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Abstract

We show that there is a close connection between the con-
struction of the perfect kernel of aΠ0

1 class via the intera-
tion of the Cantor-Bendixson derivative through the ordinals
and the construction of the well-founded semantics for logic
programs via Van Gelder’s alternating fixpoint construction.
This connection allows us to transfer known complexity re-
sults for the perfect kernel ofΠ0

1 classes to to give new com-
plexity results for various questions about the well-founded
semanticswfs(P ) of a logic programP .

1 Introduction
In this paper we shall study the complexity of the well-
founded semantics of infinite propositional logic programs.
The well-founded semantics was introduced by Van Gelder,
Ross, and Schlipf (Van-Gelder, Ross, & Schlipf 1991). It
provides a 3-valued interpretation to logic programs with
negation and it can be viewed as an approximation to the
stable semantics as defined by Gelfond-Lifschitz (Gelfond
& Lifschitz 1988), see (Van-Gelder, Ross, & Schlipf 1991)
and (Fitting 2002). The stable model semantics is defined
by means of a fixpoint of an anti-monotone operator of-
ten denoted byGLP (·). Van Gelder (Van-Gelder 1989)
showed that the well-founded semantics can be defined as
the alternating fixpoint ofGLP . The relationship between
the well-founded semantics and inductive definition was
studied by Denecker and his collaborators (Denecker 1998;
Denecker, Bruynooghe, & Marek 2001).

It is known that the well-founded semantics for a finite
propositional logic program can be computed in polyno-
mial time (Van-Gelder 1989) while the problem of deciding
whether a finite propositional program has a stable model
is NP -complete (Marek & Truszczýnski 1991). The basic
results for the complexity of the well-founded semantics of
infinite logic programs can be found in (Schlipf 1992) and
(Fitting 2002). Complexity results for the stable model se-
mantics of infinite logic programs can be found in (Marek,
Nerode, & Remmel 1994). Basically, the both the well-
founded semantics and the stable logic semantics for recur-
sive logic programs can capture anyΠ1

1 set. For example,
there are recursive programs for which the well-founded se-
mantics isΠ1

1-complete set (Schlipf 1992) and the problem
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of deciding whether a recursive program has a stable model
is Σ1

1-complete (Marek, Nerode, & Remmel 1994).
In what follows, we will assume that the atoms appearing

in all programs come from a fixed countable set of atoms
p0, p1, . . .. We shall implicitly identifypi with the integeri
so that we can think of the atoms appearing in our programs
as integers. This will allow us to give precise definitions of
recursive and recursively enumerable programs.

In this paper, we shall develop a number of index set re-
sults for the well-founded semantics for logic programs. In-
dex set results provide for a finer classification of the com-
plexity of various decision problems. For example, suppose
thatφe is the partial recursive function computed by thee-th
Turing machine andWe is domain ofφe. Thusφ0, φ1, . . . is
a list of all partial recursive functions andW0,W1, . . . is a
list of all recursively enumerable (r.e.) sets. It is well known
that there is no uniform procedure which givene will decide
whetherWe is non-empty, finite, or recursive. However,
the complexity of deciding whether a given r.e. setWe is
non-empty, finite, or recursive are not the same. That is, let
Non = {e : We is non-empty}, Fin = {e : We is finite},
andRec = {e : We is recursive}. Then it is well-known
thatNon is Σ0

1-complete,Fin is Σ0
2-complete, andRec is

Σ0
3-complete; see (Soare 1987).
We shall be interested in the index sets associated with

various properties of the well-founded semantics of recur-
sively enumerable logic programs. That is, ifLP0, LP1, . . .
is an effective list of all recursively enumerable proposi-
tional logic programs whose set of atoms is contained in
the natural numbersω andR is some property of the well-
founded semantics, then we are interested in classifying the
complexity of the set of alle such that the well-founded se-
mantics ofLPe had propertyR. We shall show that there
is a close connection between the well-founded semantics
of recursively enumerable logic programs and the Cantor-
Bendixson derivatives ofΠ0

1 classes contained in2ω. In par-
ticular, we shall show that for each primitive recursive binary
treeTe, there is a recursively enumerable logic programPe
such that ifλ is either a limit ordinal or 0 andα is finite,
then the complexity of theλ+ 2α-th level of the Van Gelder
alternating fixed point construction of the well-founded se-
mantics ofPe is equivalent to the complexity of theλ+α-th
derivative of theΠ0

1 class of all infinite paths throughTe,
[Te]. Moreover, it will be case that ifλ+ n is the ordinal at



which the iteration of the Cantor-Bendixson derivative ap-
plied to [Te] reaches the perfect kernelK([Te]), then the
Van Gelder alternating fixed point of construction applied
to Pe will give the well-founded semantics ofPe at level
λ + 2n. Now there are many results in the literature about
the complexity of index sets associated with the construc-
tion of the perfect kernel ofΠ0

