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Abstract

In this paper we discuss the nature of independence
of sources in the theory of evidence from an alge-
braic point of view. Independence in Dempster’s rule
is equivalent to independence of frames IF as Boolean
sub-algebras. IF , however, cannot be explained neither
in terms of classical matroidal independence, nor (even
if finite families of frames form geometric lattices) as
a cryptomorphic form of independence of flats on geo-
metric lattices. Independence of frames is actually op-
posed to matroidal independence, giving a collection of
frame the structure of “anti-matroid”.

1 Introduction
The theory of evidence was born as a contribution to a math-
ematically rigorous description of the notion of subjective
probability. In subjective probability, different observers (or
“experts”) of the same phenomenon possess in general dif-
ferent notions of what the decision space is. Mathematically,
this translates into admitting the existence of several dis-
tinct representations of the decision space at different lev-
els of refinement. Evidence will in general be available
on some of those domains or frames, and will need to be
“moved” to a common frame or “common refinement” in
order to be fused. However, fusion through Dempster’s rule
(Dempster 1967; 1968; 1969) can surely take place (Cuz-
zolin 2005) only when those frames are independent (Shafer
1976). Combinability (in Dempster’s sense) and indepen-
dence of frames (in Shafer’s formulation of the theory of
evidence) are strictly intertwined.

The formal definition of evidence combination has been
widely studied (Zadeh 1986; Yager 1987) in different math-
ematical frameworks (Smets 1990; Dubois & Prade 1992).
An exhaustive review would be impossible here (Campos &
de Souza 2005; Liu 2006; Murphy 2000; Carlson & Mur-
phy 2005; Sentz & Ferson April 2002). In particular, some
work has indeed been done on the issue of merging con-
flicting evidence (Deutsch-McLeish 1990; Josang, Daniel,
& Vannoorenberghe 2003; Lefevre, Colot, & Vannooren-
berghe 2002; Wierman 2001), specially in critical situations
in which the latter is derived from dependent sources (Cat-
taneo 2003). On the other hand not much work has been
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done on the properties of the families of compatible frames
(Shafer, Shenoy, & Mellouli 1987; Kohlas & Monney 1995;
Cuzzolin 2005).
Here we build on the results obtained in (Cuzzolin 2005)
to complete the algebraic analysis of families of frames and
conduct a comparative study of the notion of independence,
so central in the theory of evidence, in an algebraic setup.
We first recall the fundamental result on the equivalence be-
tween independence of sources in Dempster’s combination
(Section 2) and independence of frames (Section 3). In this
incarnation independence of sources can indeed be studied
from an algebraic point of view, and compared with other
classical forms of independence.
The classical paradigm of abstract independence is the no-
tion of matroid. Matroids were introduced by Whitney in the
Thirties (Whitney 1935) when he and other authors, among
which van der Waerden (van der Waerden 1937), Mac Lane
(Lane 1938), and Teichmuller (Teichmuller 1936) recog-
nized that several different concepts of dependence (Harary
& Tutte 1969; Beutelspacher & Rosenbaum 1998) in alge-
bra have many properties in common with linear dependence
of vectors. It is natural to conjecture that independence of
frames may be a form of matroidal independence (Section
4): however, this is not the case (Theorem 1).
Matroids, however, are strictly related to another algebraic
structure, that of geometric lattice which in turn admits its
own particular notion of “independence”. In Section 5 we
indeed prove that finite families of frames are also geomet-
ric lattices (Theorem 2). As a lattice is geometric iff it is
the lattice of all the closed sets or “flats” of some matroid,
compatible frames can be seen as flats of some matroid. We
therefore propose a new definition of independence of flats
and discuss the possibility that it corresponds to evidential
independence (Section 6).
In fact, as we argue in Section 7, the binary frames of a
family are independent as Boolean algebras iff they are not
independent as elements of the corresponding matroid. In
a sense, then, we can say that collections of independent
frames are “anti-matroids”.
The overall picture is intriguing, and could in the future
shed more light on the relationship between matroidal and
Boolean independence in discrete mathematics, pointing out
the necessity of a more general, comprehensive definition of
this very important notion.



2 Independence of sources in Dempster’s
combination

Independence of sources is central in the theory of evidence,
as it is required to fuse the evidence carried by two or more
belief functions.

