
Using Abstraction for Generalized Planning
Siddharth Srivastava and Neil Immerman ∗ and Shlomo Zilberstein

Department of Computer Science,
University of Massachusetts,

Amherst, MA 01002

Abstract
Given the complexity of planning, it is often beneficial to cre-
ate plans that work for a wide class of problems. This fa-
cilitates reuse of existing plans for different instances of the
same problem or even for other problems that are somehow
similar. We present novel approaches for finding such plans
through search and for learning them from examples. We
use state representation and abstraction techniques originally
developed for static analysis of programs. The generalized
plans that we compute include loops and work for classes
of problems having varying numbers of objects that must be
manipulated to reach the goal. Our algorithm for learning
generalized plans takes as its input an example plan for a cer-
tain problem instance and a finite 3-valued first-order struc-
ture representing a set of initial states from different problem
instances. It learns a generalized plan along with a classifica-
tion of the problem instances where it works. The algorithm
for finding plans takes as input a similar 3-valued structure
and a goal test. Its output is a set of generalized plans and
conditions describing the problem instances for which they
work.

1 Introduction
In this paper we develop a new unified framework for com-
puting generalized plans from scratch, and for learning
them. We use search in an abstract state space to compute
generalized plans from scratch. We can also generalize a
given example plan by tracing it in an abstract state space.
The output of our search and learning algorithms is a gen-
eralized plan and a set of problem instances for which it is
guaranteed to work. These problem instances not only dif-
fer in the number of elements which need to be manipu-
lated for reaching the goal, but also have no bounds on these
numbers. We accomplis this by including loops over such
objects. Our plans are thus close to algorithms: our input
represents an abstract planning problem and the generalized
plans we compute solve it for a range of problem instances.
We also present a precise analytical characterization of the
domains (extended-LL domains) where our techniques for
finding plan preconditions are guaranteed to work.

This paper is organized as follows. We first provide a
high level overview of our technique, followed by sections
describing the abstraction mechanism, our methodology and
the requirements we impose in order to identify a useful
category of domains where we can currently find accurate
plan-preconditions. This is followed by sections on learning
generalized plans from examples and on finding them from
scratch. All proofs and most of the details can be found at
[Srivastava et al., 2007]. We provide only a sketch of the

∗Research of the first two authors supported in part by NSF
CCF-0541018

topmost

on

on

onTable

on

Figure 1: Canonical abstraction in blocks world. Abstracted ob-
jects are encapsulated. The abstraction predicates are topmost and
onTable; diagram on the right shows the state in TVLA notation.

relevant aspects TVLA system in this paper. We suggest the
reader use our discussion of TVLA as an overview for the
description in [Sagiv et al., 2002].

2 Overview of the Approach
Our approach uses abstraction using 3-valued logic, which
has been used effectively in the Three-Valued Logic Ana-
lyzer (TVLA) – a tool for static analysis of programs that
manipulate pointers [Sagiv et al., 2002; Loginov et al.,
2006]. This abstraction groups together any objects that are
the same with respect to certain key properties: unary predi-
cates referred to as abstraction predicates. The values of all
the abstraction predicates on an object of the domain define
the role that it plays. Abstract states are then generated by
merging all objects in a role into a single summary element.
For example, Fig. 1 shows the abstraction predicates, roles,
and an abstract representation for a blocks world domain.

We need a sound methodology for modeling actions with
such abstract representations. This is done in TVLA using
action operators specified in first-order logic with transitive
closure, discussed in detail in the next section. The most
interesting part of this methodology is the automatic mod-
eling of branching when an action depletes the number of
objects of a role. Since we abstracted away the true num-
bers, our model must reflect the possibility that the object
removed from a role could be the last one playing that role.
Fig. 2 shows an example of this situation in the blocks world
where the focus operation splits the abstract state into two
relevant cases.