1 classes. Our correspondence
Te → Pe allows us to transfer such complexity results to
produce new complexity results for the well-founded seman-
tics of r.e. programs. For example, we can show that the set
of all e such that the true sentences under the wff-semantics
of LPe is recursive or∆1

1 is a Π1
1-complete set. Thus the

problem of deciding whether the well-founded semantics of
an r.e. program is recursive is aΠ1

1 complete problem. We
also prove some index set results for properties that imply
the well-founded semantics is relatively simple. For exam-
ple, we show that the set ofe such that the true sentences
under the wff-semantics ofLPe is empty isΠ0

1 complete,
the set ofe such the false sentences under the wff-semantics
of LPe is empty isΠ0

3 complete, and the set ofe such that
the true sentences under the wff-semantics ofLPe is just the
least model of the Horn part of the program isΠ0

2 complete.
The outline of this paper is as follows. In section 2, we

shall provide the basic definitions from logic programming
and recursion theory that we will need to state our results.
In section 3, we shall give our correspondence between the
well-founded semantics and the Cantor-Bendixson deriva-
tive of Π0

1 classes. In section 4, we shall derive index set
results for logic programs for which the well-founded se-
mantics is especially simple.

2 Basic Definitions
In this section, we shall provide the basic definitions of the
stable and well founded semantics as well as give precise
definitions of recursive and recursively enumerable (r.e.)
programs. We shall also give some basic definitions from
recursion theory and state some key complexity results due
to Cenzer and Remmel (Cenzer & Remmel 1998a) which
will be used to prove our main results.

2.1 Definitions of Stable and Well-founded
Semantics

A logic programming clause is a construct of the form

C = p← q1, . . . , qm,¬ r1, . . . ,¬ rn.
The literalsq1, . . . , qm,¬r1, . . . ,¬ rn form thebodyof C
and the atomp is called theheadof C. A logic program
P is a set of logic programming clauses. We say that a set
of atomsM is a model of a clauseC if eitherM does not
satisfy the body ofC or M satisfies the head ofC. M is
said to be a model of a logic programP if M is a model
of each of the clauses ofP . ClausesC wheren = 0 are
calledHorn clauses.P is said to be aHorn programif all
its clauses are Horn clauses. A Horn programP always has
a least modelLM(P ). It is constructed by iterating the one-
step provability operatorTP for P . That is, given a setI of
atoms, we letTP (I) be equal to

{p : ∃C = p← a1, . . . , an ∈ P : a1, . . . , an ∈ I}.

Then the least model ofP , LM(P ), equals

TP (∅) ↑ω=
⋃
n≥1

TnP (∅).

Next assumeP is a logic program with negated atoms in
the body of some of its clauses. Then following (Gelfond &
Lifschitz 1988), we define thestable modelsof P as follows.
AssumeM is a collection of atoms. TheGelfond-Lifschitz
reductof P byM is a Horn program arising fromP by first
eliminating those clauses inP which contain¬ r with r ∈
M . In the remaining clauses, we drop all negative literals
from the body. The resulting programGLM (P ) is a Horn
program. We callM a stable modelof P if M is the least
model ofGLM (P ). For a Horn programP , there is a unique
stable model, namely, the least model ofP .

Assume that we are given a logic programP and the set of
atoms ofP is contained inN . We letP(N) denote the set of
all subsets ofN and for any setM ⊆ N , letM = N −M .
Then we define the operatorAP : P(N)→ P(N) by

AP (M) = LM(GLM (P )).

It is well known thatAP is anti-monotone, i.e.,S ⊆ T im-
pliesAP (T ) ⊆ AP (S). Thus the operatorUP = A2

P is
monotone. Also the operatorVP defined by

VP (M) = UP (M)

is monotone. Next we defineUαP andV αP for any ordinalα
by

U0
p (M) = M,V 0

p (M) = M,

Uα+1
p (M) = UP (UαP (M)), V α+1

p (M) = VP (V αP (M))

Uλp (M) =
⋃
α<λ

UαP (M)), V λp (M) =
⋃
α<λ

V αP (M))

for λ a limit ordinal.

It follows from the Knaster-Tarski Theorem (Tarski 1955)
that bothUP andVP must have least fixed points. Then
we can define the set atoms that are true under the well-
founded semantics to beTwfs(P ) = lpf(UP ) and the set of
atoms which are false under the well-founded semantics to
beFwfs(P ) = lfp(VP ). It is also not difficult to see that
Fwfs(P ) = AP (Twfs(P )).