2.1 Belief functions and multi-valued maps
A basic probability assignment (b.p.a.) over a finite set or
frame (Shafer 1976) Θ is a function m : 2Θ → [0, 1] on its
power set 2Θ = {A ⊆ Θ} such that

m(∅) = 0,
∑

A⊆Θ

m(A) = 1, m(A) ≥ 0 ∀A ⊆ Θ.

The belief function (b.f.) b : 2Θ → [0, 1] associated with a
basic probability assignment m on Θ is defined as

b(A) =
∑

B⊆A

m(B).

The notion of belief function originally comes from a se-
ries of Dempster’s works on upper and lower probabilities
induced by multi-valued mappings (Dempster 1967; 1968;
1969). The following sketch of the nature of belief func-
tions is abstracted from (Shafer 1990; Smets 1987).
Let us consider a problem in which we have probabilities for
a question Q1 and we want to derive a degree of belief for a
related question Q2. Let us call Ω and Θ the sets of possible
answers of Q1 and Q2 respectively.
Given a probability measure P on Ω we want to derive a de-
gree of belief b(A) that A ⊆ Θ contains the correct response
to Q2 (see Figure 1).

If we call Γ(ω) the subset of answers to Q2 compatible
with ω ∈ Ω, each element ω tells us that the answer to Q2 is
somewhere in A whenever Γ(ω) ⊆ A. The map Γ : Ω → 2Θ

(where 2Θ denotes the collection of subsets of Θ) is called a
multi-valued mapping from Ω to Θ.
The degree of belief b(A) of an event A ⊆ Θ is then the total
probability of all answers ω that satisfy the above condition,
namely b(A) = P ({ω|Γ(ω) ⊆ A}). A basic probability as-

ω

A

Θ

Ω

Γ
Γ(ω)

P : Ω −> [0,1]

b : 2  −> [0,1]
Θ

Figure 1: A probability measure P on Ω induces a belief
function b on Θ whose values on the events A of Θ are given
by b(A) =

∑
ω∈Ω:Γ(ω)⊆A P (ω).

signment is then in fact an assignment of probability values
(summing to one) to events of the frame, independently from

their set-theoretic relation, as this assignment is induced by
a multi-valued map.

This implies, for instance, that (unlike what happens with
probability measures) the degree of belief of the disjoint
union of two events A and B is not the sum of the asso-
ciated degrees: in other words, a belief function is not addi-
tive: b(A + B) ≥ b(A) + b(B) (Shafer 1976).

2.2 Dempster’s combination
In the ToE the available evidence is represented by a num-
ber of belief functions. To merge this evidence in order to
make inferences on the response to the considered problem
we then need to work out a mechanism for fusing two or
more belief functions in a rational way.
The method originally proposed is based on an operator
called Dempster’s orthogonal sum.
Definition 1. The orthogonal sum or Dempster’s sum of two
b.f.s b1, b2 on Θ is a new belief function b1 ⊕ b2 on Θ with
b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B)mb2(C)∑
B∩C 6=∅mb1(B)mb2(C)

. (1)

When the denominator of the above equation is zero the
two b.f.s are said to be non-combinable.

The deep meaning of this operator can again be explained
in terms of multi-valued maps.
Let us consider two multi-valued mappings Γ1, Γ2 inducing
two belief functions over the same frame Θ, Ω1 and Ω2 their
domains and P1, P2 the probability measures over Ω1 and
Ω2 respectively. If we suppose that the items of evidence
generating P1 and P2 independent, we are allowed to build
the product space (Ω1 × Ω2, P1 × P2): detecting two out-
comes ω1 ∈ Ω1 and ω2 ∈ Ω2 will then tell us that the answer
to Q2 is somewhere in Γ1(ω1) ∩ Γ2(ω2).
However, if this intersection is empty the two pieces of ev-
idence are in contradiction. We then need to condition the
product measure P1×P2 over the set of pairs (ω1, ω2) whose
images have non-empty intersection, namely

Ω = {(ω1, ω2) ∈ Ω1 × Ω2|Γ1(ω1) ∩ Γ2(ω2) 6= ∅},
P = P1 × P2|Ω, Γ(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2).

(2)
The new b.f. b induced by (2) is indeed the Dempster’s sum
(1) of the pair of functions being combined.

3 Independence of sources and independence
of frames

Dempster’s mechanism for evidence combination is then in-
timately connected to the assumption that the domains on
which the evidence is present (in the form of a probability
measure) are independent. This relationship is mirrored by
the notion of independence of compatible frames.