Our methodology for finding plans uses the abstraction
mechanism described above to construct an abstract state
space. The abstract start state represents a set of concrete
states from problem instances with varying numbers of ob-
jects. We perform a search in the abstract state space us-
ing the action model described. Typically, back edges and
loops are encountered. Unlike a search in the concrete state
space, not all loops encountered here are stagnant – on the

Figure 2: Branching. In blocks world the focus operation models
“drawing” an object from a role. In doing so it produces a branch
on the number of objects left in the ¬topmost ∧ ¬onTable role.

contrary, part of our goal is to identify paths with loops that
make progress and lead to the goal. Once such a path is
found, we find the preconditions on the concrete states for
which it will work, and annotate the abstract start state to
reflect the availability of this partial solution. We then re-
peat this process until either the entire abstract start state
has been covered, or all the interesting paths have been an-
alyzed. In this paper, we only consider paths with simple,
i.e, non-nested loops. Our algorithm for learning plans uses
this framework to trace an example plan in the abstract state
space; this makes loops inherent in the example plan obvi-
ous, as identical abstract state-action sequences.

3 Framework for Abstraction using 3-Valued
Logic

We assume that actions are deterministic and that their re-
sults are observable. States of a domain are represented by
two-valued logical structures consisting of a universe of con-
stant elements or objects, and definitions for all the predi-
cates in a domain-specific vocabulary. We use JϕKS to de-
note the truth value of a closed formula ϕ in the structure
S. State transitions are carried out using action operators
described as a set of first-order formulas defining new val-
ues of every predicate in terms of the old values. We rep-
resent abstract states using structures in three-valued logic,
also called “abstract structures”.
Example 1 A typical blocks world vocabulary would con-
sist of a binary relation on; this can be used to define other
relations like onTable and topmost using first-order formu-
las. For clarity in presentation however, we will treat all
of these relations as separate and equally fundamental. An
example structure, S, in this vocabulary can be described
as: the universe, |S| = {b1, b2, b3}, onTableS = {b3},
topmostS = {b1}, onS = {(b1, b2), (b2, b3)}. This domain
has two actions: move(A,B) moves block A to the top of
blockB, andmoveToTable(A) moves blockA to the table.
We assume actions to be deterministic. The action operator
for an action a (written τa) consists of a set of preconditions
and a set of formulas defining the new value p′ of each pred-
icate p. We separate these two parts of an action operator:
the argument selection and precondition checks are done in
a pre-action step. For instance, for the move action, the pre-
action steps set up predicates identifying the object to be
moved and its destination. These predicates are used to bind
the two variables obj1 and obj2 to the block to be moved,
and its destination, respectively. Preconditions of actions

may enforce integrity constraints, for example, the precon-
dition formove could be topmost(obj1)∧topmost(obj2)∧
obj1 6= obj2 ensuring that the relation on remains 1:1 and
irreflexive.

We write τa(S) to denote the structure obtained by apply-
ing action a to structure S. Let, τa(Γ) =

{
τa(S)

∣∣ S ∈ Γ
}

be the application of a to a set of states, Γ.
Let ∆+

i (∆−
i) be formulas representing the conditions un-

der which the predicate pi(x̄) will be changed to true (false)
by a certain action. The formula for p′i, the new value of pi,
is written in terms of the old values of all the relations:

p′i(x̄) = (¬pi(x̄) ∧∆+
i) ∨ (pi(x̄) ∧ ¬∆−

i) (1)

The RHS of this equation consists of two clauses, the first of
which holds for arguments on which pi is changed to true by
the action; the second clause holds for arguments on which
pi was already true, and remains so after the action.

Example 2 In the blocks world, action move has two argu-
ments: obj1, the block to be moved, and obj2, the block it
will be placed on. Update formulas for on and topmost are:

on′(x, y) = ¬on(x, y) ∧ (x = obj1 ∧ y = obj2)
∨ on(x, y) ∧ (x 6= obj1)

topmost′(x) = ¬topmost(x) ∧ (on(obj1, x))
∨ topmost(x) ∧ (x 6= obj2)

The goal condition is represented as a first-order formula;
given a start structure, the objective of planning is to reach a
structure that satisfies the goal condition. With this notation,
we define a domain-schema as follows:

Definition 1 A domain-schema is a tuple D = (V,A, ϕg)
where V is a vocabulary, A a set of action operators, and ϕg
a first-order formula representing the goal condition.

