Planning Aims for a Network of Horizontal and Overhead Sensors

Erik Halvorson and Ronald Parr
Department of Computer Science
Duke University
{erikh, parr} @cs.duke.edu

Abstract

The ever increasing capabilities and complexity of sensor
networks have led to an increased interest in sensor place-
ment and observation planning problems. Many sensor place-
ment and planning problems, however, lead to instances of
the intractable classical planning problems or (similarly in-
tractable) partially observable Markov decision processes.
We consider the problem of planning sensor actions for a net-
work of overhead sensors which will resolve ambiguities in
the output of a horizontal sensor network. More specifically,
we address the problem of counting the number of objects de-
tected by the horizontal sensor network, using the overhead
network to aim at specific areas to improve the count. The
main theme of our results is that, even though sensor planning
is intractable for such a network, a simple, greedy algorithm
for controlling the overhead sensors guarantees performance
with bounded and reasonable suboptimality. Our results are
very general and make few assumptions about the specific
sensors used. As such, the techniques described in this paper
can be used to plan sensor aims for a wide variety of sensor
types and counting problems.

1 Introduction

The problems of sensor placement and observation planning
have become increasingly relevant as sensor networks in-
crease in both capability and complexity. Often, however,
sensor placement and planning problems lead to instances of
classical planning problems or partially observable Markov
decision processes, both of which are intractable in general.
Although there exist algorithms which give optimal solu-
tions to these sorts of problems, the potentially enormous
computational burden of using such approaches makes them
undesirable.

Consider a horizontal network of sensors with the goal of
counting the number of distinct objects it detects. Due to oc-
clusion, the sensor network may not be able to sense all the
objects and thus it may not be able to determine the exact
count. This paper considers an observation planning prob-
lem where the goal is to plan the aims of a set of overhead
sensors to resolve these ambiguities. The overhead sensors
are used to resolve specific portions in the region of inter-
est where the count is ambiguous. A concrete example of
such a network would be a set of horizontal, fixed position

Copyright (©) 2007, authors listed above. All rights reserved.

cameras, with pan-tilt cameras mounted on unmanned aerial
vehicles (UAVs) providing the overhead sensors.

Counting the number of objects within a region is a ba-
sic problem in the field of surveillance. Once determined,
the number of objects has many potential uses, such as
counting people moving across a border, identifying vehi-
cle movements, or providing an accurate count of the people
attending a sporting event or other outdoor gathering. Tradi-
tional (non computer-based) methods typically rely on man-
ual head counting and would not work in these situations.
We consider the problem of developing an accurate count
with no human involvement.

Depending on the different kinds of sensors in the net-
work, there are a wide variety of ways to count the distinct
objects. This paper will use a geometric approach to count-
ing, inspired by the previous work of Yang, et al. (2003),
which used a visual hull to determine upper and lower
bounds on the number of people in a scene viewed by hor-
izontal cameras. Though the visual hull is typically associ-
ated with cameras, the concept generalizes to other sensor
types which can detect occupancy. We also note that the
counting method described by Yang, et al. is not specific to
counting people and can be used to count any objects de-
tectable by the sensor network.

The work of Yang et al. (2003) assumes that objects move,
which helps reduce ambiguities as the patterns of occlusion
change over time. Even if the objects are in motion, how-
ever, the gap between these bounds may not converge to zero
or, depending upon the speed at which the objects are mov-
ing, may not converge at an acceptable rate. We consider
the use of overhead sensors to supplement the ground net-
work. Such sensors can provide a faster and more accurate
count when object motion alone is not sufficient. Overhead
sensors, like those found on aircraft, can be redirected in
seconds, which makes it safe to assume that in many cases,
several iterations of aiming and retargeting of the overhead
sensors will be possible before the scene has changed signif-
icantly from the perspective of the ground based sensors.

We propose using a simple, greedy algorithm to aim the
overhead sensors. Our analysis first bounds the suboptimal-
ity over a single set of aims, which we refer to as a phase.
Since most scenes will require multiple phases, the next por-
tion of our analysis extends these results to multiple phases,
bounding the number required relative to an optimal algo-

rithm. We also show that computing an optimal multiphase
plan is intractable, and show that two closely related prob-
lems are intractable: the subproblem of orienting the over-
head sensors to maximize the number of viewed potential
objects, and computing the smallest number of objects con-
sistent with a set of observations by the horizontal network.

2 Previous Work

One common approach to the counting problem involves
tracking. Multi-target tracking algorithms generally either
assume a known, fixed number of targets, or attempt to
solve the counting problem while simultaneously tracking
the targets. Many approaches to the latter problem attempt
to model the arrival and departure of new targets, gener-
ally when an unrecognized object is detected (Sarkkid, Ve-
htari, & Lampinen 2007; Zhao & Nevatia 2004). Several
appearance-based tracking algorithms have been specifically
applied to the problem of counting people (Liu ez al. 2005;
Masoud & Papanikolopoulos 2001). Accurately determin-
ing whether a target has been previously detected, however,
is non-trivial and error-prone. Counting is itself an inter-
esting problem because it could be used to initialize many
multi-target tracking algorithms.