Van Gelder (Van-Gelder 1989) gave the following alter-
nating fixed point algorithm to compute the well-founded
semantics.

Algorithm F0(P ) := ∅ and
T0(P ) := AP (F0) = LM(GLω(P )).

Fα+1(P ) = Tα and
Tα+1(P ) = AP (Fα+1(P )) = LM(GL

Fα+1(P )
(P )).

Forλ a limit ordinal,
Fλ(P ) =

⋃
α<λ Fα(P ) and

Tλ(P ) = AP (Fλ(P )) = LM(GL
Fλ(P )

(P )).



Then Fwfs(P ) = Fα(P ) and Twfs = Tα(P ) where
α is the least ordinal such thatFα(P ) = Fα+1(P ).

We will be most interested in the “even” stages of the al-
ternating fixed point construction. Note that it is easy to see
that for allα,

Fα+2(P ) = Tα+1(P ) = AP (Fα+1(P ))

= AP (Tα(P )) = AP (AP ((Fα(P )))
= VP (Fα(P )) and

Tα+2(P ) = AP (Fα+2(P )) = AP (Tα+1(P ))

= AP (AP (Fα+1(P ))) = AP (AP (Tα(P ))
= UP (Tα(P )).

Thus forn finite andλ a limit ordinal,F2n(P ) = V nP (∅),
Fλ(P ) = V λP (∅), and Fλ+2n(P ) = V λ+n

P (∅). Simi-
larly, T2n(P ) = UnP (T0(P )), Tλ(P ) = UλP (T0(P )), and
Tλ+2n(P ) = Uλ+n

P (T0(P )).

2.2 Basic Definitions from Recursion Theory
Let ω = {0, 1, 2, . . .} denote the set of natural numbers, let
ω<ω denote the set of all finite sequences fromω and let
2<ω denote the set of all finite sequences of0’s and1’s. Let
c(x1, x2, . . . , xn) be the standard coding of finite sequences
into natural numbers as in (Cenzer & Remmel 1998b).

We shall assume that the atoms of the programs that we
consider are contained in the natural numbers. Thus given a
program clause

C = p← q1, . . . , qm,¬ r1, . . . ,¬ rn (1)

we define the code of C, code(C), to be
c(m,n, p, c(q1, . . . , qm), c(r1, . . . , rn)). Then we say
that a programP consisting of clauses of the form of (1)
is recursive (r.e., etc.) if the set of codes of its clauses
is recursive (r.e., etc.). We letHorn(P ) denote the set
of Horn clauses ofP . Thus if P is recursive (r.e.), then
Horn(P ) will be recursive (r.e.). Letφe denote the partial
recursive function computed bye-th Turing machineMe

so thatφ0, φ1, . . . is an effective enumeration of all partial
recursive functions. We define thee-th r.e. setWe to
be the domain ofφe so thatW0,W1, . . . is an effective
enumeration of all r.e. sets. We letLPe denote the set of
all x in We such thatx is a code of a clause of the form of
(1). ThusLP0, LP1, . . . is an effective enumeration of all
r.e. logic programsP whose set of atoms is a subsetω.

Givenα = (α1, . . . , αn) andβ = (β1, . . . , βk) in ω<ω,
we writeα v β if α is initial segment ofβ, that is, ifn ≤ k
andαi = βi for i ≤ n. For any finite sequenceσ ∈ {0, 1}∗,
let I[σ] = {x ∈ {0, 1}ω : σ v x}. For the rest of this
paper, we identify a finite sequenceα = (α1, . . . , αn) with
its codec(α). We let0 be the code of the empty sequence
∅. Thus, when we say a setS ⊆ ω<ω is recursive, r.e., etc.,
we mean the set{c(α) : α ∈ S} is recursive, r.e., etc. A
treeT is a nonempty subset ofω<ω such thatT is closed
under initial segments. A functionf : ω → ω is an infinite
path throughT if for all n, (f(0), . . . , f(n)) ∈ T . We let
[T ] denote the set of all infinite paths throughT . A setA

of functions is aΠ0
1-class if there is a recursive predicateR

such thatA = {f : ω → ω : ∀n(R((f(0), . . . , f(n)))}. It is
not difficult to see that ifA is aΠ0

1-class, thenA = [T ] for
some recursive treeT ⊆ ω<ω.