Given a domain-schema, some special unary predicates
are classified as abstraction predicates. The special status of
these predicates arises from the fact that they are preserved
in the abstraction. We define the role an element plays as the
set of abstraction predicates it satisfies:

Definition 2 A role is a conjunction of literals consisting of
every abstraction predicate or its negation.

Example 3 In the blocks world, with abstraction predicates
topmost and onTable, the role ¬topmost∧¬onTable des-
ignates blocks that are in the middle of a stack.

3.1 Canonical Abstraction
Canonical abstraction [Sagiv et al., 2002] abstracts a struc-
ture by merging all the objects of a role into a summary
object of that role. The resulting abstract structure repre-
sents structures with any number (at least 1) of objects cor-
responding to each summary object. The total number of
abstract structures for a domain-schema is thus finite; we
can tune the choice of abstraction predicates so that the re-
sulting abstract structures effectively model some interest-
ing general planning problems and yet the size and number
of abstract structures remains manageable.

The imprecision that must result when objects are merged
is modeled using three-value logic. In a three-valued struc-
ture the possible truth values are 0, 1

2 , 1, where 1
2 means

“don’t know”. If we order these values as 0 < 1
2 < 1, then

conjunction evaluates to minimum, and disjunction evalu-
ates to maximum. See Fig. 1 where on holds between the
topmost block, e1, and some but not all of the blocks of the
summary element, e2. Thus the truth value of on(e1, e2) is
1
2 , drawn in TVLA as a dotted arc.

We next define embeddings [Sagiv et al., 2002]. De-
fine the information order on the set of truth values as
0 ≺ 1

2 , 1 ≺
1
2 , so lower values are more precise. Intuitively,

S1 is embeddable in S2 if S2 is a correct but perhaps less
precise representation of S1. In the embedding, several ele-
ments of S1 may be mapped to a single summary element in
S2.

Definition 3 Let S1 and S2 be two structures and f :
|S1| → |S2| be a surjective function. f is an embedding
from S1 to S2 (S1 vf S2) iff for all relation symbols p of ar-
ity k and elements, u1, . . . , uk ∈ |S1|, Jp(u1, . . . , uk)KS1 �
Jp(f(u1), . . . , f(uk))KS2 .

The universe of the canonical abstraction, S′, of structure,
S, is the set of nonempty roles of S. In order to merge all
elements that have the same role, we use the subscript {p ∈
A|Jp(x)KS,u/x = 1}, {p ∈ A|Jp(x)KS,u/x = 0} to denote
elements in the abstracted domain.

Definition 4 The embedding of S into its canonical ab-
straction wrt the set A of abstraction predicates is the map:

c(u) = e{p∈A|Jp(x)KS,u/x=1},{p∈A|Jp(x)KS,u/x=0}

Further, for any relation r, we have Jr(e1, . . . , ek)KS
′

=
l.u.b�{Jr(u1, . . . , uk)KS |c(u1) = e1, . . . , c(uk) = ek}.

The truth values in canonical abstractions are as precise
as possible: if all embedded elements have the same truth
value then this truth value is preserved, otherwise we must
use 1

2 . The set of concrete structures that can be embedded
in an abstract structure S is called the concretization of S:
γ(S) = {S′|∃f : S′ vf S}.

Focus With such an abstraction, the update formulas for
actions might evaluate to 1

2 . We therefore need an effective
method for applying action operators while not losing too
much precision. This is handled in TVLA using the focus
operation. The focus operation on a three-valued structure
S with respect to a formula ϕ produces a set of structures
which have definite truth values for every possible instanti-
ation of variables in ϕ, while collectively representing the
same set of concrete structures, γ(S). A focus operation
with a formula with one free variable is illustrated in Fig. 3:
if φ() evaluates to 1

2 on a summary element, e, then either
all of e satisfies φ, or part of it does and part of it doesn’t, or
none of it does. This process could produce structures that
are inherently infeasible. Such structures are either refined
or discarded during TVLA’s coerce operation using a set of
restricted first-order formulas called integrity constraints. In
Fig. 3 for instance, if integrity constraints restricted φ to be
unique and satisfiable, then structure S3 in Fig. 3 would be
discarded and the summary elements for which φ() holds in
S1 and S2 would be replaced by singletons.