Observation planning approaches to tracking generally
assume a known number of targets; He and Chong (2006),
for example, formulate the tracking problem as a POMDP
and use an approximate solution based on sampling.
Guestrin, et al. (2005) develop a greedy approach for the
sensor placement problem and bound its suboptimality. We
are not aware of any work addressing an observation plan-
ning problem that attempts to improve an estimated count.

One very different approach to counting uses a geometric
construction called a visual hull, which is defined as the in-
tersection of all the silhouette cones seen from each sensor.
A silhouette cone is a projection of a sensor detection into a
conical region in front of the sensor. For example, in the case
of camera that has detected a change in the scene that spans
several pixels, the corresponding silhouette cone would be a
cone extending from the lens into the world that covers all
points in the world which project onto the effected pixels. It
is possible to reconstruct the geometry of one or more ob-
jects by considering the geometry of the silhouette cones as
seen from several sensors. Though originally developed for
this purpose, visual hulls have been shown to be useful for
counting the number of distinct objects detected by a sen-
sor network (Yang, Gonzalez-Banos, & Guibas 2003). The
original concept was developed by Laurentini (1994), who
designed algorithms for constructing the visual hull in both
two and three dimensions. In this paper, we compute a pla-
nar projection of the visual hull; this projection results in a
number of polygons lying in the plane. Yang, et al, (2003)
use these polygons to give lower and upper bounds on the
number of objects which create a visual hull, and rely on the
objects moving to reduce the gap in bounds. Even with con-
siderable movement, however, the gap between the bounds
can remain quite large.

Figure 1: (top left) Example silhouette cones. c¢; and ¢z both
contain exactly one object, c3 contains two objects where the
object farther from the sensor is viewed partially occluded,
and the rear object is fully occluded in c4. (top right) A
visual hull with two objects. The dashed lines are the sil-
houette cones, while the solid lines represent the polygons
in P. (bottom) Two identical visual hulls created by differ-
ent numbers of objects. The empty portions of the visual
hull are empty because at least one sensor does not detect
any objects in that area.

3 Static Bound Calculation

We begin by formalizing the concept of a visual hull. We as-
sume that the horizontal sensors in the network are capable
of detecting objects and creating silhouette cones (see pre-
vious section) where these objects are detected. The sensors
are not, however, capable of differentiating distinct objects,
so objects lying in the same cone (meaning that they are
seen as either fully or partially occluded) do not generate ad-
ditional silhouette cones; rather, these additional detections
appear to be a single, larger occupied region. See Figure 1
(top left) for an example. Given a horizontal network of such
sensors, each viewing the same scene from different angles,
the silhouette cones can be combined into a visual hull:

Definition A planar projection of a visual hull is a set of
polygons P lying at the intersections of the silhouette cones
from each sensor.

Assuming that the entire region of interest is covered by
at least two horizontal sensors, all objects in the scene must
be located within polygons, although not all polygons nec-
essarily contain objects, as shown in figure 1 (bottom). Note
that much of the plane is not in P because at least one of the
sensors failed to detect an object in these locations and the
location is thus outside the intersection of the cones.

The visual hull can be created by any sensor capable of
creating silhouette cones where objects are detected. For ex-
ample, the cones could be created by applying background
subtraction techniques with a camera. The set of polygons,
along with the silhouette cones, can be used to develop
bounds on the number of objects seen by the network (Yang,
Gonzalez-Banos, & Guibas 2003). We first formalize a sim-
ple lower bound.

Definition The cone upper bound of a cone ¢, cub(c), is the
number of polygons contained in c.

Definition A polygon, generated by intersecting set of
cones C, is provably occupied if ¢ € C with cub(c) = 1

Consider the examples in Figure 2. In Figure 2 (a), there
are two polygons provably occupied (circled). The cone
counts are also given. The middle polygon is not provably
occupied, however, as both the cones containing it have a
cub of 2. Figure 2 (b) has no provably occupied polygons,
as all cones have a cone upper bound of two.

The number of provably occupied polygons is a lower
bound on the number of objects contained by the visual hull.
This is a more rigorous definition of the lower bound pre-
sented by Yang, et al. (2003). This definition of the lower
bound is weak in the sense that the minimum number of ob-
jects consistent with the visual hull could be significantly
larger, as in Figure 2 (b), where the number of provably oc-
cupied polygons is 0, but the number of objects is at least
2. Though weak, this lower bound is informative, in that all
objects contributing to the bound have a known location in
the visual hull.