3.1 Families of compatible frames
Given two frames Θ and Θ′, a map ρ : 2Θ → 2Θ′ is a
refining if ∀A ⊆ Θ ρ(A) = ∪θ∈Aρ({θ}) and ρ maps the
elements of Θ to a disjoint partition of Θ′:

ρ({θ}) ∩ ρ({θ′}) = ∅ ∀θ, θ′ ∈ Θ,
⋃

θ∈Θ

ρ({θ}) = Θ′



(Figure 2). Θ′ is called a refinement of Θ, Θ a coarsen-
ing of Θ′. Shafer calls a structured collection of frames a
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Figure 2: Refining.

family of compatible frames of discernment ((Shafer 1976),
pages 121-125). In particular, in such a family every pair
of frames has a common refinement, i.e. a frame which is
a refinement of both. If Θ1, ..., Θn belong to a family of
compatible frames F then there exists a unique common re-
finement Θ ∈ F of them s.t. ∀θ ∈ Θ ∃θi ∈ Θi ∀i = 1, ..., n
for which

{θ} = ρ1({θ1}) ∩ · · · ∩ ρn({θn}) (3)

where ρi denotes the refining between Θi and Θ. This
unique frame is called the minimal refinement Θ1⊗· · ·⊗Θn

of Θ1, ..., Θn.

Example Let us consider a simple example drawn from
image processing. We want to find out the position of a
target point in an image. We can then pose the problem
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Figure 3: A family of compatible frames. Different discrete
quantizations of row and column ranges of an image have a
common refinement, the set of cells shown on the left. The
refinings ρ1, ρ2, ρ3 between those frames appear to the right.

on a frame Θ1 = {c1, ..., c5} obtained by partitioning the
column range of the image into 5 intervals. The set of
columns can be also partitioned into 10 intervals, yielding
a new frame Θ2 = {c11, c12, ..., c51, c52}. On the other
side, the row range can also be divided in, say, 6 inter-
vals Θ3 = {r1, ..., r6}. All those frames are clearly re-
lated to the location of the target: as Figure 3 suggests,
they all belong to a family of compatible frames, with the

collection of cells Θ = {e1, ..., e60} depicted in Figure 3-
left as common refinement. Figure 3-right shows the refin-
ings between them where, for instance, ρ1(c1) = {c11, c12},
ρ2(c11) = {e1, e11, e21, e31, e41, e51}, etcetera.
It is easy to verify that Θ meets condition (3) for the frames
Θ2,Θ3 as, for example, {e41} = ρ2(c11) ∩ ρ3(r4) i.e. Θ is
the minimal refinement Θ2 ⊗Θ3 of Θ2, Θ3.

3.2 Independence of frames as Boolean
sub-algebras

Now, let Θ1, ..., Θn be elements of a family of compatible
frames, and ρi : Θi → 2Θ1⊗···⊗Θn the corresponding re-
finings to their minimal refinement. Θ1, ..., Θn are indepen-
dent (Shafer 1976) (IF) if

ρ1(A1) ∩ · · · ∩ ρn(An) 6= ∅ (4)

whenever ∅ 6= Ai ⊂ Θi for i = 1, ..., n (Figure 4). In
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Figure 4: Independence of frames.

particular, if some Θj is a coarsening of some other frame
Θi then Θ1, ..., Θn are not IF .
A condition equivalent to (4) is (Cuzzolin 2005)

Θ1 ⊗ · · · ⊗Θn = Θ1 × · · · ×Θn (5)

i.e. their minimal refinement is their Cartesian product.
Incidentally, the notion of independence of frames is a

cryptomorphic version of that of independence of Boolean
sub-algebras (Sikorski 1964). A collection of compatible
frames Θ1, ..., Θn corresponds to a set of Boolean sub-
algebras 2Θ1 , ..., 2Θn of the power set 2Θ1⊗···⊗Θn of their
minimal refinement Θ1 ⊗ · · · ⊗ Θn. A set of sub-algebras
X1, ..., Xn of a Boolean algebra B is independent if

∩Ai 6= ∧ (6)

∀ Ai ∈ Xi, where ∧ .= ∩B is the initial element of B. For a
collection of compatible frames (6) reads as (4).

3.3 Independence of frames and Dempster’s rule
On the other side, independence of frames is strictly related
to Dempster’s combination (Cuzzolin 2005).