The focus operation wrt a set of formulas works by suc-
cessive focusing wrt each formula in turn. The result of
the focus operation on S wrt a set of formulas Φ is writ-

fψ
Role i Role iRole i Role i

Role i

φφ
φ

S SS
1 2 3

S
0

Figure 3: Effect of focus with respect to ϕ.

ten fΦ(S). We use ψa to denote the set of focus formulas
for action a.

3.2 Choosing Action Arguments
Usually, action specifications are allowed to have free vari-
ables. During a typical TVLA execution, such an action is
tried with every binding of the free variables that satisfies
the pre-conditions. In static analysis this feature can be used
to model non-determinism. Our algorithm chooses the argu-
ments in a series of pre-action focus steps. For example, to
choose obj1, in the move action we would focus on an aux-
iliary unary predicate obj′1() that is constrained to be single-
valued and to imply topmost.

3.3 Action Application
Recall that the predicate update formulas for an action oper-
ator take the form shown in equation 1. This equation might
evaluate to indefinite truth values in abstract structures. For
our purposes, the most important updates are for (unary)
abstraction predicates since precision in their values deter-
mines the accuracy of modeling action dynamics. In this
special case, the expressions for ∆+

i and ∆−
i are monadic

(i.e. have only one free variable apart from the action argu-
ments which are bound by the pre-action steps).

In order to obtain definite truth values for these updates,
we focus the given abstract structure S using focus formulas
∆±
i . Once the action operator has been applied, we apply

canonical abstraction (this is called “blur” in TVLA) on the
resulting structures to get the abstract result structures.

3.4 Transitions
Once the action arguments have been chosen, there are three
steps involved in action application: action specific focus,
action transformation, and blur. The transition relations a−→,
captures the combined effect of these steps:

Definition 5 (Transition Relation) S1
a−→ S2 iff S1 and S2

are three-valued structures and there exists a focused struc-
ture S1

1 ∈ fψa(S1) s.t. S2 = blur(τa(S1
1)).

Sometimes however we will need to study the exact path
S1 took in getting to S2. For this, the transition S1

a−→ S2 can

be decomposed into a set of transition sequences {(S1
fψa−−→

Si1
τa−→ Si2

b−→ S2)|Si1 ∈ fψa(S1) ∧ Si2 = τa(Si1) ∧ S2 =
blur(Si2)}.

4 Finding Preconditions
For both searching for plans from scratch and learning from
examples, we need to be able to find the concrete states that a
given path of transitions, possibly with loops, can take to the
goal. In order to accomplish this, we need a way of repre-
senting regions of abstract states that are guaranteed to take
a particular branch of an action’s focus operation. We also
need to be able to regress these subsets backwards through

action edges in the given path all the way up to the initial ab-
stract state – thus identifying its “solved” concrete members.
While the terms “structure” and “state” are interchangeable
in our setting, we will use the former when dealing with a
logic-based mechanism.

We represent regions of an abstract structure by annotat-
ing it with a set of conditions from a chosen constraint lan-
guage. In static analysis terms, we use annotations to refine
our abstraction. Formally,

Definition 6 (Annotated Structures) Let C be a language
for expressing constraints on three-valued structures. A
C−annotated structure S|C is the refinement of S consist-
ing of structures in γ(S) that satisfy the condition C ∈ C.
Formally, γ(S|C) =

{
s ∈ γ(S)

∣∣ s |= C
}

.

We extend the notation defined above to sets of struc-
tures, so that if Γ is a set of structures then by Γ|C we
mean the structures in Γ that satisfy C. Thus we have
γ(S|C) = γ(S)|C .

