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Abstract

Recent work on Markov Decision Processes (MDPs) cov-
ers the use of continuous variables and resources, including
time. This work is usually done in a framework of bounded
resources and finite temporal horizon for which a total re-
ward criterion is often appropriate. However, most of this
work considers discrete effects on continuous variables while
considering continuous variables often allows for parametric
(possibly continuous) quantification of actions effects. On
top of that, infinite horizon MDPs often make use of dis-
counted criterions in order to insure convergence and to ac-
count for the difference between a reward obtained now and a
reward obtained later. In this paper, we build on the standard
MDP framework in order to extend it to continuous time and
resources and to the corresponding parametric actions. We
aim at providing a framework and a sound set of hypothesis
under which a classical Bellman equation holds in the dis-
counted case, for parametric continuous actions and hybrid
state spaces, including time. We illustrate our approach by
applying it to the TMDP representation of (Boyan & Littman
2001).

1 Introduction
Some decision problems that deal with continuous variables
imply chosing both the actions to undertake and the parame-
ters of these actions. For example, in a robotic path planning
problem, even a high level “move forward” action might
need a description of its effects based on the actual length
of the movement. In a medical decision problem, discrete
actions may correspond to injecting different drugs but all
these actions would be parameterized by the injection’s vol-
ume. Lastly, in time dependent problems, one often needs a
“wait” action which really is a parametric “wait for duration
τ” action.

Considering continuous planning domains often leads to
considering continuous effects on the state and continuous
parameters for actions (namely continuous parametric ac-
tions). In this paper, we present a way of introducing con-
tinuous actions in Markov Decision Processes (MDPs) and
extend the standard Bellman equation for a discounted crite-
rion on these generalized problems. We call “XMDPs” the
parametric action MDPs for notation convenience.
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The MDP framework has become a popular framework
for representing decision problems under uncertainty. Con-
cerning the type of problems we presented above, conse-
quent research has been done in the field of planning under
uncertainty with continuous resources (Bresina et al. 2002),
planning with time-dependencies (Boyan & Littman 2001;
Younes & Simmons 2004) and taking into account con-
tinuous and discrete variables in the state space (Guestrin,
Hauskrecht, & Kveton 2004; Hauskrecht & Kveton 2006;
Feng et al. 2004). However, little work has been undertaken
concerning continuous actions, even though the problem of
dealing with parametric actions arose in the conclusion of
(Feng et al. 2004). While considering a continuous action
space may not present immediate physical meaning, using
parametric actions makes sense in real world domains: our
research deals with extending the MDP framework to these
actions, especially in the case of random durative actions.

This work relates to the close link between control the-
ory and decision theory (Bertsekas & Shreve 1996). As in
optimal control, we deal with continuous control spaces, but
the analogy doesn’t go further: contrary to control problems,
our framework deals with sequential decision problems with
successive decision epochs defined on a continuous action
space, whereas control theory deals with continuous con-
trol of a state variable. Therefore, our problem remains a
discrete event control problem defined over continuous vari-
ables. On top of that we deal with random decision epochs,
which are not taken into account in classical MDP models.
This key feature spans the complexity of the proofs provided
here but also allows one to plan in unstationary environ-
ments with a continuous observable time variable as we will
see in section 3.

We recall the basics of MDPs and of Bellman’s optimality
equation in section 2. We then introduce the extended for-
malism (XMDPs) we use in order to describe hybrid state
spaces and parametric actions together with the discounted
reward criterion in section 3. Section 4 extends the standard
Bellman equation for MDPs to this extended XMDP frame-
work. We finally illustrate this equation on the TMDP model
in section 5.

2 MDPs and Bellman equation
We assume standard MDP notations (Puterman 1994) and
describe a classical MDP as a 5-tuple < S,A, P, r, T >



where S is a discrete, countable state space, A is a discrete,
countable action space, P is a transition function mapping
transitions (s′, a, s) to probability values, r is a reward func-
tion mapping pairs of action and state to rewards or costs
and T is a set of decision epochs. In general infinite horizon
MDPs, T is isomorphic to N.