One of the goals of this paper is develop a close con-
nection between the well-founded semantics and Cantor-
Bendixson derivatives on closed setsQ contained in2ω. The
Cantor-Bendixson derivativeD(Q) is defined to be the set
of nonisolated members ofQ. The perfect kernelK(Q)
is defined to be the (possibly empty) largest perfect subset
of Q. ThusK(Q) is empty if and only ifQ is countable.
K(Q) may be obtained by iterating the derivative through
the recursive ordinals, whereDα+1(Q) = D(Dα(Q))
andDλ(Q) =

⋂
α<λD

α(Q) for limit ordinalsQ. Then
K(Q) =

⋂
αD

α(Q), where the intersection ranges over all
ordinals. The Cantor-Bendixson rankrk(Q) is the least or-
dinalα such thatDα(Q) = K(Q). For aΠ0

1 classQ, it is
known thatrk(Q) ≤ ωC-K

1 , the least nonrecursive ordinal.
To establish our connection between the well-founded se-

mantics and the Cantor-Bendixson derivative, we consider
index sets for strongΠ0

n binary classes and also index sets
for the cardinality of the Cantor-Bendixson derivatives. We
only consider binary classes. These problems were first
studied in the context of Polish spaces by Kuratowski, see
(Kuratowski 1970), where the Cantor-Bendixson derivative
is viewed as a mapping from the space of compact subsets
of {0, 1}ω to itself. Kuratowski showed that the derivative
is a Borel map of class exactly two. In particular, he showed
that the familyD−1({∅}) of finite closed sets is a univer-
salΣ0

2 class and posed the problem of determining the exact
Borel class of the iterated operatorDα. Cenzer and Mauldin
showed in (Cenzer & Mauldin 1982) and that the iterated op-
eratorDn is of Borel class exactly2n for finite n and that
for any limit ordinalλ and any finiten, Dλ+n is of Borel
class exactlyλ + 2n + 1. In particular it is shown that for
anyα, the familyTα of closed setsK such thatDα(K) = ∅
is a universalΣ0

2α set. Lempp gave effective versions of this
result in (Lempp 1987).

Let T0, T1, . . . be an effective list of all primitive recur-
sive tree contained in{0, 1}. Then it is well known that
[T0], [T1], . . . is an effective list of allΠ0

1 classes. For any
fixed setX, we let [TX0 ], [TX1 ], . . . enumerate the binary
classes which areΠ0

1 in X. That is, letπXe be thee-th func-
tion primitive recursive inX and

TXe = {∅} ∪ {σ : (∀τ ≺ σ)πXe (〈τ〉) = 1}.

For any propertyR, let IXP (R) = {e : [TXe ] satisfiesR}.
The following result was proved by Cenzer and Remmel

(Cenzer & Remmel 1998a).

Theorem 2.1. For any setX,

1. IXP (empty) is Σ0
1
X

complete,

2. IXP (= 1) is Π0
2
X

complete.

3. For any integerc > 0, IXP (> c) is Σ0
2
X

complete and

IXP (= c+ 1) isD0
2
X

complete.

4. IXP (finite) is Σ0
3
X

complete.



The Σ0
α sets may be defined for any recursive ordinalα

and the strongΠ0
α+1 classes may be defined as set of in-

finite paths through aΣ0
α tree. To classify index sets con-

nected with the transfinite Cantor-Bendixson derivatives of
Π0

1 classes, Cenzer and Remmel (Cenzer & Remmel 1998a)
established a correspondence between theΠ0

2α+1 classes
and theα-th Cantor-Bendixson derivatives ofΠ0

1 classes.
Whenα = λ + n for a limit ordinalλ and finiten, define
2α = λ+ 2n, 2α+ 1 = λ+ 2n+ 1, and2λ− 1 = λ.

Theorem 2.2. For any recursive ordinalα and any r. b.
Π0

2α+1 classQ, there exists aΠ0
1 classP of sets and a home-

omorphismH fromQ ontoDα(P ) such thatx ≤T H(x) ≤
x⊕ 02α−1 for all x ∈ Q.

Cenzer and Remmel (Cenzer & Remmel 1998a) proved
the following.

Theorem 2.3. For any computable ordinalα,

1. {e : Dα([Te]) is empty} is Σ0
2α+1 complete and

{e : Dα([Te]) is nonempty} is Π0
2α+1 complete.

2. {e : card(Dα([Te])) = 1} is Π0
2α+1 complete.

3. For any positive integerc, {e : card(Dα([Te])) ≤ c} is
Σ0

2α+2 complete and{e : card(Dα([Te])) > c} is Π0
2α+2

complete.
4. {e : Dα([Te]) is infinite} is Π0

2α+3 complete and
{e : Dα([Te]) is finite} is Σ0

2α+3 complete.

Theorem 2.4. The following index sets are all
Π1

1 complete:

1. {e : K[Te] is countable} = {e : K([Te]) is empty}.
2. {e : K([Te]) is ∆1

1} = {e : K([Te]) is Π1
1}.

3. {e : K([Te]) is recursive}.