The (annotated) pre-image of an annotated structure gives
us the preconditions for reaching that annotated structure.
If finding this pre-image is possible, we say the domain is
amenable to back propagation:

Definition 7 (Annotated Domains) An annotated domain-
schema is a pair 〈D , C〉 where D is a domain-schema and
C is a constraint language. An annotated domain-
schema is amenable to back-propagation if for every tran-

sition S1
fψa−−→ Si1

τa−→ Si2
b−→ S2 and C2 ∈ C there exists

Ci1 ∈ C such that τa(γ(S1)|Ci1) = τa(γ(Si1))|C2 .

In terms of this definition, since τa(γ(Si1)) is the subset
of γ(Si2) that has pre-images in Si1 under τa, S1|Ci1 is the
pre-image of S2|C2 under a particular focused branch (the
one using Si1) of action a. The disjunction of Ci1 over all
branches taking S1 into S2 therefore gives us a more general
annotation which is not restricted to a particular branch of
the action update. Using the abbreviation τk...1 to represent
the successive application of action transformers a1 through
ak in this order, we get:

Proposition 1 (Linear backup) Suppose 〈D , C〉 is an anno-
tated domain-schema that is amenable to back-propagation
and S1, . . . , Sk ∈ D are distinct structures such that S1

τ1−→
S2 · · ·

τk−1−−−→ Sk. Then for all Ck there exists C1 such that
τk−1...1(γ(S1)|C1) = τk−1...1(γ(S1)) ∩ Sk|Ck

The restriction of distinctness in this proposition confines
its application to action sequences without loops.

Inequality-Annotated domain-schemas Let us denote
by #R(S) the number of elements of role R in structure
S. In this paper we use CI(R), the language of constraints
expressed as sets of linear inequalities using #Ri(S), for
annotations.

Quality of Abstraction In order for us to be able to clas-
sify the effects of focus operations, we need to impose some
quality-restrictions on the abstraction. Our main require-
ment is that the changes in abstraction predicates should
be characterized by roles: given a structure, an action can
change a certain abstraction predicate only for objects with

a certain role. We formalize this property as follows: a for-
mula ϕ(x) is said to be role-specific in S iff only objects of
a certain role can satisfy ϕ in S.

We therefore want our abstraction to be rich enough to
make the action change formulas, ∆±

i , role-specific in ev-
ery structure encountered. For example, in the blocks world
state shown in Fig. 2 the move action can only change the
topmost predicate for a block of the role ¬topmost ∧
¬onTable, representing blocks in the middle of the stack.
The design of a problem representation and in particular, the
choice of abstraction predicates therefore needs to carefully
balance the competing needs of tractability in the transition
graph and the precision required for back propagation.

The following definition and theorem identify a class of
domains where back propagation is possible.
Definition 8 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such
that ∆+

i and ∆−
i are role-specific, exclusive when not equiv-

alent, and uniquely satisfiable in every structure reach-
able from Sstart. More formally, if Sstart →∗ S then
∀i, j, ∀e, e′ ∈ {+,−} we have ∆e

i role-specific and either
∆e
i ≡ ∆e′

j or ∆e
i =⇒ ¬∆e′

j in S.

Handling Paths with Loops In extended-LL domains we
can also effectively propagate annotations back through
paths consisting of simple (non-nested) loops:
Proposition 2 (Back-propagation through loops) Suppose
S0

τ1−→ S1
τ2−→ . . .

τn−1−−−→ Sn−1
τ0−→ S0 is a loop in an

extended-LL domain with a start structure Sstart. Let the
structures before entering the loop and after exit be S and
Sf . We can then compute an annotation C(l) on S which
selects the structures that will be in Sf |Cf after l iterations
of the loop on S, plus the simple path from S to Sf .

Theorem 1 Extended-LL Domains are amenable to back-
propagation.

Methods described in Srivastava et al. [2007] can be used
to find plan pre-conditions in extended-LL domains.

Intuitively, these domain-schemas are those where:
1. The information captured by roles is sufficient to deter-

mine whether or not an object of any role will change
roles due to an action; and

2. The number of objects being acquired or relinquished by
any role is fixed (constant) for each action.
Examples of such domains are linked lists, blocks-world

scenarios (the appropriate start structures are defined in the
section on Examples), problems in the rocket domain, as-
sembly domains where different objects can be constructed
from constituent objects of different roles.