Proposition 1. Let Θ1, ..., Θn be a set of compatible frames.
Then they are independent iff all the possible collections of
b.f.s b1, ..., bn defined respectively on Θ1, ..., Θn are com-
binable on their minimal refinement Θ1 ⊗ · · · ⊗Θn.



Independence of frames and independence of sources
(which is at the root of Dempster’s combination) are in fact
equivalent. This is not at all surprising when we compare
the condition under which Dempster’s sum is well defined
(Equation 2)

Γ1(ω1) ∩ Γ2(ω2) 6= ∅, (ω1, ω2) ∈ Ω1 × Ω2

with independence of frames

ρ1(A1) ∩ ρ2(A2) 6= ∅, A1 ⊂ Θ1, A2 ⊂ Θ2

which reduces to

ρ1(θ1) ∩ ρ2(θ2) 6= ∅, (θ1, θ2) ∈ Θ1 ×Θ2.

See (Cuzzolin 2005) for a formal proof of Proposition 1.
On this result an algebraic study of independence as intro-
duced in the theory of evidence can be built.

4 Matroids
The classical paradigm of abstract independence is the no-
tion of matroid. Matroids were introduced by Whitney in the
Thirties (Whitney 1935) when he and other authors, among
which van der Waerden (van der Waerden 1937), Mac Lane
(Lane 1938), and Teichmuller (Teichmuller 1936) recog-
nized that several different concepts of dependence (Harary
& Tutte 1969; Beutelspacher & Rosenbaum 1998) in algebra
had many properties in common with linear dependence of
vectors. We will briefly introduce the basic notions (Oxley
1992) to later discuss how matroidal independence relates to
independence of frames in the theory of evidence.
Definition 2. A matroid M = (E, I) is a pair formed by a
ground set E, and a collection of independent sets I ⊆ 2E ,
such that:
1. ∅ ∈ I;
2. if I ∈ I and I ′ ⊆ I then I ′ ∈ I;
3. if I1 and I2 are in I, and |I1| < |I2|, then there is an

element e of I2 − I1 such that I1 ∪ e ∈ I.
Condition 3. is called augmentation axiom, and is the

foundation of the notion of abstract independence in matroid
theory. The name “matroid” was coined by Whitney (Whit-
ney 1935) because of a fundamental class of matroids which
arise from matrices.

Example: Vector matroids The collection of columns of
a matrix together with the collection of linearly indepen-
dent (in the ordinary sense) sets of columns form a matroid,
called vector matroid. Consider as an example the matrix

[
1 0 0 1 1
0 1 0 0 1

]

with column labels E = {1, 2, 3, 4, 5}. Obviously
the collection of independent sets in E is I =
{∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}.
It is interesting to see that linearly independent vectors
in a vector space actually satisfy the augmentation axiom
3. of Definition 2. Let I1 and I2 be linearly independent
subsets such that |I1| < |I2|. Let W be the subspace

spanned by I1 ∪ I2. Then dim W is at least |I2| (as I2,
the largest of the two collections, is linearly independent).
Now suppose that I1 ∪ e is linearly dependent for all
e ∈ I2 \ I1. Then W is contained in the span of I1, thus
|I2| ≤ dim W ≤ |I1| < |I2| which is a contradiction.

Example: Graph matroids Another classical example of
matroid arises from graph theory. Every finite graph G is
associated with a matroid as follows: take as E the set of all
edges in G and consider a set of edges independent if and
only if it does not contain a simple cycle. Such an edge set
is called a ”forest” in graph theory. This is called the graphic
matroid of G. Non-independent sets are called ”circuits” in
matroid theory, a terminology borrowed from graph theory.

4.1 Families of frames are not matroids
As matroidal independence formalizes several different no-
tions of independence introduced in various fields of mathe-
matics, we may wonder whether the notion of independence
of frames (so important in the theory of evidence) could also
be reduced to that of matroid. Matrices with linear inde-
pendence, graphs with cycle independence are matroids. It
makes then sense to conjecture that for each family F of
compatible frames, (F , IF) is also a matroid. This would
imply that independence of Boolean sub-algebras is itself a
form of independence in matroidal sense. However, this is
not the case.

Theorem 1. A family of compatible frames F endowed with
Shafer’s independence IF is not a matroid.