An MDP is a sequential stochastic control problem where
one tries to optimize a given criterion by choosing the ac-
tions to undertake. These actions are provided as decision
rules. Decision rule dδ maps states to the actions to be per-
formed at decision epoch δ. (Puterman 1994) proves that
for an infinite horizon problem, there is an optimal control
policy that is Markovian, ie. that only relies on knowledge
of the current state. Such a policy π is thus a mapping from
states to actions. The optimization criterions used in the in-
finite horizon case are often the discounted reward criterion,
the total reward criterion or the average reward criterion. We
focus on the first one here. The discounted criterion for stan-
dard infinite horizon MDPs evaluates the sums of expected
future rewards, each reward being discounted by a factor γ.
This factor insures the convergence of the series and can be
interpreted as a probability of non-failure between two deci-
sion epochs.

V πγ (s) = E

( ∞∑
δ=0

γδr(sδ, π(sδ)

)
(1)

One can evaluate a policy with regard to the discounted
reward criterion. The value V π of policy π obeys the
following equation:

V π(s) = r(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′) (2)

The Bellman equation (or dynamic programming equation)
is an implicit equation yielding the optimal value function
for a given MDP and criterion. This optimal value function
is the value of the optimal policy and therefore, finding the
optimal value function V ∗ immediately yields the optimal
policy π∗. The Bellman equation for discounted MDPs is:

V ∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

]
(3)

3 Hybrid state spaces and parametric actions
3.1 Model definition
In order to illustrate the following definitions on a simple
example, we propose the game presented in figure 1. In this
game, the goal is to bring the ball form the start box to the
finish box. Unfortunately, the problem depends on a contin-
uous time variable because the boxes’ floors retract at known
dates and because actions durations are uncertain and real-
valued. At each decision epoch, the player has five possible
actions: he can either push the ball in one of the four direc-
tions or he can wait for a certain duration in order to reach
a better configuration. Finally the “push” actions are uncer-
tain and the ball can end up in the wrong box. This problem
has an hybrid state space composed of discrete variables -
the ball’s position - and continuous ones - the current date.

Figure 1: Illustrative example

It also has four non-parametric actions - the “push” actions -
and one parametric action - the “wait” action. We are there-
fore trying to find a policy on a stochastic process with con-
tinuous and discrete variables and parametric actions (with
real valued parameters). Keeping this example in mind, we
introduce the notion of parametric MDP:

Definition (XMDP). A parametric action MDP is a tuple
< S,A(X), p, r, T > where:
S is a Borel state space which can describe continuous or
discrete state variables. A is an action space describing a
finite set of actions ai(x) where x is a vector of parameters
taking its values in X . Therefore, the action space of our
problem is a continuous action space, factored by the differ-
ent actions an agent can undertake. p is a probability den-
sity transition function p(s′|s, a(x)). r is a reward function
r(s, a(x)). T is a set of timed decision epochs.

As we will see in the next sections, the time variable has
a special importance regarding the discounted reward crite-
rion. If we consider variable durations and non-integer deci-
sion epochs then we have to make the time variable observ-
able, ie. we need to include it in the state space. In order
to deal with the more general case, we will consider a real-
valued time variable t and will write the state (s, t) in order
to emphasize the specificity of this variable in the discounted
case.

Note that for discrete variables, the p() function of the
XMDP is a discrete probability distribution function and that
writing integrals over p() is equivalent to writing a sum over
the discrete variables.

On top of the definitions above, we make the following
hypothesis which will prove themselves necessary in the
proofs below:

• action durations are all positive and non-zero.

• the reward model is upper semi-continuous

Lastly, as previously, we will write δ the number of the cur-
rent decision epoch, and, consequently, tδ the time at which
decision epoch δ occurs.

3.2 Policies and criterion
We define the decision rule at decision epoch δ as the map-

ping from states to actions: dδ :
{
S × R → A×X
s, t 7→ a, x

.



dδ specifies the parametric action to undertake in state (s, t)
at decision epoch δ. A policy is defined as a set of deci-
sion rules (one for each δ) and we consider, as in (Puterman
1994), the set D of stationary (with regard to δ) markovian
deterministic policies.