3 The Cantor-Bendixson Derivative and the
Well-Founded Semantics

In this section, we shall define a simple logic programPe
for each primitive recursive treeTe such that for any ordi-
nal λ which is either a limit ordinal or 0 and any finiten,
Tλ+2n(Pe) = {σ ∈ 2<ω : I[σ] ∩ Dλ+n([Te]) = ∅}. This
shows that there is a simple connection between the con-
struction of a perfect kernel ofΠ0

1 classes and Van Gelder’s
alternating fixed point construction of the well-founded se-
mantics of r.e. programs. We shall then use the correspon-
denceTe → Pe to derive some new index set results for the
well-founded semantics by transferring the index set results
given in section 2.

Recall that we have an effective enumeration
LP0, LP1, . . . of all r.e. logic programs whose set of
atoms is contained in the natural numbersω. For any
propertyR of logic programs, we let

ILP (R) = {e : LPe has propertyR}. (2)

We shall construct a recursive logic programPe depend-
ing onTe. For each stringσ ∈ {0, 1}∗, we will identify any
σ which occurs inPe with 2 times its codec(σ) and anyσ∗

which occurs inPe with 2c(σ) + 1. It will follow for our
construction that the atoms ofPe will be the set of allσ and

σ∗ with σ ∈ {0, 1}∗ so that the we can identify the Herbrand
base ofPe with the set of natural numbersω. This given, we
define the logic programPe to consist of the following set
of clauses.

(i) σ ← for σ /∈ Te
(ii) σ ← σ_0, σ_1 for all σ

(iii) σ∗ ← ¬σ_τ_0,¬σ_τ_1 for all σ andτ

(iv) σ ← ¬σ∗ for all σ.

The intended model here isM = {σ : I(σ) ∩K([Te]) =
∅}∪{σ∗ : I[σ]∩K([Te]) 6= ∅}. We claim thatM is a stable
model ofPe. Clearly,GLM (Pe) has the rules

(i) σ ← for σ /∈ Te
(ii) σ ← σ_0, σ_1 for all σ

(iii) σ∗ ← for all σ such that there exists aτ such that
σ_τ_0 andσ_τ_1 are both not inM

(iv) σ ← for all σ such thatσ∗ /∈M .

If σ ∈ M , thenσ∗ /∈ M so thatσ ∈ LM(GLM (Pe) by
rule (iv). If σ∗ ∈ M , thenσ has an infinite extensionx ∈
K([Te]). Thus sinceK([Te]) is perfect, there existsτ such
that bothσ_τ_0 andσ_τ_1 both have infinite extensions
in K([Te]). It follows that bothσ_τ_0 andσ_τ_1 are
not inM , so thatσ∗ ∈ LM(GLM (Pe)) by clause (iii).

On the other hand, ifσ ∈ LM(GLM (Pe)), then we can
argue by induction on the length of the proof scheme forσ
that σ ∈ M . If σ comes in by clause (i), thenσ /∈ Te,
so certainlyσ ∈ M . If σ comes in by clause (ii), then by
induction bothσ_0 andσ_1 are inM , so that

I[σ] ∩K([Te]) =
(I[σ_0] ∩K([Te])) ∪ (I[σ_1] ∩K([Te]) = ∅,

and thereforeσ ∈ M . If σ comes in by clause (iv), then
σ∗ /∈M , so thatσ ∈M .

If σ∗ ∈ LM(GLM (Pe)), then someσ_τ_0 /∈ M , so
thatI[σ] ∩K([Te]) ⊃ I[σ_τ_0] ∩K([Te]) 6= ∅ and thus
σ∗ ∈M .

The main result of this paper is the following.

Theorem 3.1. For all e and for all recursive ordinalsα of
the formλ + 2n wheren is finite andλ is either a limit
ordinal or 0,

Tλ+2n(Pe) = {σ : I[σ] ∩Dλ+n([Te]) = ∅}, (3)

Fλ+2n(Pe) = {σ∗ : card(I[σ]∩Dλ+n−1([Te])) ≤ 1} (4)

if n > 0, and

Fλ(Pe) = {σ∗ : card(I[σ] ∩Dλ([Te])) = ∅} (5)

if λ is a limit ordinal. Hence

Twfs(Pe) = ∪λ+2nTλ+2n(Pe)
= {σ : I[σ] ∩K([Te]) = ∅).

Proof. Consider the levels ofFα(Pe) and Tα(Pe).
GLω−F0(Pe) has only clauses (i) and (ii). Now ifI[σ] ∩
[Te] = ∅, then by Konig’s Lemma, the set ofτ ∈ Te which



extendσ is finite so that we will be able to deriveσ by re-
peated use of the clauses in (i) and (ii). Thus

T0(Pe) = {σ : I[σ] ∩ [Te] = ∅}.