Proof. In fact, IF does not meet the augmentation axiom
3. of Definition 2. Consider two independent frames I =
{Θ1,Θ2}. If we pick another arbitrary frame in the family
Θ3, the collection I ′ = {Θ3} is trivially IF . Suppose Θ3 6=
Θ1,Θ2. Then, since |I| > |I ′|, by augmentation we can
form a new pair of independent frames by adding any of
Θ1,Θ2 to Θ3. But it is easy to find a counterexample, for
instance by picking Θ3 = Θ1 ⊕ Θ2. As Θ1 is a coarsening
of Θ1 ⊕Θ2 this new pair is not IF .

Independence of Boolean sub-algebras is then not inde-
pendence in matroidal sense. Matroids however are strictly
related to the algebraic structure of geometric lattice, on
which they induce a different definition of independence. As
families of frames are indeed geometric lattices, we are then
led to compare the latter with Boolean-theoretic IF .

5 Families of frames as geometric lattices
The algebraic structure of families of compatible frames has
already been studied in recent times (Kohlas & Monney
1995). In particular, it has been proven that they possess
the algebraic structure of lattice: in particular, they belong
to the class of semi-modular lattices (Cuzzolin 2005).

5.1 Lattices
A partially ordered set or poset is a set P together with a
binary relation ≤ such that, for all x, y, z in P the following
condition holds:



1. x ≤ x;
2. if x ≤ y and y ≤ x then x = y;
3. if x ≤ y and y ≤ z then x ≤ z.
In a poset we say that x “covers” y (x Â y) if x ≥ y and
there is no intermediate element in the chain linking them.
A classical example is the power set 2Θ of a set Θ together
with the set-theoretic inclusion relation ⊂.
Given two elements x, y ∈ P of a poset P their least upper
bound supP (x, y) = x ∨ y or ”join” is the smallest element
of P that is bigger than both x and y, while their greatest
lower bound infP (x, y) = x∧ y is the biggest element of P
that is smaller than both x and y. In the case of L = (2Θ,⊂)
“sup” is the usual set-theoretic union, A∨B = A∪B, while
“inf” is the usual intersection A ∧ B = A ∩ B. Not every
pair of elements of a poset, though, admits inf and/or sup.
Definition 3. A lattice L is a poset in which each pair of
elements admits both inf and sup.

When each arbitrary (even not finite) collection of ele-
ments of L admits both inf and sup, L is said complete. In
this case there exist 0 ≡ ∧L, 1 ≡ ∨L called respectively
initial and final element of L.
The elements of L covering 0 are called atoms of L: a Â 0.
The height h(x) of an element x in L is the length of the
maximal chain from 0 to x. In the case of the power set 2Θ,
the height of a subset A ∈ 2Θ is simply its cardinality |A|.
2Θ is complete, with 0 = ∅ and 1 = {Θ}.

5.2 Families of frames as semi-modular lattices
Now, we can introduce in a family of frames the following
order relation:

Θ1 ≤ Θ2 ⇔ ∃ρ : 2Θ2 → 2Θ1 refining (7)

i.e. Θ1 is smaller than Θ2 iff Θ1 is a refinement of Θ2. Then
(Cuzzolin 2005)
Proposition 2. A family of frames is a lattice with respect
to the order relation (7).

In particular,
Definition 4. A lattice L is semi-modular if for each pair
x, y of elements of L, x Â x ∧ y implies x ∨ y Â y.

We recently proved that (Cuzzolin 2007)
Proposition 3. A family of frames is a semi-modular lattice
with respect to the order relation (7).

A different, lattice-theoretic notion of independence can
be introduced on a semi-modular lattice. The relation be-
tween the latter and IF has been studied in (Cuzzolin 2007).
Here we make use of Proposition 3 only to introduce a dif-
ferent algebraic structure on families of compatible frames.

5.3 The lattice of frames as a geometric lattice
The reader will be familiar with the notion of compactness:
The latter can be given an abstract definition in terms of joins
of a lattice.
Definition 5. An element p of a lattice L is called compact
iff if there exists a subset S ⊂ L s.t. p ≤ ∨S, then there
exists a finite subset F ⊂ S s.t. p ≤ ∨F .

Definition 6. A lattice L is called algebraic if:

• L is complete (admits 0 and 1);
• each element p of L is a join of compact elements.

L is called geometric if:

• it is algebraic;
• it is upper semi-modular;
• each compact element of L is a join of atoms: ∀p ∈ L
∃a1, · · · , am ∈ A such that p =

∨
i ai.