5 Algorithm for Generalizing From
Examples

In this section we present our approach for computing a gen-
eralized plan from a plan that works for a single problem
instance. The idea behind this technique is that if a given
concrete plan contains sufficient unrollings of some simple
loops, then we can automatically identify them by tracing
the example plan in the abstract state space and looking for
identical abstract state and action sequences. We can then

Input: π = (a1, . . . , an): plan for S#
0 ; S#

i = ai(S
#
i−1)

Output: Generalized plan Π
S0 ← c(S#); Π← π; CΠ ← >1
Apply operators for π on S0 to get S′i−1, Si s.t.2

S′i−1 ∈ fai(Si−1), τi(S
′
i−1) = Si and S#

i v Si.
if ∃C ∈ CI(R) : Sn|C |= ϕg then3

Π← formLoops(S0 : a1 . . . , Sn−1 : an, Sn)4
CΠ ← findPrecon(S0, Π, ϕg)5

end
return Π, CΠ6

Algorithm 1: GeneralizeExample

enhance this plan using the identified loops and use the tech-
niques discussed above to find the set of problem instances
for which this new generalized plan will work. The proce-
dure is shown in Algorithm 1. It is described with an ex-
ample in the next section; we describe the main subroutines
here. Suppose we are given a concrete example plan π for a
state S#

0 . We work with S0, an abstract state containing S#
0 .

S0 can be any structure which makes the resulting domain
extended-LL, and for which we need a generalized plan; the
canonical abstraction of S#

0 forms a natural choice.
The formLoops subroutine converts a linear path of

structures and actions into a path with simple loops. One
way of implementing this routine is by making a single pass
over the input path, and adding back edges whenever a struc-
ture Sj is found such that Si = Sj(i < j), and Si is not
part of, or behind a loop. Structures and actions following
Sj are merged with those following Si if they are identi-
cal; otherwise, the loop is exited via the last action edge.
This method produces one of the possibly many simple-
loop paths from π; we could also produce all such paths.
formLoops thus gives us a generalization Π of π. We then
use the findPrecons subroutine to obtain the restriction on
S0 for which Π works.

5.1 Example
We illustrate this idea using an example in the blocks world
domain. Given a stack consisting of red blocks below and
blue blocks above, we need to find a plan for constructing a
stack with alternating red and blue blocks above an assigned
red, base block with a blue block on top. The numbers of
red and blue blocks in the given stack are unknown, and
unbounded.

Representation Our vocabulary consists of the predicates
{t[on]2, on2, topmost1, onTable1, obj11, obj12, red

1, blue1,
base1,misplaced1}, where all the unary predicates are
abstraction predicates. The misplaced predicate is used to
check that a block is above a stack of alternating colors,
starting with a red block. t[on] is the transitive closure
of on, and is used in integrity constraints for the coerce
operation. The obj1, obj2 predicates are used to select
action arguments before an action is applied. There are
two actions: move(), which places obj1 on top of obj2
and moveToTable(), which moves obj1 to the table. For
simplicity of demonstration, we restrict to only one stack on
the table in this example (for discussion on multiple stacks,
see Srivastava et al. [2007]). This representation can also be
used to describe linked lists and subsequently for creating
algorithms and learning them for some programming
tasks. The planning goal is to reach a state satisfying

Figure 4: Initial structure for striped blocks world.

Figure 5: A generalized plan with three loops.

∀x¬misplaced(x) ∧ (topmost(x) =⇒ blue(x)).
Fig. 5 shows ΠG, a generalized plan for achieving the de-

sired configuration. This plan is the goal for our learning
algorithm, and we show how to learn it from a concrete plan
for a fixed instance of the problem. In fact our techniques
can generate ΠG itself through search – we discuss this in
the next section.

Suppose we are given a concrete plan π = a1, . . . , an
for the initial structure S#

0 consisting of a stack with 5 blue
blocks above 5 red blocks. π consists of the following oper-
ations: 5 actions moving blue blocks to the table, followed
by 4 actions moving red blocks to the table, and finally by
9 actions moving red and blue blocks alternately back to the
stack. This plan can be computed by any classical planner.
Fig. 4 shows S0, the canonical abstraction for S#

0 . γ(S0)
contains infinitely many stacks with any number of blue
blocks upon any number of red blocks.