In order to find optimal policies for our problem, we need
to define a criterion. The SMDP model (Puterman 1994),
proposes an extension of MDPs to continuous time, sta-
tionary models. The SMDP model is described with dis-
crete state and action spaces S and A, a transition probabil-
ity function P (s′|s, a) and a duration probability function
F (t|s, a). The discounted criterion for SMDPs integrates
the expected reward over all possible transition durations.
Similarly to the discounted criterion for SMDPs, we intro-
duce the discounted criterion for XMDPs as the expected
sum of the successive discounted rewards, with regard to the
application of policy π starting in state (s, t):

V πγ (s, t) = Eπ(s,t)

{ ∞∑
δ=0

γtδ−trπ(sδ, tδ)

}
(4)

In order to make sure this series has a finite limit, our model
introduces three more hypothesis:
• |r ((s, t), a(x)) | is bounded by M ,
• ∀δ ∈ T, tδ+1 − tδ ≥ α > 0, where α is the smallest

possible duration of an action,
• γ < 1.
The discount factor γt insures the convergence of the series.
Physically, it can be seen as a probability of still being func-
tional after time t. With these hypothesis, it is easy to see
that for all (s, t) ∈ S × R:

|V πγ (s, t)| < M

1− γα
(5)

We will admit here that the set V of value functions (func-
tions from S × R to R) is a complete metrizable space for
the supremum norm ‖V ‖∞ = sup

(s,t)∈S×R
V (s, t).

An optimal policy is then defined as a policy π∗ which
verifies V π

∗

γ = sup
π∈D

V πγ . The existence of such a policy is

proven using the hypothesis of upper semi-continuity on the
reward model which guarantees that there exists a parameter
that reaches the sup of the reward function (such a proof was
immediate in the classical MDP model because the action
space was countable).

From here on we will omit the γ index on V .
On this basis, we look for a way of characterizing the op-

timal strategy. In a standard MDP resolution often uses dy-
namic programming (Bellman 1957) or linear programming
(Guestrin, Hauskrecht, & Kveton 2004) techniques on the
optimality equations. Here we concentrate on these optimal-
ity equations and prove the existence of a Bellman equation
for the discounted criterion we have introduced.

4 Extending the Bellman equation
We introduce the policy evaluation operator Lπ . Then we
redefine the Bellman operator L for XMDPs and we prove

that V ∗ is the unique solution to V = LV . Dealing with
random decision times and parametric actions invalidates the
proof of (Puterman 1994), we adapt it and emphasize the
differences in section 4.2.

4.1 Policy evaluation
Definition (Lπ operator). The policy evaluation operator
Lπ maps any element V of V to the value function:

LπV (s, t) = r(s, t, π(s, t))+∫
t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, π(s, t))V (s′, t′)ds′dt′ (6)

We note that for non-parametric actions and discrete state
spaces, p() is a discrete probability density function, the in-
tegrals turn to sums and the Lπ operator above turns to the
classical Lπ operator for standard MDPs. This operator rep-
resents the one-step gain if we apply π and then get V . We
now prove that this operator can be used to evaluate policies.
Proposition (Policy evaluation). Let π be a policy in D.
Then V = V π is the only solution of LπV = V .

Proof. In the following proofs Eπa,b,c denotes the expecta-
tion with respect to π, knowing the values of the random
variables a, b and c. Namely, Eπa,b,c(f(a, b, c, d, e)) is the
expectation calculated with regard to d and e, and is there-
fore a function of a, b and c.

Our starting point is (s0, t0) = (s, t):

V π(s, t) = Eπs0,t0

{ ∞∑
δ=0

γtδ−trπ(sδ, tδ)

}

= rπ(s, t) + Eπs0,t0

{ ∞∑
δ=1

γtδ−trπ(sδ, tδ)

}

= rπ(s, t) + Eπs0,t0

{
Eπs0,t0
s1,t1

( ∞∑
δ=1

γtδ−trπ(sδ, tδ)

)}

The inner mathematical expectation deals with random vari-
ables (si, ti)i=2...∞, the outer one deals with the remaining
variables (s1, t1). We expand the outer expected value with
(s1, t1) = (s′, t′):

V π(s, t) = rπ(s, t) +
∫

t′∈R
s′∈S

Eπs0,t0
s1,t1

( ∞∑
δ=1

γtδ−trπ(sδ, tδ)