A simple upper bound can also be derived by assuming
a minimum size for the detected objects. We will refer to
this minimum size as MINSIZE. Intuitively, such an upper
bound would be:

UB(P) — area(p)

(7) :64; [MINSIZE—‘

Additionally, if all objects must be larger than MINSIZE,
then polygons smaller than this size can be discarded from
the visual hull. Thus every polygon in the visual hull con-
tributes at least one to the upper bound. This is the same up-
per bound used by Yang et al. (2003). Note that this bound
is also weak in the sense that it assumes objects can fill the
polygons completely, which could lead to over-estimating
the true number of objects inside a single polygon. It may
be possible to tighten this bound by making additional as-
sumptions about the geometry of the objects (e.g., circles of
at least some radius).

3.1 Hardness Result for Lower Bound

The optimal lower bound is a true count of the smallest num-
ber of objects that could produce a given visual hull. Based
on the definition of the visual hull, one could equivalently
define this number as the size of the smallest set of poly-
gons such that each cone contains at least one polygon in the
set. This formulation leads to the following decision prob-
lem and hardness result.

Definition Given a Visual Hull V' and integer k, Lower-
Bound decides whether it is possible to produce V' with k
or fewer objects.

Theorem 1 LowerBound is NP-Complete.

Proof The reduction follows from Planar Vertex Cover.
Given a planar graph consisting of only straight edges' and
the vertices in general position?, fill in the empty regions of

'A known fact (Fary 1948) about Planar Graphs shows that any
planar graph can be drawn with only straight edges.

2General position in the plane means that no three vertices are
on a line.

the graph with walls. Place a single sensor for each edge in
this manner: For the edge (u,v), select either u or v - we
will use u for the purposes of this proof. Position a sensor at
the chosen vertex looking down the edge towards v. These
sensors should be thought of as having a very small field of
view. From each sensor, place a cone down the edge, ter-
minating at the wall beyond v. With proper placement of
the cones, the only created polygons will be located at the
vertices of the graph. See Figure 2 (c, d).

The original graph has a size k vertex cover if and only if
this visual hull could have been created by k objects. Since
edges in the graph became cones in the visual hull, plac-
ing objects in polygons is the same as placing vertices in
the cover. Thus, LowerBound can solve Vertex Cover and
LowerBound is NP-Hard. Note that LowerBound is also
trivially in NP, and thus is NP-Complete.]

This reduction creates a visual hull with many long, nar-
row passages and intersections at the vertices. Many ge-
ometric problems (e.g. Art Gallery (O’Rourke & Supowit
1983)) become more difficult when there are walls inside
the area of interest, implying that this result may not gen-
eralize to simpler visual hulls. With some additional steps,
however, we can transform the visual hull into one with no
additional walls and all the sensors on the border of a con-
vex region, though this new visual hull requires potentially
several (though still polynomially) more sensors.

Theorem 2 LowerBound remains NP-Hard, even when the
region of interest is a convex polygon and the sensors are all
on the boundary.

Proof Given a planar graph, again with the vertices in gen-
eral position and drawn with only straight edges, compute
the convex hull of the vertices. Create walls outside this con-
vex hull. Next, place the sensors as described in the proof of
Theorem 1.

Now, for each sensor placed at vertex u looking towards
vertex v (the sensor corresponding to the edge (u,v) in the
original graph), move the sensor along the v — v line away
from v until it reaches the convex hull. Similarly, extend the
cone beyond v until it reaches the other side of the convex
hull. While doing this transformation, keep track of any ad-
ditional intersections introduced; call these additional cross-
ings unintentional intersections. See Figure 3 for examples.

For each unintentional intersection w, create a new sen-
sor on the boundary that looks only at w and sees no other
intersections, intentional or otherwise, as in Figure 3. Un-
like the sensors created in the previous reduction, these new
sensors will contribute only negative information, meaning
that they see no objects in their field of view. This addi-
tional information will remove the unintentional intersection
w from the visual hull, preventing it from contributing to the
bounds. Note that the assumption of general position en-
sures that such a sensor location can always be found.

The resulting visual hull will be identical to that created in
Theorem 1 and thus will have the same relationship with the
original instance of Planar Vertex Cover, but will have no
internal walls and all the sensors will be positioned on the
boundary of a convex region. Thus, LowerBound remains
NP-Hard even when the region is a convex polygon and the

() (b)

(©) (d)

Figure 2: (left images) Example Visual hulls with (a) two provably occupied polygons (circled) and one ambiguous polygon
and (b) no provably occupied polygons. (right images) A planar graph before (c) and after (d) the reduction. The cones in this
case have a very small angle, making them basically lines. Note that the polygons occur at the intersections.