Let S#
i = ai(S

#
i−1), i > 0. To obtain the general plan, we

first convert π into a sequence of action operators by replac-
ing each action with an operator that uses as its argument(s)
any block having the role of the real action’s argument(s).
We then apply the resulting sequence of operators on S0.
This gives us a sequence of sets of structures representing
the possibilities after each action. From each set in the se-
quence, we select the structure Si such that S#

i v Si. Let
us call the sequence {(S0, a0), . . . (Si, ai), (Sn−1, an−1)}
πabs, where Sn is the final structure.

Πabs is actually an unrolled version of ΠG as applied on
S0. Further, every unrolled loop in Πabs is punctuated by a
repeated abstract structure. Therefore, when formLoops is
executed on Πabs, it finds these repeated structures and re-
creates the loops, giving us exactly ΠG! As can be observed
by the structure of ΠG itself, Sn satisfies the goal and we
use the techniques presented in Srivastava et al. [2007] to
find the annotation on S0 which ΠG will work.

Our algorithm computes the desired annotation by associ-
ating counters Bt(Rt) with roles corresponding to blue(red,
but not base) blocks that are onTable and topmost and
Bm(Rm) with blue(red) blocks that are neither topmost
nor onTable. The obtained annotation at structure S0 is
[Bt = l − lb, Rt = l − lr − 1, Bm = 3 + lb, Rm = 4 + lr],

where the lr(lb) denote number of iterations of the unstack-
red (unstack-blue) loop. Together these conditions imply
that the total number of blue blocks (counting the topmost
blue block and bottommost red block) is 4+ l, exactly equal
to the number of red blocks in the initial structure.

We are thus able to extract the generalized plan ΠG from
π, a simple concrete plan that could have been found by any
classical planner. We also find the preconditions, or problem
instances for which our learned plan achieves the goal.

6 Searching for Generalized Plans
The idea behind our algorithm for searching for generalized
plans is to successively search for paths of transitions (possi-
bly with loops) leading to the goal in the abstract state space
– and for each such path, to compute the preconditions un-
der which concrete members of the initial abstract state are
guaranteed to reach the goal.

Let the annotated-domain-schema 〈D , CI〉 be an
extended-LL domain with a start structure S0. We can then
formulate an algorithm for generalized planning as follows.
We proceed in phases of search and annotation. In the
search phase, we conduct a search in the abstract state space
for states satisfying the goal condition. During search we
allow paths to have simple loops. Heuristics applicable to
the abstract state space could be used here; we leave this for
future work.

When such a path π is found, we enter the annotation
phase: we find the annotation on S0, Cπ for π. If Cπ adds to
the set of concrete states already solved, we include 〈Cπ, π〉
in the general plan, and continue the search if some part of
S0 does not have plans yet. The resulting algorithm can
be implemented in an any-time fashion, by outputting plans
capturing more and more problem instances as new paths are
found in the transition graph. Since the number of abstract
states for any domain-schema is always finite, this algorithm
is guaranteed to terminate.

Propositions 2 and 1 thus give us the following theorem:
Theorem 2 (Generalized planning for extended-LL do-
mains) For an extended-LL domain with a start structure
S0 it is possible to find plans πi and annotations Ci such
that ∀s ∈ γ(S|Ci), πi takes s to the goal; further, for
s ∈ γ(S) \ γ(S|∨iCi), the goal is not reachable via plans
with only simple loops with the given abstraction.

6.1 Example: Striped Blocks World
Our goal is to find a generalized plan for the abstract prob-
lem of constructing a stack of blocks of alternating colors as
described in the previous section.

Input An abstract structure (Fig. 4) representing all prob-
lem instances with a single stack of unknown and un-
bounded numbers of red and blue blocks (at least two
of each), with the red blocks below the blue blocks
(Fig. 4). The goal condition is ∀x¬misplaced(x) ∧
(topmost(x) =⇒ blue(x)).