)
·

pπ(s′, t′|s, t)ds′dt′

V π(s, t) = rπ(s, t) +
∫

t′∈R
s′∈S

γt
′−tpπ(s′, t′|s, t)·

Eπs0,t0
s1,t1

( ∞∑
δ=1

γtδ−t
′
rπ(sδ, tδ)

)
ds′dt′



The expression inside the Eπs0,t0,s1,t1() deals with random
variables (si, ti) for i ≥ 2. Because of the Markov property
on the p() probabilities, this expectation only depends on the
(s1, t1) variables and thus:

Eπs0,t0
s1,t1

( ∞∑
δ=1

γtδ−trπ(sδ, tδ)
)

= V π(s′, t′)

And we have:

V π(s, t) = LπV π(s, t) (7)

The solution is unique because Lπ is a contraction mapping
on V and we can use the Banach fixed point theorem (the
proof of Lπ being a contraction mapping is similar to the
one we give for the L operator in the next section).

4.2 Bellman operator
Introducing the Lπ operator is the first step towards defining
the dynamic programming operator L.

Definition (L operator). The Bellman dynamic program-
ming operator L maps any element V of V to the value func-
tion: LV = sup

π∈D
{LπV }

LV (s, t) = sup
π∈D

{
rπ(s, t)+

∫
t′∈R
s′∈S

γt
′−tpπ(s′, t′|s, t)V (s′, t′)ds′dt′

}
(8)

This operator represents the one-step optimization of the
current policy. We now prove that L defines the optimality
equation equivalent to the discounted criterion (equation 4).

One can note that the upper semi-continuity of the re-
wards with regard to the parameter guarantees that such a
supremum exists in equation 8, thus justifying this hypothe-
sis which wasn’t necessary in (Puterman 1994) because the
action space was countable.

Proposition (Bellman equation). For an XMDP with a dis-
counted criterion, the optimal value function is the unique
solution of the Bellman equation V = LV .

Proof. The proofs adapts (Puterman 1994) to the XMDP
hypothesis. Namely, hybrid state space, parametric action
space and semi-continuous action rewards. Our reasoning
takes three steps:

1. We first prove that if V ≥ LV then V ≥ V ∗,
2. Then, we similarly prove that if V ≤ LV then V ≤ V ∗,
3. Lastly, we prove that there exists a unique solution to V =
LV .

Suppose that we have a V such that V ≥ LV . Therefore,
with π a policy in D, we have: V ≥ sup

π∈D
{LπV } ≥ LπV .

Since Lπ is positive, we have, recursively: V ≥ LπV ≥
LπLπV . . . ≥ Lπ(n+1)V . We want to find a N ∈ N such
that ∀n ≥ N, Lπ(n+1)V − V ≥ 0.

Lπ(n+1)V corresponds to applying policy π for n + 1
steps and then getting reward V .
Lπ(n+1)V = rπ(s0, t0) + Eπs0,t0

(
γt1−t0rπ(s1, t1) +

Eπs1,t1

(
γt2−t0rπ(s2, t2) + Eπs2,t2

(
. . .+

Eπsn−1,tn−1

(
γtn−t0rπ(sn, tn) +

Eπsn,tn

(
γtn+1−t0V (sn+1, tn+1)

))
. . .

)))

V π = rπ(s0, t0) + Eπs0,t0

(
γt1−t0rπ(s1, t1) +

Eπs1,t1

(
γt2−t0rπ(s2, t2) + Eπs2,t2

(
. . .+

Eπsn−1,tn−1

(
γtn−t0rπ(sn, tn) +

Eπsn,tn

( ∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

))
. . .

)))

When writing Lπ(n+1)V − V π one can merge the two ex-
pressions above in one big expectation over all random vari-
ables (si, ti)i=0...∞. Then all the first terms cancel each
other and we can write:

Lπ(n+1)V − V π = Eπ(si,ti)
i=0...n

(
γtn+1−t0V (sn+1, tn+1) −

∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

)

and thus:

Lπ(n+1)V − V π = Eπ(si,ti)
i=0...n

(
γtn+1−t0V (sn+1, tn+1)

)
−

Eπ(si,ti)
i=0...n

( ∞∑
δ=n+1

γtδ−t0rπ(sδ, tδ)

)

We write: Lπ(n+1)V − V π = qn − rn.