ThenGLT0(Pe)(Pe) has clauses (i) and (ii) together with two
families of clauses. First there areσ∗ ← for all σ such that
for someτ both I[σ_τ_0] andI[σ_τ_1] meet[Te], that
is, if card(I[σ] ∩ [Te]) ≥ 2. Finally there are clausesσ ←
for all σ such thatσ∗ /∈ T0(Pe), which is to say for allσ.
Thus

T1(Pe) = LM(GLT0(Pe)(Pe)) =
{0, 1}∗ ∪ {σ∗ : card(I[σ] ∩ [Te]) ≥ 2}.

This means that

F2(Pe) = ω − LM(GLT0(Pe)(Pe)) =
{σ∗ : card(I[σ] ∩ [Te]) ≤ 1}.

This establishes the base case.
Next observe that the limit case follows immediately by

induction and compactness. So assume thatλ is a limit or-
dinal andFλ(Pe) = {σ∗ : I[σ] ∩ Dλ([Te]) = ∅}. Then
Fλ(Pe) = {0, 1}∗ ∪ {σ∗ : card(I[σ] ∩ Dλ([Te])) 6= ∅}.
HenceGL

Fλ(Pe)
(Pe) consists of clauses (i) and (ii) plus

the set of allσ ← such thatI[σ] ∩ Dλ([Te]) = ∅. But
it is easy to see that if bothI[σ_0] ∩ Dλ([Te]) = ∅ and
I[σ_1] ∩Dλ([Te]) = ∅, thenI[σ] ∩Dλ([Te]) = ∅ so that

Tλ(Pe) = LM(GL
Fλ(Pe)

(Pe)) =

{σ : I[σ] ∩Dλ([Te]) = ∅}.

Then we can reason exactly as in the base case to conclude
thatFλ+2(Pe) = {σ∗ : card(I[σ] ∩Dλ([Te]) ≤ 1}.

Finally suppose that for anyn ≥ 1,

Fλ+2n(Pe) =

{σ∗ : card(I[σ] ∩Dλ+n−1([Te])) ≤ 1}.

Then GL
Fλ+2n(Pe)

(Pe) has the rules (i) and (ii) for all
σ, and has the rulesσ ← for all σ such thatI[σ] ∩
Dλ+n−1([Te]) ≤ 1}. It follows that

Tλ+2n(Pe) = LM(GLFλ+2n
) =

{σ : I[σ] ∩Dλ+n−1([Te]) is finite},

which equals

{σ : I[σ] ∩Dλ+n([Te]) is empty}

as desired.
GivenTλ+2n(Pe) = {σ : I[σ] ∩ Dλ+n([Te]) = ∅}, we

see thatGLTλ+2n(Pe)(Pe) has the rulesσ ← for all σ, and
the rulesσ∗ ← for all σ such that there exists aτ such that
bothI[σ_τ_0] andI[σ_τ_1] meetDλ+n([Te]), which is
to say thatcard(I[σ] ∩Dλ+n([Te]) ≥ 2. Thus

LM(GLTλ+2n(Pe)(Pe)) =

{0, 1}∗ ∪ {σ∗ : card(I[σ] ∩Dλ+n([Te])) ≥ 2}.

Hence

Fλ+2n+2 = ω − LM(GLTα(Pe)(Pe)) =

{σ∗ : card(I[σ] ∩Dλ+n([Te])) ≤ 1},

as desired. It now follows that

Twfs(Pe) = ∪αTα = {σ : I[σ] ∩K([Te]) = ∅}

and henceeverystable model ofP includes
{σ : I[σ] ∩K(Q) = ∅}.

Before stating our index set results, some more back-
ground is needed from computability theory (Cenzer &
Remmel ; Soare 1987). For an infinite limit ordinalλ and
natural numbern, our convention is that2(λ+n) = λ+2n,
so that2(λ + n) + 1 = λ + 2n + 1. For a limit ordinalλ,
a setA is Σ0

λ if it is the effective unionA = ∪nAn of sets
such that eachAn is Σ0

α for someα < λ and a set isΠ0
λ if

its complement isΣ0
λ. A setA ⊆ ω is said to beΣ0

α com-
pleteif it is Σ0

α and for anyΣ0
α setB, there is a computable

functionϕ such that, for anyn, n ∈ B ⇐⇒ φ(n) ∈ A.
Similar definitions apply forΠ0

α and also forΣ1
1, = Π1

1 and
other notions of definability.

