP.)}, and
(i) {e:Twss(LP.)is AL}

LM(HOTH(P)) = LM(GLLM(Horn(P))(P)) if and Only
if LM(GLpyv(Horn(P))(P)) € LM(Horn(P)). But the
least model offforn(P) is r.e. so thati L1 zr(morn(p)) (P)
is recursive in0’ and LM (G Ly (morn(py) (P)) IS .. in
0'. Hence LM(GLpn(Horn(py)(P)) is aX9-set. Now

Proof. The upper bound on the complexity follows from the
fact thatT, ;s(LP.) can be obtained from the closure of a
113 monotone inductive operator. Therefdfg fs(LP:) is
Al if and only if there exists a countabtesuch that the in-
ductive operator closes at stageand, hence7,,(LP,.) =
Tor1(LP.) andF,(LP.) = F,,1(LP.). This is all} con-
dition by the Stage Comparison Theorem (Hinman 1978), p.
105.

It follows from the proof of Theorem 3.1 that there is a
1:1 recursive functiorf such thatP, = LPy . Since

waS(LPf(e)) = {U € {071}* : I[J] N K([TeD = @}v

it is easy to see thak ([T.]) is recursive QAl) if and
only if T, rs(LPy() is recursive {}). Hencef shows
that {e : K([T.]) isrecursivé is 1:1 reducible to{e :
Twss(LP.) isrecursivé and {e : K([T.]) isA}}is 1:1
reducible to{e : T,ss(LP.) isA{}. Thus thell;-
completeness for parts (i) and (iii) follow from Theorem 2.4.
For thelli-completeness of part (i), note that([T.]) = 0

if and only if {0, 1}* C Ty s(LPy(e)). Thus again we can
use the fact thafe : K([T.]) = 0} is II] complete to es-
tablish thell} completeness of part (ii) in the case where
R = {2z : * € w}. Thellj completeness for any other
infinite-coinfinite setk can be established by simply recur-
sively renumbering the codes §f,0* : 0 € {0,1}*}. O

4 Index sets for logic programs with simple
well-founded semantics

In this section, we will derive a number of index sets re-
sults for logic programs whose well-founded semantics is
extremely simple.

Our first result is to consider the property of the well-
founded semantics being trivial. That is, it is always the
case thatT,,s,(P) contains the least model of the Horn
part of P, i.e., LM (Horn(P)) C T,ss(P). Thus we
will say that the well-founded semantics &f is trivial if
Twfs(P) = LM(Horn(P)). Thus we are interested in the
complexity of the set

I p(triv-wfs) =

{e : Tywss(LP.) = LM(Horn(LF.))}.  (6)
Theorem 4.1. I p(triv-wfs) is TI3-complete.

Proof. Note thatly = LM (G, (P)) = LM (Horn(P)) so
thatF, = LM (Horn(P)) and

T, = LM(GLpny(Horn(P)) (P))- Now
Twrs(P) = LM(Horn(P)) if and only if
T1 = LM(HO’I’H(P)) = LM(GLLZM(Hmn(P))(P))

But clearly, Horn(P) < GLpy(Horn(p)) @nd hence
LM(HOTTL(P)) g LM(GLL]W(HOTTL(P))(P))' ThUSTl =

LM(GLLJV[(Horn(P))(P)) - LM(HOT?’L(P)) if and Only
if for all z, either(=(z € LM(GLLr(Horn(P))(P))) OF
V(z € LM(Horn(P)))) and, hence, it is &9 predicate.
ThusIy p(triv-wfs) is T19.

To show thatl; p (triv-w fs) is I13-complete, we will use
that fact thatinf = {e : W, is infinite} is all3 complete
set. For any, we can effectively construct an effective enu-
meration0 = ap, 1 = ay,as, ... of W, U {0, 1} whereW,
is thee-th r.e. set. We then define an r.e. progrBwhich
contains the clauses

(i) 2a; < forall i such that;,; exists and
(i) 27+ 1 « —2a; for all i such that; exists.

Clearly, there is a one-to-one recursive functiprsuch
that LPy) = P.. It can be checked that’. is infinite if
and only if T, ys(LP.) = LM (Horn(LP.))}.

Theorem 4.2. {e : T, s(LP.) = 0} is 11 complete.

Proof. It is easy to see thafl,;s(LP.) = 0 if and
only if To(LP.) = Ty(LP.) = 0. But To(LP.) =
LM(Horn(LP.)) = 0 implies F; = w andTy =
LM(GLy(LP,)). But clearly Horn(P) C GLy(LP,)
so that To(LP.) = Ti(LP.) = ¢ if and only if
LM(GLy(LP.)) = 0. ButGly(LP.) is an r.e. program
so thatLM (GLy(LP,)) is r.e. and hence the question of
whether it is empty is &I} predicate.

To see thafe : T, 45(LP.) = 0} isII9 complete, we use
the fact that{e : W, = 0} is completdl{ set. We construct
a programpP, for each r.e. setV, as follows. We letV,
denote the set of alt < s such that.(x) converges irs or
fewer steps. Thet®. will consists of the following clauses:

() s—s+1ifW,,=0and
(i) s« if We s #0.

It is then easy to see thd. is Horn program and that
T, (P.) = @ if and onlyW, = (. Clearly there is one-to-one
recursive function such that, = LPj). ThusW, = 0
if and only if f(e) € {e : Tyss(LP.) = 0} so that{e :
Twss(LP.) =0} is 119 complete. O

Theorem 4.3. {e : F,,ss(LP.) = 0} is I3 complete.

Proof. First note thatF,ss(LP.) = 0 if and only if
F>(LP.) = (. SinceFy(LP.) is allj set it follows that
the predicate (LP.) = () is T13.

For the completeness, we will reduce an arbitrafyset
Ato{e: F,ss(LP.) = 0}. Let R be a recursive predicate
such that

e€ A < (Ym)(3n)(Vp)R(e,m,n,p).

Define the progran®, with the following rules:



for all p;
for all m, n, p such that=-R(e, m, n, p);
for all m, n;
for all m, n.

(i) ¢p —
(i) by —cp
(i) am — —bm.n
(IV) bm.,n — Qm
Here we assume thgt, : p € w}, {by,, : m,n € w} and
{am : m € w} are pairwise disjoint recursive sets whose
union isw.
Then it is easy to see that
To(P.) =
{ep :p e N} U{bmn: (3p)-R(e,m,n,p)}.
It follows that GLz (p,)(P.) will have rules (i),
(i) and (iv), together with rulesa,, <« such that
(3In)(vp)R(e, m,n,p). It can be checked thadt (FP.)

=10
if and only ife € A. O
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