Figure 3: A planar graph after the basic reduction and then
after converting to a convex room. To ensure readability,
only the cameras pertaining to the central line have been
drawn. In the left figure, only the correct polygons (at #;
and 75) exist, but removing the central walls and moving ¢,
away from 45 introduces unintentional intersections w; and
wy. Adding negative cones c, and cs removes these unin-
tentional intersections, leaving only the original ones intact.

sensors are all placed on the boundary. Note that the result-
ing visual hull remains polynomial in size, since there can
be at most O(n?) unintentional intersections, where n is the
number of edges in the original graph. U

4 Aim Planning

The general aim planning problem involves aiming auxiliary
sensors to query the status of portions of the visual hull, re-
ducing the gap between the upper and lower bounds. Since
it may not be possible to cover the entire visual hull at once,
multiple phases of sensor aiming could be required before
all possible information has been extracted from a scene,
where a phase specifies a single aim for each overhead sen-
sor. The goal of this section is to give an algorithm for plan-
ning the aims for the overhead sensors and bound the num-
ber of phases required to reduce the gap in bounds, UB - LB,
to zero (or the smallest number possible).

Our analysis of the multi-phase aim planning problem is
divided into parts. First, we analyze a single sensor aim and
the possible suboptimality resulting from a simple aiming
strategy. We then consider the subproblem of choosing a set
of sensor aims to maximize the number of potential objects
viewed, and the suboptimality resulting from a greedy strat-
egy. Finally, we combine these results to address the full,
multi-phase aiming problem.

4.1 Overhead Sensor Model

The overhead sensors are be aimed by directing the sen-
sor towards a particular area in the plane. To abstract away
from the specifics of the sensor platform, we describe sensor
aims by the corresponding area in the plane which is sensed,
rather the specific motions or joint angles required to posi-
tion the sensor.

Definition An aim is the area in the plane that is within the
field of view of an overhead sensor for some possible con-
figuration of the sensor.

We generally assume that the area covered by an aim cor-
responds to a ball in some metric space, e.g. the L., ball
corresponding to the coverage area of a solid state image
sensor that is high overhead.

The overhead sensors behave in a manner similar to the
horizontal sensors; they detect occupancy in a conical region
extending from the sensor and into the scene. What makes
the overhead sensors special is their cones are orthogonal to
the plane. Moreover, with the mild assumption that objects
are not stacked on top of each other, the overhead sensors are
immune to ambiguities from occlusions. each detection by
an overhead sensor introduces a new polygon in the plane
corresponding to the intersection of the sensor’s detection
cone with the plane. Figure 4 gives an example of this sensor
model, both before viewing and after.

4.2 Bound Tightening

This section proves that no reasonable algorithm can do too
poorly at tightening the gap between the bounds. We will
use the informative lower bound (LB) and the simple upper
bound (UB) defined in Section 3. Before stating the major
result of this section, we define a useful property of an aim:

Definition Given an aim v which covers unviewed polygons
p(v) in the visual hull, let C'(v) be the number of potential
objects seen by v. More formally:

_ area(p N v)
Cl)= 3 [MINSIZE -‘

pep(v)

C'(v) also provides a lower bound on the greatest change
in bounds caused by a single aim.

Lemma 3 Assuming all objects are the same size, choosing
aim v will reduce the gap in bounds by at least C'(v), regard-
less of the number of objects detected in the aim.

Proof Suppose the overhead sensor detects a total of k ob-
jects. Viewing k objects creates & new polygons, each of
size roughly equal to the size of the objects, as in Figure 4.
All other area inside the aim will be removed from the visual
hull. Since all objects are the same size, the UB decreases
by C'(v) — k (the area removed from the visual hull) and the
LB increases by k, giving a net change of C'(v). g

This does not, however, provide an upper bound on the
maximum change in the gap between bounds. Consider
viewing an empty polygon; after viewing, this polygon will
be removed from the visual hull, changing the cone upper
bounds (see Section 3) for all the cones that it occupied. It
is possible that the cone upper bound is reduced to 1 for
each of these cones, creating several new provably occupied
polygons. We refer to this phenomenon as inference. For
example, in Figure 2 (b), viewing p; could allow us to infer
that both the polygons py and p3 are provably occupied.

To quantify the change in bounds as a result of inference,
let cpax be the maximum number of cones per polygon; this
quantity, cyax, 1S less than or equal to the number of sensors
in the horizontal network, since each polygon can be com-
posed of at most one cone per sensor. Typically, however,
the motivation for using overhead sensors will be that the
horizontal sensors are sparse enough to create ambiguities.
Therefore, it is reasonable to assume that c,,,, will not be
large in practical applications. This definition, along with
Lemma 3, is sufficient to derive an approximation ratio for a
general class of algorithms.

Theorem 4 Let A and B be two algorithms for aiming the
overhead sensors. Both algorithms choose the same number
of potential objects fo view, meaning that they choose v 4
and vp such that C(va) = C(vp). Let A be an optimal
algorithm with respect to the bounds gap, whereas B is any
algorithm for choosing an aim of this type. B is a cypax + 1
approximation to A.

Proof Consider the change in bounds for algorithm B. In
the worst case, the bounds will change by C'(vg), as demon-
strated by Lemma 3; this corresponds with the case where all
the polygons are fully occupied. A can, however, potentially
change the bounds by as much as C(va) + [p(va)] - (Cmax)
by seeing only empty polygons and, for each one, inferring
that up to cyax other polygons are occupied. This maximum
change in bounds for A can be at most C(v4) - (¢max + 1),
since each polygon contributes at least one to C'(vy4). Thus,
B is a ¢yax + 1 approximation.