Theorem 3.2. Let Te,α = Tα(LPe) andFe,α = Fα(LPe)
be the sequence of sets defined in the alternating fixpoint
algorithm to compute the well-founded semantics forLPe.
Then for any recursive ordinalα,

(i) If α is finite, then{〈e, a〉 : a ∈ Fe,α} is Π0
α and{〈e, a〉 :

a ∈ Te,α} is Σ0
α+1.

(ii) If α is a limit ordinal, then{〈e, a〉 : a ∈ Fe,α} and
{〈e, a〉 : a ∈ Te,α} are bothΣ0

α.
(iii) If α = λ + n whereλ is a limit ordinal andn > 0 is a

natural number, then{〈e, a〉 : a ∈ Fe,α} is Π0
λ+n−1 and

{〈e, a〉 : a ∈ Te,α} is Σ0
λ+n.

Proof. First observe that

BLPe(M) = LM(GLω−M (LPe))

is Σ0
1 in M so that

VLPe(M) = ω −BLPe(M).

is Π0
1 in M .

But then
Fα(LPe) = V αLPe(∅),

so that the complexity ofFα now follows from standard in-
ductive definability results (Hinman 1978). In particular,
sinceFλ(LPe) =

⋃
α<λ Fα(LPe) is Σ0

λ andΓ is monotone,
thenFλ+1(LPe) is Π0

λ+1.
Then for any ordinalα, the complexity ofTα(LPe) fol-

lows fromTα(LPe) = LM(GLω−Fα(LPe)(LPe)). In par-
ticular,Tλ+1(LPe) is Σ0

λ+2(LPe).

In fact, one can use results like Theorem 2.4 to show that
these complexities are exact, that is, each index set is in fact
complete for its level of complexity.

Next we can apply Theorem 2.4 and Theorem 3.1 to de-
rive the following index set results for the well-founded se-
mantics.



Theorem 3.3. LetR be any infinite and coinfinite recursive
set. Then the following index sets are allΠ1

1 complete:

(i) {e : Twfs(LPe) is recursive}
(ii) {e : R ⊆ Twfs(LPe)}, and

(iii) {e : Twfs(LPe) is ∆1
1}.

Proof. The upper bound on the complexity follows from the
fact thatTwfs(LPe) can be obtained from the closure of a
Π0

2 monotone inductive operator. ThereforeTwfs(LPe) is
∆1

1 if and only if there exists a countableα such that the in-
ductive operator closes at stageα and, hence,Tα(LPe) =
Tα+1(LPe) andFα(LPe) = Fα+1(LPe). This is aΠ1

1 con-
dition by the Stage Comparison Theorem (Hinman 1978), p.
105.

It follows from the proof of Theorem 3.1 that there is a
1:1 recursive functionf such thatPe = LPf(e). Since

Twfs(LPf(e)) = {σ ∈ {0, 1}∗ : I[σ] ∩K([Te]) = ∅},

it is easy to see thatK([Te]) is recursive (∆1
1) if and

only if Twfs(LPf(e)) is recursive (∆1
1). Hencef shows

that {e : K([Te]) is recursive} is 1:1 reducible to{e :
Twfs(LPe) is recursive} and {e : K([Te]) is ∆1

1} is 1:1
reducible to {e : Twfs(LPe) is ∆1

1}. Thus the Π1
1-

completeness for parts (i) and (iii) follow from Theorem 2.4.
For theΠ1

1-completeness of part (ii), note thatK([Te]) = ∅
if and only if {0, 1}∗ ⊆ Twfs(LPf(e)). Thus again we can
use the fact that{e : K([Te]) = ∅} is Π1

1 complete to es-
tablish theΠ1

1 completeness of part (ii) in the case where
R = {2x : x ∈ ω}. The Π1

1 completeness for any other
infinite-coinfinite setR can be established by simply recur-
sively renumbering the codes of{σ, σ∗ : σ ∈ {0, 1}∗}.

4 Index sets for logic programs with simple
well-founded semantics

In this section, we will derive a number of index sets re-
sults for logic programs whose well-founded semantics is
extremely simple.

Our first result is to consider the property of the well-
founded semantics being trivial. That is, it is always the
case thatTwfs(P ) contains the least model of the Horn
part of P , i.e., LM(Horn(P )) ⊆ Twfs(P ). Thus we
will say that the well-founded semantics ofP is trivial if
Twfs(P ) = LM(Horn(P )). Thus we are interested in the
complexity of the set

ILP (triv-wfs) =
{e : Twfs(LPe) = LM(Horn(LPe))}. (6)

Theorem 4.1. ILP (triv-wfs) is Π0
2-complete.