Example: projective geometries The name “geometric”
lattices comes in fact from the familiar case of “projective
geometries”, i.e. collections L(V ) of vector subspaces of
a vector space V . Projective geometries are complete lat-
tices, their compact elements being the finite-dimensional
subspaces of V . Each finite dimensional subspace is a span
of one-dimensional subspaces (vectors).
If a complete lattice L is finite, all its elements are joins of a
finite number of atoms. In this case, geometricity reduces to
semi-modularity.

As IF involves only partitions of Θ1 ⊗ · · · ⊗ Θn, we
can conduct our analysis on the partition lattice L(Θ) .=
(P (Θ),≤) associated with the set P (Θ) of all partitions of a
given frame Θ. But L(Θ) is a complete finite semi-modular
lattice, so that

Theorem 2. L(Θ) is a geometric lattice.

Compatible frames have then something to do with linear
subspaces. We will see in the rest of the paper what this
implies for the notion of independence.

6 IF and independence of flats
6.1 An analogy
An intriguing similarity indeed emerges between indepen-
dence of frames and independence of vector subspaces in
a projective geometry, evident from the following diagram
(recalling Equations (4) and (5)):

ρ1(A1) ∩ · · · ∩ ρn(An) 6= ∅, ∀Ai ⊂ Θi

v1 + · · ·+ vn 6= 0, ∀vi ∈ Vi.
(8)

While a number of compatible frames Θ1, ..., Θn are IF iff
each choice of their representatives Ai ∈ 2Θi has non-empty
intersection, a collection of vectors subspaces V1, ..., Vn is
“independent” iff for each choice of vectors vi ∈ Vi their
sum is non-zero. These two relations defined in apparently
very different contexts can be formally obtained from each
other under the following correspondence of quantities and
operators:

vi ↔ Ai, Vi ↔ 2Θi , + ↔ ∩, 0 ↔ ∅, ⊗ ↔ span.

This analogy is in fact a consequence of families of frames
and projective geometries sharing the structure of geometric
lattice. Let us see how, and what insight this gives us in the
perspective of understanding the relation between matroidal
and evidential (Boolean) independence.



6.2 The geometric lattice of flats
The reason is geometric lattices are strictly related to ma-
troids. The latter are completely specified by the list of the
maximal independent sets, i.e. sets I of I such that I∪e 6∈ I
for any element e of E. A maximal independent set in M is
called a basis of M . All bases Bi of a matroid have the same
cardinality, |B1| = |B2|. We know this from linear algebra,
but it remains true in this more abstract setting.
Now, let M = (E, I) be a matroid and suppose X ⊂ E be
a subset of the ground set. The pair (X, I|X) with

I|X .= {I ∩X, I ∈ I}
is still a matroid. We call it the restriction of M to X .

Definition 7. The rank r(X) of a set X is the size of a basis
of M |X .

You can prove that X ⊂ E is independent iff |X| =
r(X). The function cl : 2E → 2E defined for all X ⊆ E by

cl(X) = {x ∈ E : r(X ∪ x) = r(X)}
i.e. the set of elements of E which leave the rank unchanged
when joined to X is called closure operator. If M is a
matroid and X ⊆ E, we call cl(X) the closure or span
of X . Again, in a vector space the span of a collection
X = {v1, ..., vm} is the set of all vectors which lie in the
space generated by X .

Definition 8. A flat F of a matroid M is a set which coin-
cides with its closure: F = cl(F ).

The set of flats of a matroid, ordered by inclusion, forms
a geometric lattice (see Birkhoff (Birkhoff 1935), Dilworth
(Dilworth 1944), and Crapo and Rota (Crapo & Rota 1970)).
In fact, the reverse implication holds too (Oxley 1992).

Proposition 4. A lattice L is geometric iff it is the lattice of
flats of a matroid M .

The bottom line of the proof is that the matroid M =
(E, I) which corresponds to L has as ground set the set
of atoms of L, E = A, and as rank function r(X) =
h(∨x∈Xx) for each collection of atoms X ⊂ A.

6.3 Independence of flats
Now, Proposition 4 and Theorem 2 tells us that, as they form
geometric lattices, vector subspaces and compatible frames
of discernment both form the lattice of flats of a matroid.
In the case of L(V ), the matroid of interest is the set of all
vectors of a vector space provided with the usual linear in-
dependence relation.
It is then natural to try and abstract from Equation (8) and
come up with an “independence” relation for flats of a ma-
troid (or equivalently, for elements of a geometric lattice).