Since this theorem makes no assumptions about B, any
algorithm for choosing an aim with C'(v) potential objects
would be a cpax+1 approximation algorithm. Of course, the
number of potential objects viewed by an optimal algorithm
is not known a priori. If B maximizes the number of poten-
tial objects viewed, however, then A cannot view more, and
B must be a ¢, + 1 approximation.

4.3 Maximizing Potential Objects Viewed by
Multiple Sensors

This section considers the problem of choosing a set of aims
to maximize the number of viewed potential objects. The

Figure 4: Result of overhead aims. On the left, assume that
5 horizontal cones have produced a polygon which is large
enough to contain several objects, in this case 2. The right
shows the result of an overhead aim that contains the entire
original polygon. Two objects have been detected and poly-
gons corresponding to the intersection of the detection cones
with the plane are added, while the rest of the original poly-
gon is removed. The new, square polygons would arise from
the detection cones of square image sensor pixels.

function polyselect(8) ; S = list of sensors
if S is empty, stop
for i:1..size(S)
mx[i] = maxaim(S[il)
sstar = argmax(mx[i])
swap(S[0], S[sstarl);
mark the view sstar as viewed
polyselect(S[1..size(S)]1);

Figure 5: The Polyselect Algorithm

main result of this section is that a simple, greedy approach
yields a constant factor approximation for the largest number
of potential objects the overhead network can see. If the
overhead sensors have distinct sets of possible aims, then
the greedy algorithm is a 2-approximation. If the overhead
sensors are interchangeable in the sense that all aims are
possible for all sensors, then the greedy algorithm is an _%
approximation.

Figure 5 presents the pseudocode for a greedy aiming al-
gorithm called Polyselect. Polyselect assumes the existence
of a function called maxaim that exhaustively considers all
possible aims for a sensor and returns the maximum number
of new potential objects viewable given the set of aims pos-
sible for the sensor. Clearly, there are many opportunities
for caching and incremental computation in the implemen-
tation of maxaim. Among all sensors for which an aim is
not already assigned, Polyselect chooses the sensor and aim
that maximizes the number of previously unviewed potential
objects. The area chosen by this aim is marked so that sub-
sequent aims do not consider the overlap and the procedure
continues until aims are determined for all sensors.

4.4 Non-Interchangeable sensors

Theorem 5 Polyselect is a 2-approximation of the optimal
aim selection procedure.

Proof Polyselect is a 2-approximation because if it chooses

a suboptimal aim, then the potential objects contributing to

this suboptimality were previously viewed by Polyselect.
More formally, let Gy, Gs,. .., G, be the total number

of previously unviewed potential objects seen by the aims
chosen by Polyselect, given in descending order, i.e., the or-
dering chosen by Polyselect. Now consider the output of an
optimal algorithm, O1, O, ..., Oy, where O; is the opti-
mal aim for sensor j in the Polyselect ordering. Both quan-
tities are only the new potential objects seen by each sen-
sor, meaning that Oy does not count any potential objects
counted by O1_ x—1.

Define the loss to be the difference between the number
of potential objects viewed by the greedy algorithm and the
number viewed by an optimal algorithm. Trivially:

i

loss = Z(OL — GL) S Zmax{O, OL — GL}

Now consider some O; > Gj, i.e. one of the sensors
that contributes to the final summation. For this sensor j,
there is an aim viewing a larger number of potential objects
than what Polyselect chose, and there are at least O; — G|
more potential objects at this aim. Since the greedy al-
gorithm chose the aim giving G; (instead of O;), how-
ever, these additional potential objects must have been cov-
ered by sensors Polyselect fixed earlier, and are accounted
for in G1,Gy,...,G; 1. Thus, the suboptimality must be
bounded by the total number of potential objects seen by
Polyselect. More formally,

loss < Zmax{0,0i -G} < ZGi
Substituting into the original expression for the loss:

Zoi*ZGi SZGi :>ZG1‘ > 3201
i i i i

yielding a 2-approximation for the optimal set of aims. [

This approximation ratio is also tight. Consider the sce-
nario in Figure 6 (top). Polyselect will choose to aim the
sensors at Lo and Ry, yielding a total of n 4 1 potential ob-
jects. An optimal algorithm, however, will aim the sensors
at L; and R, with a total of 2n potential objects.

4.5 Interchangeable Sensors If the sensors are inter-
changeable, meaning that all aims are possible for all sen-
sors, the greedy algorithm achieves a better approximation
ratio. This result draws upon earlier work on maximizing
submodular functions. Nemhauser et al. (1978) established
several equivalent criteria for a set function z, defined over
the subsets of the set A, to be a submodular non-decreasing
function. We use the following criterion:

2(SU{i}) — 2(S) > 2(T U {i}) — 2(T) > 0.¥SC T C A,Vi € A

Lemma 6 Let A be the set of available aims and z¢ : 24 —
N be the number of potential objects viewed by a subset of
these aims. z¢ is a non-decreasing, submodular function.