Since γ < 1, r() bounded by M and for all n ∈ N,
tn+1 − tn ≥ α > 0, we know ‖V ‖ is bounded (equation 5)
and we have:
Eπ(si,ti)
i=0...n

(γtn+1−t0V (sn+1, tn+1)) ≤ γ(n+1)α‖V ‖.

So we can write lim
n→∞

qn = 0.

On the other hand, rn is the remainder of a convergent
series. Thus we have: lim

n→∞
rn = 0.



So lim
n→∞

Lπ(n+1)V − V π = 0.

We had V ≥ Lπ(n+1)V , so V − V π ≥ Lπ(n+1)V − V π .
The left hand side expression doesn’t depend on n and since
the right hand side expression’s limit is zero, we can write:
V − V π ≥ 0.

Since this is true for any π ∈ D, it is true for π∗ and:

V ≥ LV ⇒ V ≥ V ∗

Following a similar reasoning we can show that if π′ =

arg sup
π∈D

LπV and V ≤ LV , then V ≤ Lπ
′ (n+1)

V . There-

fore V − V π′ ≤ Lπ
′ (n+1)

V − V π′ and so V − V π′ ≤ 0.
Since V π

′ ≤ V ∗, we have:

V ≤ LV ⇒ V ≤ V ∗

The two previous assertions show that if a solution to V =
LV exists, then this solution is equal to V ∗.

In order to finish proving the proposition, we need to
prove that there always is a solution to V = LV .
V is a metrizable space, complete for the supremum norm

‖V ‖∞ = sup
(s,t)∈S×R

V (s, t) (Bertsekas & Shreve 1996). If

we show that L is a contraction mapping in V , then we will
be able to apply Banach fixed point theorem.

Let U and V be two elements of V with LV ≥ LU .
Let (a∗, x∗) be the solution of:

a∗(x∗) = argsup
a(x)∈A(R)

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tpa(x)(s′, t′|s, t)V (s′, t′)ds′dt′

}

(a∗, x∗) exists because of the upper semi-continuity hy-
pothesis of the reward function which guarantees that, even
at a discontinuity point in the reward function, the upper
value is reachable.

For all (s, t) in S × R, we have:
|LV (s, t)− LU(s, t)| = LV (s, t)− LU(s, t)

LV (s, t)− LU(s, t) ≤ r(s, t, a∗(x∗)) +∫
t′∈R
s′∈S

γt
′−tpa∗(x∗)(s′, t′|s, t)V (s′, t′)ds′dt′ −

r(s, t, a∗(x∗)) −∫
t′∈R
s′∈S

γt
′−tpa∗(x∗)(s′, t′|s, t)U(s′, t′)ds′dt′

Which yields:

LV (s, t)− LU(s, t) ≤
∫

t′∈R
s′∈S

γt
′−tpa∗(x∗)(s′, t′|s, t)·

(V (s′, t′)− U(s′, t′)) ds′dt′

We have:


V (s, t)− U(s, t) ≤ ‖V − U‖
t′ − t ≥ α > 0
p(s′, t′|s, t, a(x)) ≤ 1
γ < 1

, so we can

write:

LV (s, t)− LU(s, t) ≤ ‖V − U‖ · γα

and thus:

‖LV − LU‖ ≤ ‖V − U‖ · γα

Since γα < 1, this proves L is a contraction mapping on
V . Banach fixed point theorem then tells us that there exists
a fixed point V ′ ∈ V to the L operator such that V ′ = LV ′.

The previous results allow us to conclude that under the
general hypothesis mentioned above, the equation LV = V
has a unique solution and this solution is equal to V ∗,
the optimal value function with regard to the discounted
criterion.

LV = V ⇒ V = V ∗ (9)

One can rewrite the Bellman equation in the following
way, making it more suitable for dynamic programming al-
gorithms such as value or policy iteration:

LV (s, t) = max
a∈A

sup
x∈X

{
r(s, t, a(x)) +

∫
t′∈R
s′∈S

γt
′−tp(s′, t′|s, t, a(x))V (s′, t′)ds′dt′

}
(10)

Using this formulation, we alternate an optimization on x of
the value of each action which yields the optimal value of
the parameter per action and a choice among the (discrete)
set of possible actions (with their optimal parameter).