Definition 9. A collection F1, ..., Fn of flats of a matroid
M is flat-independent (FI) if each possible selection of n
representatives of F1, ..., Fn is independent in M, i.e.

{f1, ..., fn} ∈ I ∀f1 ∈ F1, ..., fn ∈ Fn.

Clearly, FI formally fits well both independence of vec-
tors and independence of frames, as illustrated by Equation

(8). If we could prove that IF is indeed a form of flat-
independence FI for some matroid defined on frames, we
would finally have an explanation of the relation between
independence of frames (as Boolean sub-algebras) and in-
dependence in matroids.

6.4 Triviality of the associated matroid
In order to do this, we need to check what is the matroid
M(Θ) = (E, I) whose flats correspond to the geometric
lattice of frames L(Θ) of a finite family, and whether the as-
sociated independence relation I is related to independence
of frames in the evidential formalism. Unfortunately,
Theorem 3. The matroid whose flats are all the frames of a
family of partitions L(Θ) is the trivial matroid

M = (A, 2A)

on the collection of atoms (frames of cardinality |Θ| − 1)
of L(Θ), for which each collection of frames of cardinality
|Θ| − 1 is independent.

Proof. The ground set of the matroid is the set of atoms A of
L(Θ), i.e. the set of all partitions of Θ of cardinality |Θ|−1.
Its rank, according to the proof of Proposition 4, is

r(X = {Θ1, ..., Θn)) = h
( ∨

x∈X

x
)

=

= h(⊕n
i=1Θi)

.= |Θ| − | ⊕n
i=1 Θi|.

To find I we need to find the sets such that |X| = r(X), i.e.

n = |Θ| − | ⊕n
i=1 Θi|

or
| ⊕n

i=1 Θi| = |Θ| − n.

But it is easy to see by induction on n that this is true for any
collection of atoms in L(Θ).
For n = 2 by semi-modularity (Definition 4), since
Θ1,Θ2 Â Θ = Θ1 ∧Θ2 we have that

Θ1 ∨Θ2 = Θ1 ⊕Θ2 Â Θ1, Θ2

i.e. |Θ1 ⊕Θ2| = |Θ1| − 1 = |Θ| − 2 = |Θ| − 2.
In the induction step we suppose that

| ⊕n−1
i=1 Θi| = |Θ| − (n− 1).

But again, since Θn Â Θ = (⊕n−1
i=1 Θi) ∧Θn,

∨iΘi = ⊕n
i=1Θi Â ⊕n−1

i=1 Θi

i.e. | ⊕n
i=1 Θi| = | ⊕n−1

i=1 Θi| − 1 = |Θ| − n.

7 Independence of frames opposed to
matroidal independence

So far, following the intuition provided by the shared lattice
structure of L(Θ) and L(V ) we tried to reduce independence
of frames to some sort of matroidal independence. Our ef-
forts have been frustrated though, as independence of frames
(or equivalently independence of sources or again Boolean
independence) cannot be explained nor as independence of
elements of a matroid (Theorem 1), neither as independence



of flats of a matroid (Theorem 3).
We conclude this paper by showing that independence of
sources is in fact in opposition to matroidal independence.
Let us consider the following relation on the elements of a
semi-modular lattice: {l1, ..., ln} are I if

h
(∨

i

li

)
=

∑

i

h(li) (9)

where h(l) is the height of l, i.e. the length of the shortest
chain from l to 0. It is well known that (Szasz 1963)

Proposition 5. (A, I), where A is the set of atoms of a semi-
modular lattice with initial element, is a matroid.

Going back to the usual example, the vectors of a vector
space are the atoms of the lattice of its subspaces. The height
of a vector subspace (element of L(V )) is its dimension as a
vector space. In this case (9) means just that a set of vectors
{v1, ..., vn} are I if they generate a space of dimension n:
in other words, they are linearly independent!

According to Theorem 3, all collections of atoms are I
in the lattice L(Θ). More interesting is the case of the lat-
tice L∗(Θ) in which the order relation is the inverse of (7):
Θ1 ≤ Θ2 iff Θ1 is a coarsening of Θ2. Reversing the order-
ing has dramatic effects on the properties of a lattice: in par-
ticular, on a semi-modular lattice it erases semi-modularity
(Definition 4). More important to us, it alters the collection
of sets which are independent according to (9), as both the
function h and the sup ∨ change.