Proof. Note thatT0 = LM(Gω(P )) = LM(Horn(P )) so
thatF1 = LM(Horn(P )) and
T1 = LM(GLLM(Horn(P ))(P )). Now
Twfs(P ) = LM(Horn(P )) if and only if
T1 = LM(Horn(P )) = LM(GLLM(Horn(P ))(P )).
But clearly, Horn(P ) ⊆ GLLM(Horn(P )) and hence
LM(Horn(P )) ⊆ LM(GLLM(Horn(P ))(P )). ThusT1 =

LM(Horn(P )) = LM(GLLM(Horn(P ))(P )) if and only
if LM(GLLM(Horn(P ))(P )) ⊆ LM(Horn(P )). But the
least model ofHorn(P ) is r.e. so thatGLLM(Horn(P ))(P )
is recursive in0′ andLM(GLLM(Horn(P ))(P )) is r.e. in
0′. HenceLM(GLLM(Horn(P ))(P )) is a Σ0

2-set. Now
LM(GLLM(Horn(P ))(P )) ⊆ LM(Horn(P )) if and only
if for all x, either (¬(x ∈ LM(GLLM(Horn(P ))(P ))) or
∨(x ∈ LM(Horn(P )))) and, hence, it is aΠ0

2 predicate.
ThusILP (triv-wfs) is Π0

2.
To show thatILP (triv-wfs) is Π0

2-complete, we will use
that fact thatInf = {e : We is infinite} is a Π0

2 complete
set. For anye, we can effectively construct an effective enu-
meration0 = a0, 1 = a1, a2, . . . of We ∪ {0, 1} whereWe

is thee-th r.e. set. We then define an r.e. programPe which
contains the clauses

(i) 2ai ← for all i such thatai+1 exists and
(ii) 2i+ 1← ¬2ai for all i such thatai exists.

Clearly, there is a one-to-one recursive functionf such
thatLPf(e) = Pe. It can be checked thatWe is infinite if
and only ifTwfs(LPe) = LM(Horn(LPe))}.

Theorem 4.2. {e : Twfs(LPe) = ∅} is Π0
1 complete.

Proof. It is easy to see thatTwfs(LPe) = ∅ if and
only if T0(LPe) = T1(LPe) = ∅. But T0(LPe) =
LM(Horn(LPe)) = ∅ implies F1 = ω and T1 =
LM(GL∅(LPe)). But clearlyHorn(P ) ⊆ GL∅(LPe)
so that T0(LPe) = T1(LPe) = ∅ if and only if
LM(GL∅(LPe)) = ∅. But Gl∅(LPe) is an r.e. program
so thatLM(GL∅(LPe)) is r.e. and hence the question of
whether it is empty is aΠ0

1 predicate.
To see that{e : Twfs(LPe) = ∅} is Π0

1 complete, we use
the fact that{e : We = ∅} is completeΠ0

1 set. We construct
a programPe for each r.e. setWe as follows. We letWe.s

denote the set of allx ≤ s such thatφe(x) converges ins or
fewer steps. ThenPe will consists of the following clauses:

(i) s← s+ 1 if We,s = ∅ and
(ii) s← if We,s 6= ∅.

It is then easy to see thatPe is Horn program and that
T1(Pe) = ∅ if and onlyWe = ∅. Clearly there is one-to-one
recursive function such thatPe = LPf(e). ThusWe = ∅
if and only if f(e) ∈ {e : Twfs(LPe) = ∅} so that{e :
Twfs(LPe) = ∅} is Π0

1 complete.

Theorem 4.3. {e : Fwfs(LPe) = ∅} is Π0
3 complete.

Proof. First note thatFwfs(LPe) = ∅ if and only if
F2(LPe) = ∅. SinceF2(LPe) is a Π0

2 set it follows that
the predicateF2(LPe) = ∅ is Π0

3.
For the completeness, we will reduce an arbitraryΠ0

3 set
A to {e : Fwfs(LPe) = ∅}. LetR be a recursive predicate
such that

e ∈ A ⇐⇒ (∀m)(∃n)(∀p)R(e,m, n, p).

Define the programPe with the following rules:



(i) cp ← for all p;
(ii) bm,n ← cp for all m,n, p such that¬R(e,m, n, p);
(iii) am ← ¬bm,n for all m,n;
(iv) bm,n ← am for all m,n.

Here we assume that{cp : p ∈ ω}, {bm,n : m,n ∈ ω} and
{am : m ∈ ω} are pairwise disjoint recursive sets whose
union isω.

Then it is easy to see that

T0(Pe) =
{cp : p ∈ N} ∪ {bm,n : (∃p)¬R(e,m, n, p)}.

It follows that GLT0(Pe)(Pe) will have rules (i),
(ii) and (iv), together with rulesam ← such that
(∃n)(∀p)R(e,m, n, p). It can be checked thatF2(Pe) = ∅
if and only if e ∈ A.
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