For a brief example giving the flavor of the next sec-
tion, we can imagine a problem with a single continuous
time variable factoring a discrete state space and a single
continuous duration parameter τ affecting only the “wait”
action. Then equation 10 can be straightforwardly imple-
mented as a two-step value iteration algorithm. The first
step calculates the optimal value of τ for any action that de-
pends on it. The second step is a maximization step over
all actions with their optimal parameter. This naive example
shows the difficulties we can expect form designing algo-
rithms to solve XMDPs. These difficulties deal with rep-
resenting the continuous functions of the model’s dynam-
ics, solving the integrals in the Bellman equation and rep-
resenting the continuous part of the policy. These prob-



lems have been encountered more generally when deal-
ing with continuous variables in MDPs and various solu-
tions for representing / approximating value functions have
been proposed in (Boyan & Littman 2001; Liu & Koenig
2006; Li & Littman 2005; Marecki, Topol, & Tambe 2006;
Hauskrecht & Kveton 2006) while there have been some at-
tempts at dealing with continuous actions in reinforcement
learning ((Hasselt & Wiering 2007)).

One can notice that if the state space is discrete, all prob-
ability density functions are discrete and integrals turn to
sums. If the parameter space is discrete as well, by re-
indexing the actions in the action space, the sup operator
turns to a max and the above Bellman equation (equation
9) is the standard dynamic programming equation charac-
terizing the solutions of classical MDPs. Therefore we can
conclude that the XMDP model and its optimality equation
includes and generalizes the results presented in (Puterman
1994) for standard MDPs.

5 Illustration on the TMDP model
The TMDP model was introduced in (Boyan & Littman
2001). It is a modification of a standard MDP in order to take
time-dependent dynamics into account in the transition and
reward model. Even though they provide optimality equa-
tions, it is unclear to determine which criterion the authors
actually optimized. We prove that the optimized criterion
really was a total reward criterion similar to the discounted
criterion we introduced above. If we suppose the existence
of absorbing reachable states in the model, then we can relax
the γ < 1 hypothesis and - with γ = 1 - introduce a total
reward criterion for XMDPs.

A TMDP is composed of a discrete state space S factored
by a continuous time variable t, a set A of discrete actions
and a set M of action outcomes, each outcome being rep-
resented by the tuple < s′, Tµ, Pµ > with s′ the resulting
state, Tµ a flag indicating whether the probability density
function Pµ describes the duration of the transition or the
absolute arrival time of µ. Transitions are then described
with a function L(µ|s, t, a) and the reward model is given
through R(µ, t, τ) and a cost of “dawdling” K(s, t).

The optimality equations of (Boyan & Littman 2001) are:

V (s, t) = sup
t′≥t

(∫ t′

t

K(s, θ)dθ + V (s, t′)

)
(11)

V (s, t) = max
a∈A

Q(s, t, a) (12)

Q(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · U(µ, t) (13)

U(µ, t) =
{∫∞
−∞ Pµ(t′)[R(µ, t, t′) + V (s′µ, t

′)]dt′∫∞
−∞ Pµ(t′ − t)[R(µ, t, t′) + V (s′µ, t

′)]dt′

(14)

Equation 14 is different whether Tµ = REL or ABS.
In the TMDP model, actions are defined as pairs “t′, a”,

which mean “wait until time t′ and then undertake action
a”. The optimality equations provided in (Boyan & Littman
2001) separate the action selection from the waiting dura-
tion, alternating a phase of action choice based on standard

Q-values and a phase of “dawdling duration” optimization
(this duration might be zero). With the XMDP formulation,
it is pretty straightforward to see that the “wait” action re-
ally is a parametric action and that atomic action selection
and waiting time determination can be separated because:

1. “wait” is the only parametric action,

2. “wait” is a deterministic action,

3. “wait” doesn’t change the current discrete state of the pro-
cess and only affects t.