7.1 Anti-matroid of independent binary frames
Consider the partition lattice associated with a frame Θ =
{1, 2, 3, 4} of cardinality 4. There cannot be IF collections
of three or more frames, as in that case the size of their min-
imal refinement should be (by Equation 5) 2 × 2 × 2 = 8
for them to be IF . Let us then focus on all pairs of binary
partitions (the atoms of L∗(Θ)). By looking at Figure 5 we

1,2,3,4

1/2/3/4

1/2/3,4

1/2,3,4 1,4/2,3

1,2/3/4

1,3,4/2 1,2,4/3 1,2,3/4 1,2/3,4 1,3/2,4

1/2,4/3 1/2,3/4 1,4/2/3 1,3/2/4

Figure 5: The partition lattice for a frame Θ of size 4. Par-
titions A1, ..., Ak of Θ are denoted by A1/.../Ak. Partitions
with the same number of elements are arranged on the same
level. An edge between two nodes indicates that the bottom
partition “covers” the top one (in L∗(Θ)).

can notice that the only IF pairs are formed by two of the
following binary partitions

1, 2/3, 4 1, 3/2, 4 1, 4/2, 3.

(dark nodes in the diagram) as their maximal coarsening is
Θ = {1, 2, 3, 4} and has cardinality 2× 2 = 4.

But it is easy to see that all other binary pairs are I.
Theorem 4. Pairs of binary partitions of a frame Θ (atoms
of the lattice L∗(Θ)) are independent as frames (IF ) if and
only if they are not independent as elements of a matroid (I).

Proof. As in L∗(Θ) the sup is the minimal refinement (Cuz-
zolin 2007), (9) reads as

h(Θ1 ⊗ · · · ⊗Θn) =
∑

i h(Θi) ≡
|Θ1 ⊗ · · · ⊗Θn| − 1 =

∑
i(|Θi| − 1) (10)

which for n = 2 reads as |Θ1⊗Θ2| = |Θ1|+ |Θ2| − 1. For
pairs of binary frames IF can be written as |Θ1 ⊗ Θ2| =
|Θ1| · |Θ2| = 2 · 2 = 4. For all the binary pairs which are
not IF we have |Θ1⊗Θ2| = 3 (see Figure 5 again) and the
equality is met.

7.2 Mutual exclusivity of I and IF
We can in fact prove a stronger, more general statement.
Theorem 5. A collection of IF compatible frames
Θ1, ..., Θn is I iff n = 2 and one of the frames is the trivial
partition.

Proof. According to Equation (5), Θ1, ..., Θn are IF iff | ⊗
Θi| =

∏
i |Θi|, while according to (10) they are I iff |Θ1 ⊗

· · · ⊗Θn| − 1 =
∑

i(|Θi| − 1). They are met together iff
∑

i

|Θi| −
∏

i

|Θi| = n− 1

which happens only if n = 2 and one of Θ1, Θ2 has cardi-
nality 1.

7.3 A general feature?
Instead of being algebraically related notions, independence
of frames and matroidicity work against each other. In a
sense, we can say that collections of independent frames are
“anti-matroids”. As independence of frames derives from
independence of Boolean subalgebras of a Boolean algebra
(Sikorski 1964), this is likely to have interesting wider im-
plications on the relationship between independence in those
two fields of mathematics.

However, it is worth to notice that this analysis is valid
for the specific matroid induced on the atoms by the inde-
pendence relation (9). Although the latter is the classical
structure usually associated with semi-modular lattices, we
cannot rule out the existence of other matroidal structures
on L(Θ), for which a direct extension of the above results
would be premature.

8 Conclusions
In this paper we studied Shafer’s notion of independence of
frames (as an expression of independence of sources in ev-
idence combination) in an algebraic setup. It turns out that
IF cannot be explained neither in terms of classical ma-
troidal independence, nor as a cryptomorphic form of inde-
pendence of flats on geometric lattices. It turns in fact out
that independence of frames is actually opposed to matroidal



independence, a rather surprising result. The prosecution of
this study could in the future shed some more light on both
the nature of independence of sources in the theory of sub-
jective probability, and the relationship between matroidal
and Boolean independence in discrete mathematics, point-
ing out the necessity of a more general, comprehensive def-
inition of this very important notion.
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