Proof Let S C T be subsets of A. Now consider adding an
additional aim ¢ to both sets. Since zo counts the number
of distinct potential objects viewed by a subset of the aims,
the additional aim ¢ cannot contribute fewer new potential
objects to S than it would to 7. z¢ is also non-decreasing
because adding an aim cannot reduce the number of poten-
tial objects. 0

-
-
+
—
L |
>
+
—
-

Figure 6: (top) An example demonstrating the tightness of
the approximation ratio in theorem 5. There are two aims
available to each sensor; for one sensor, the aims available
are n and n + 1. For the other, n and 0, with the n over-
lapping with the first sensor. The optimal aims are clearly
L, and R;, while Polyselect picks Lo and Rs. (bottom) An
example where Polyselect will give a 4/3-approximation. A
sensor can choose to cover any two adjacent sets of poten-
tial objects. The optimal aims are the two dashed rectangles,
while Polyselect chooses the solid rectangles.

Note that interchangeability is necessary for submodularity.
Without interchangeability, z¢ is not a set function, as there
are some aims which are not available to all the sensors.

Theorem 7 If the overhead sensors are interchangeable,
Polyselect is an e/ (e — 1)-approximation of the optimal aim
selection procedure.

Proof Nemhauser et al. describe a greedy, e¢/(e — 1) ap-
proximation algorithm that starts with an empty set and it-
eratively builds a solution by adding the item ¢ which maxi-
mizes z(S U {i}) — 2(5). Polyselect follows the same pro-
cedure and is therefore an instance of this algorithm with the
objective function z¢. Since z¢ is submodular, the e/(e—1)
approximation follows as an immediate consequence of the
Nemhauser et al. results.]

Figure 6 (top) shows a case where Polyselect with inter-
changeable sensors yields a 4/3-approximation to the opti-
mal solution. This is the worst case we have devised thus far,
suggesting that the bound in Theorem 7 may not be tight.

4.6 Hardness of Maximizing Number of Viewed Poten-
tial Objects Could a polynomial time algorithm choose a
maximizing set of aims? This section shows that, in general,
some form of approximation will be necessary because the
basic problem is intractable.

Definition Given a collection S of overhead sensors (with
S| = ¢) and a set P of polygons, MaxObject decides
whether there exists a set of aims which allow the sensors
in the network to aim at least k& potential objects.

Theorem 8 MaxObject is NP-Complete.

Proof This problem is NP-Hard so long as the number of
overhead sensors is considered part of the input. The re-
duction follows from the c-center problem: Given a set of
points P (with |P| = n) in the plane, does there exist a set
of ¢ “balls” of radius r which can completely cover all the
points in P?3

The c-center problem is NP-Complete so long as c is part
of the input, even when the metric is L., (Fowler, Paterson,
& Tanimoto 1981). Note that “balls” of radius r in L., are
axis parallel squares of size 2r. An instance of the c-center
problem can be converted to an instance of MaxObject by
creating very small (MINSIZE) polygons for each point, and
then creating ¢ sensors which can each view a square of size
2r. Clearly, an algorithm which can solve this instance of
MaxObject can also be used to solve the original instance of
c-center. Since MaxObject is trivially a member of NP, it is
NP-Complete. g

This theorem demonstrates that finding the aims maxi-
mizing the number of viewed potential objects is intractable
if the number of overhead sensors is part of the problem in-
put. If the number of sensors is a constant, then finding the
aims that maximize this quantity can be solved in polyno-
mial time via exhaustive search since there are O(n°) pos-
sible choices, where n is the number of possible aim points
available to each sensor (assuming the set of available aims
is discrete). If the set of aims is continuous, however, then
solving this problem will require techniques from the field of
computational geometry. In either case, the runtime of these
procedures can be quite high, even for moderate values of c,
making approximation algorithms more practical.

4.7 Multi-phase Bound Resolution

This section considers how Polyselect performs when ap-
plied over multiple phases of sensor aims. A phase assigns
an aim to each sensor and processes the results of the aims,
updating the visual hull. In each phase, the network gath-
ers more information about the count in the region. It is
assumed that the objects do not move in between phases, a
reasonable assumption if the objects are either stationary or
moving slowly relative to the speed to the sensors. Many
overhead sensors can make multiple aims very quickly, such
as pan-tilt cameras mounted on unmanned aerial vehicles.
When the overhead network consists of sensors like these,
assuming static objects can be reasonable even in the case of
moving objects.

The goal of this section is to determine how many greedy
phases are required to minimize UB - LB, relative to an op-
timal algorithm. This problem is particularly interesting be-
cause the optimal strategy could be conditional: The selec-
tion of a certain aim could depend upon the outcome of ear-
lier aims. This section will use the word resolve to mean
determining the status of a potential object, either through
inference or viewing.