If we write equation 10 for such a problem, the max and
the sup operators appear to be independent, which allows for
equations separation as in (Boyan & Littman 2001). Equa-
tion 10 becomes (with τ the parameter of the “wait” action):

V ∗(s) = max
a∈A

{
sup
τ∈R+

(
r(s, t, a(τ))+

∫∫
s′∈S
t′∈R

V ∗(s′)p(s′, t′|s, t, a(τ))ds′dt′
)}

V ∗(s) = max
a∈A

{
sup
τ∈R+

(
r(s, t, a(τ))+

∫∫
s′∈S
t′∈R

V ∗(s′)
∑
µs′

L(µs′ |s, a, t) · Pµs′ (t
′ − t)ds′dt′

)}

V ∗(s) = max
a∈A

{
sup
τ∈R+

(
r(s, t, a(τ))+

∑
s′∈S

L(µs′ |s, a, t)·

∫
t′∈R

γt
′−tV ∗(s′) · Pµs′ (t

′ − t)dt′
)}

Therefore, if we separate wait from the other actions:

V ∗(s) = max

{
max

a∈A\{wait}

{
sup
τ∈R+

(
r(s, t, a(τ))+

∑
s′∈S

L(µs′ |s, a, t)
∫

t′∈R

Pµs′ (t
′ − t)V ∗(s′)dt′

)}
;

sup
τ∈R+

(
r(s, t, wait(τ)) + V ∗(s, t+ τ)

)}

It is straightforward to see that there cannot be two suc-
cessive wait actions, thus we can consider a sequence of
wait-action actions since wait is deterministic and only af-
fects t. This yields:



V ∗(s) = sup
τ∈R+

(
r(s, t, wait(τ))+

max
a∈A\{wait}

{
r(s, t, a(τ)) +

∑
s′∈S

L(µs′ |s, a, t)·

∫
t′∈R

Pµs′ (t
′ − t)V ∗(s′)dt′

})

This very last equation is finally the equivalent (con-
densed in one line) of equations 11 to 14 which proves
that, in the end, TMDPs can be written as parametric ac-
tion MDPs with total reward criterion and a single paramet-
ric wait action. The proof above insures the validity of the
Bellman equation in the general case.

Extensions to this example are the generalization of res-
olution methods for TMDPs. TMDPs are usually solved
using piecewise constant L functions, discrete probability
density functions and piecewise linear additive reward func-
tions. (Boyan & Littman 2001) show that in this case, the
value function can be computed exactly. Aside form this
work on XMDPs, we developed a generalization of TMDPs
in the more general case where all functions are piecewise
polynomial and adapted the value iteration scheme intro-
duced above to solve (with approximation) this class of
XMDPs.

6 Conclusion
We have introduced an extension to the classical MDP
model in three ways that generalize the kind of problems
we can consider:

• We generalized (as was already done in previous work)
MDPs to continuous and discrete state spaces

• We extended the standard discounted reward criterion to
deal with a continuous observable time and random deci-
sion epoch dates

• We introduced factored continuous action spaces through
the use of parametric actions

We called this extension XMDP, an on this basis we
proved that our extended Bellman optimality equation
(equation 10) characterized the optimal value function for
XMDPs in the same way the standard value function charac-
terizes the optimal value function for regular MDPs. More
specifically, we defined the set of conditions under which
this extended Bellman equation held, namely:

• action durations are strictly positive

• the reward model is a bounded upper semi-continuous
function of the continuous variables.

Finally, in order to illustrate our approach, we showed
how the TMDP model was actually an XMDP with a para-
metric “wait” action. This equivalence validates the opti-
mality equations given in (Boyan & Littman 2001) for the
total reward criterion.

This now allows the adaptation of standard value iteration
algorithms as in (Boyan & Littman 2001) or (Feng et al.
2004) or the adaptation of heuristic search algorithms for
MDPs as in (Barto, Bradtke, & Singh 1995) for example.

This paper’s purpose was to provide proofs of optimality
for a class of MDPs that has received attention recently in
the AI community and to set a sound basis for the general-
ized parametric MDP framework. Our current work focuses
on temporal planning under uncertainty and therefore makes
use of the results introduced here, but we believe the scope
of this paper goes beyond our research applications since it
provides a general framework and optimality equations.

An other essential element when dealing with time and
planning is the possibility of concurrency between actions
/ events. From this point of view, our future work will fo-
cus more on Generalized Semi-Markov Decision Processes
optimization (Younes & Simmons 2004) .
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