Output Our algorithm finds a set of generalized plans for
solving all the infinitely many solvable instances of the given
abstract problem. It first finds a path each for 2 or 3 red and
blue blocks (there have to be at least 2 of each according to
S0). These paths do not contain loops. Finally, it finds ΠG

(Fig. 5), the most interesting path. Preconditions for each
path are calculated as discussed above. A time-based stop-
ping criterion can be used to stop the algorithm before it
exhausts the search for all paths to the goal.

We are thus able to use our paradigm for finding gener-
alized plans through search in an abstract state space. For
every generalized branch, we provide preconditions using
numbers of objects (e.g. #red=#blue). Our ability to model
linked lists also allows us to handle program synthesis prob-
lems like finding algorithms for reversing linked lists.

7 Related Work
Interest in computing plan generalizations in AI is perhaps
as old as planning itself. Attempts at producing plans for
more than a single problem instance started with Fikes et
al. [1972]. Their framework parametrized and indexed sub-
sequences of existing plans for use as macro operations or
alternatives to failed actions. However, this approach turned
out to be quite limited and prone to over-generalization. This
initial effort was followed by various approaches to plan
reuse. Unlike case based planning [Hammond, 1996], our
objective is to learn full plans for a well-defined class of
similar instances. Also, once the counts of objects satisfy
a plan’s precondition our entire generalize plan can be ex-
ecuted without further case evaluation. Winner & Veloso
[2003] provide an approach for parameterizing, extracting
and assimilating example plans into templates. However this
technique is limited to plan learning, and does not guarantee
correctness. Levesque [2005] presents an interesting method
for creating general plans by iteratively generating plans and
finding repetitive patterns involving a unique planning pa-
rameter. Our roles are more generalized forms of such pa-
rameters. Also, unlike his approach, we find provably cor-
rect plans. However, our approach cannot currently handle
numeric fluents, which are accommodated in Levesque’s ap-
proach.

Our predicate update formulas resemble the successor
state axioms in situation calculus [Reiter, 2001]: both pro-
vide a logical description of the predicates in a successor
state. However, instead of using situations and theorem
proving, we use query evaluation on a compact representa-
tion of possible states (a 3-valued structure) to compute the
effect of an action. Our search also starts with a compact
description of initial states.

8 Conclusion and Future Work
We present a new unified framework which uses abstraction
across problem instances to learn and search for generalized
plans. The main contributions of this paper are the presen-
tation of an abstraction technique particularly conducive for
this purpose, the formulation of planning and learning algo-
rithms, and a precise analytical characterization of a setting
in which plan correctness is guaranteed. Our planning al-
gorithm is partially implemented; we are working on a full
implementation. We use several examples to illustrate how

our algorithms work and to demonstrate the overall power
of this approach.

Our framework opens up several interesting research av-
enues for future work. Searching in an abstract space that
spans different problem instances presents new challenges
for heuristic and pruning techniques. We are exploring natu-
ral extensions such as generalizing our techniques to a wider
class of domains and to plans with nested loops. Learning
from different examples is also a promising area for future
research.

References
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and Execut-

ing Generalized Robot Plans. Technical report, AI Center, SRI
International.

Hammond, K. J. 1996. Chef: A Model of Case Based Planning. In
Proceedings of AAAI-96.

Levesque, H. J. 2005. Planning with Loops. In In Proceedings of
IJCAI-05.

Loginov, A.; Reps, T.; and Sagiv, M. 2006. Automated verifi-
cation of the Deutsch-Schorr-Waite tree-traversal algorithm. In
Proceedings of SAS-06.

Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.

Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. In Proceedings of TOPLAS-02.

Srivastava, S.; Immerman, N.; Zilberstein, S. 2007. Using Ab-
straction for Generalized Planning. Tech Report 07-41, Deptt.
of Comp. Sci., Univ. of Massachusetts Amherst. www.cs.
umass.edu/∼siddhart/genPlan full.pdf.

Winner, E., and Veloso, M. 2003. DISTILL: Learning domain-
specific planners by example. In Proceedings of ICML-03.