The analysis in this section proceeds in two steps. The
first step uses the results from Sections 4.2 and 4.3 to bound
the performance of the greedy algorithm over the course of

3This problem is generally known as the p-center problem.

one round, where a round is the length of time an optimal al-
gorithm takes to resolve all the potential objects. This bound
leads to a simple recurrence which can then be solved to
give an upper bound on the total number of greedy rounds
required to minimize the gap between the bounds. This sec-
tion considers both interchangeable and general sensors.

Lemma 9 If an optimal algorithm requires k phases (one
round) to resolve n potential objects, then Polyselect will
view at least n/(2(cmax + 1)) potential objects in one
round with non-interchangeable sensors, and at least (n(e—
1))/(e(emax + 1)) with interchangeable sensors.

Proof By Theorem 4, an algorithm that exploits inference
can resolve at most a factor of ¢« + 1 more potential ob-
jects than an algorithm that doesn’t plan to exploit inference.
To resolve n potential objects, the optimal algorithm must
view at least n/(cmax + 1) potential objects. If it is possible
to view n/(¢max + 1) potential objects, then by Theorem 5,
Polyselect will view at least n/2(c¢max + 1) when they are
not interchangeable and at least (n(e — 1))/(e(cmax + 1))
when the sensors are interchangeable.]

Each greedy round reduces the number of unresolved po-
tential objects by a constant factor, leading to a simple recur-
rence relating the original number of potential objects and
the number of phases required to resolve them.

Theorem 10 Using a greedy d-approximation to plan the
sensor aims in each phase requires no more than d(cpax +
1) logy n times as many rounds as an optimal algorithm that
plans to exploit inference.

Proof Suppose that after some round ¢ of the greedy algo-
rithm, n;.s; potential objects remain. The same set of aims
used by the optimal algorithm will suffice to resolve these
njef¢ potential objects. Therefore, by Lemma 9, the greedy
algorithm will be able to view at least ne 1 /d(Cmax + 1) in
the next round. Each round, in the worst case, Polyselect
cuts the number of remaining potential objects by a constant
factor. Letting @ = d(cmax + 1) be this constant fraction,
this reasoning leads to a simple recurrence:

- ((1-2)2)

Solving the recurrence yields:

1
T(n) :Iogagl n 0821

- log, a — log, (a — 1)

The denominator, log, a—log, (a — 1), is a finite difference
approximation of the derivative of log, at a. Since log is
concave, this must be larger than the true derivative of log,
at a, 1/a, implying:

logy, n log, 1

T(n) =
™) log,a —logy (a—1) = L

For a = d(cmax + 1), T(n) < d(cmax + 1) logy n. a

Corollary 11 Polyselect requires at most 2(¢max + 1) logn
more rounds than an optimal algorithm when using general
Sensors.

= alogyn

Corollary 12 Polyselect requires at most —5(Cmax +

1) log n more rounds than an optimal algorithm when using
interchangeable sensors.

4.8 Hardness of Multi-phase Planning In the previ-
ous sections, we demonstrated that applying an approxima-
tion algorithm to aim a set of sensors at each phase has
bounded suboptimality relative to an optimal planning al-
gorithm. One question remains, however: Could a polyno-
mial time algorithm compute this optimal plan? This section
shows that computing such an optimal plan is intractable,
even when the number of sensors is fixed.

Definition Given a collection S of overhead sensors (with
|S| = ¢) and a set P of polygons, NumPhases is the prob-
lem of determining whether it is possible to view P with m
phases.

Theorem 13 NumPhases is NP-Hard, even when the num-
ber of sensors is fixed a priori.

Proof The reduction is from the c-center problem, and fol-
lows a similar line of reasoning as used in Theorem 8. Given
a set of points P, create a very small polygon for each point;
these polygons should be small enough that none overlap.
Next, create a single overhead sensor with a square field of
view of radius r and position it such that it can aim at any
location within the region of interest.

An algorithm to decide this instance of NumPhases will
also decide the original instance of c-center. Consider the
set of aims chosen by the algorithm deciding NumPhases.
These k aims would correspond with & squares (of size 2r)
covering all the points in P, thus also deciding the original
decision problem. Therefore, NumPhases is NP-Hard. [J

This result is much stronger than the result proved in Sec-
tion 4.6 as the problem remains NP-Hard even when the
number of sensors a constant.

5 Empirical Results

We evaluated our greedy approach using a simulated version
of our counting problem with nine horizontal sensors by run-
ning Polyselect to completion and measuring the change in
bounds over time. To implement maxaim, we developed a
sweepline approach which finds local maxima in the num-
ber of viewed potential objects as the overhead sensor’s aim
is swept in the y-direction. This sweepline algorithm was
then run for a discrete set of x positions (each separated by a
constant amount), generating a set of local optima. This set
of detected local maxima is then used as a basis for choos-
ing the aims for Polyselect. We compared the performance
of Polyselect to a procedure that truly maximizes the area
of viewed polygons (TrueGreedy) using a brute-force search
over all combinations of aims. Both algorithms chose from
the same set of aims. The optimal, non-myopic strategy is
too expensive to compute because the non-myopic strategy
is conditional and could require computing the change in
bounds for all possible sequences of aims, as opposed to all
possible sequences of just the local maxima. All of the tested
configurations had interchangeable sensors.

With two overhead sensors TrueGreedy runs up to 40X
slower than PolySelect, and TrueGreedy can be hundreds
of times slower with three or more sensors. Figure 7 (top)
shows two plots of the bound gap (UB - LB), for TrueGreedy
and Polyselect, with various numbers of objects. Figure 7

TrueGreedy Polyselect
500 —T———
450 |- 10 obj, 2 overhead
400 [~ 20 obj, 2 overhead ——-----

30 obj, 2 overhead --------

500

——
10 obj, 2 overhead
20 obj, 2 overhead ——----
30 obj, 2 overhead -~

uB-LB
uUB-LB

PHASE PHASE
UB = LB vs Phasc for TrucGreedy

UB = LB vs Phase for Polyselect

[2 overhead, 15 objects |
O 3 overhead, 15 objects 20
M 4 overhead, 15 objects |

[2 overhead, 15 objects
[0 3 overhead, 15 objects
[4 overhead, 15 objects |

UB-LB
UB-LB

PHASE PHASE

Figure 7: (upper left plot) A plot of the gap in bounds for
TrueGreedy vs Phase for two sensors and several different
numbers of objects. (upper right plot) A corresponding plot
for Polyselect vs Phase on the same runs. (lower left plot)
A plot of the gap in bounds for TrueGreedy vs Phase for
15 objects and various numbers of overhead sensors. (lower
right plot) A corresponding plot for Polyselect vs. Phase on
the same runs. Data were averaged over 15 experiments for
the top experiments, and over 12 for the bottom experiments.
Note that in both cases, the plots are essentially the same.

(bottom) shows the gap in bounds for TrueGreedy and Pol-
yselect for various numbers of overhead sensors. Note that
no more than ten phases were required for any of the ex-
periments. We have noticed empirically that Polyselect is
often an excellent approximation algorithm, in many cases
choosing equivalent aims to TrueGreedy. Consequently, the
suboptimality for both sets of plots in Figure 7 is less than a
fraction of an object, even for many sensors. As the graphs
demonstrate, the suboptimality of using Polyselect is rea-
sonable.

6 Conclusion

We described a simple, greedy method for planning aims
for a set of overhead sensors to resolve an ambiguous count
of the number of objects seen by a network of horizontal
sensors. We proved that the suboptimality of this approach
is both bounded and reasonable. We also demonstrated that
solving the sensor aiming problem optimally is intractable.

Acknowledgment

This work was partially supported by the Sloan Founda-
tion, and by NSF IIS award 0209088, NSF CAREER award
0546709, and by the DARPA CSSG program. Any opinions,
findings, conclusions or recommendations are those of the
authors only. The authors also wish to thank Pankaj Agar-
wal for many useful suggestions.

References

Fary, I. 1948. On straight-line representing of planar
graphs. Acta Sci. Math 11:229-233.

Fowler, R. J.; Paterson, M. S.; and Tanimoto, S. L.

1981. Optimal packing and covering in the plane are NP-
Complete. Information Processing Letters 12:133—-137.

Guestrin, C.; Krause, A.; and Singh, A. 2005. Near-
optimal sensor placements in gaussian processes. In /ICML.

He, Y., and Chong, E. 2006. Sensor scheduling for tar-
get tracking: A Monte Carlo sampling approach. Digital
Signal Processing 16:533-545.

Laurentini, A. 1994. The visual hull concept for silhouette-
based image understanding. /[EEE PAMI 16:150-162.

Liu, X.; Tu, P; Rittscher, J.; Perera, A.; and Krahnstoever,
N. 2005. Detecting and counting people in surveillance
applications. In Advanced Video and Signal Based Surveil-
lance.

Masoud, O., and Papanikolopoulos, N. 2001. A novel
method for tracking and counting pedestrians in real-time
using a single camera. [EEE Transactions on Vehicular
Technology 50(5):1267-1278.

Nembhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functions. Mathematical Programming 14:265-294.
O’Rourke, J., and Supowit, K. J. 1983. Some NP-Hard
polygon decomposition problems. [EEE Transactions on
Information Theory 29:181-190.

Sarkkid, S.; Vehtari, A.; and Lampinen, J. 2007. Rao-
blackwellized particle filter for multiple target tracking. In-
formation Fusion Journal 8:2—15.

Yang, D.; Gonzalez-Banos, H.; and Guibas, L. 2003.
Counting people in crowds with a real-time network of
simple image sensors. In IEEE ICCV.

Zhao, T., and Nevatia, R. 2004. Tracking multiple humans
in crowded environment. /[EEE CVPR 2:406-413.

