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Abstract

Active learning consists of principled on-line sampling over
unlabeled data to optimize supervised learning rates as a func-
tion of the number of labels requested from an external oracle.
A new sampling technique for active learning is developed
based on two key principles: 1) Balanced sampling on both
sides of the decision boundary is more effective than sam-
pling one side disproportionately, and 2) exploiting the natu-
ral grouping (clustering) of unlabeled data establishes a more
meaningful non-Euclidean distance function with respect to
estimated category membership. Our new paired-sampling
density-sensitive method embodying these principles yields
significantly superior performance in multiple active learn-
ing data sets over all other sampling methods in our compar-
ative study: representative sampling, uncertainty sampling,
density-based sampling, and random sampling.

1 Introduction

In many domains ripe for supervised machine learning tech-
nigues, obtaining large amounts of unlabeled data is edsy bu
obtaining class labels is costly and time-consuming. For in
stance, it is easy to crawl the web, but much more costly to
pay an army of human topic labelers. Likewise, it is simple
to collect images, but much harder to obtain good linguis-
tic content labels. It is also easier to obtain geologicéhda
pertaining to regions that may contain oil, but much more
costly to drill multiple deep test holes to know which ones
really contain oil. Active learning consists of optimizing
sampling strategies over the unlabeled data in order to max-
imize the accuracy of supervised machine learning methods
and to minimize the number of samples that require defini-
tive categorization for training. Typically, the learndars

with a very small number of labeled examples, trains a clas-
sifier or ranker, selects new sample(s) from the unlabeled
data in an on-line fashion, one or few at a time, re-trains the
learner and iterates. The objective is to optimize accuaicy
every step in the sampling-learning cycle.

& Nigam 1998; Schohn & Cohn 2000; Tong & Koller 2000;
Melville & Mooney 2004). These approaches range from
uncertainty sampling (Lewis & Gale 1994), to representa-
tive sampling (Xuet al. 2003), to density-based sampling
(Nguyen & Smeulders 2004) to active ensemble methods
(Melville & Mooney 2004; Donmez, Carbonell, & Bennett
2007). While these methods all provide interesting insight
and functional active learning strategies, other factorda

be considered as well, in order to further improve active
sampling. With this goal in mind, we developed a new sam-
pling strategy based on: 1) maximizing the likelihood of
straddling the decision boundary with paired samples, 2) a
transformed distance function to effectively reduce dista

as a function of local density, and 3) rely on a utility-based
conditional-entropy maximization criterion to combinefa
tors in making the sampling decision. As we show in the em-
pirical results section, the new sampling strategy proees t
be quite effective vigrvis the popular active-learning sam-
pling methods: representative sampling, density-based sa
pling, uncertainty sampling and random sampling.

In the sections that follow, we first outline a transfor-
mation of the data exploiting the cluster hypothesis, which
states that the decision boundary should lie in low density
regions (i.e. inter-cluster, vs intra-cluster). In senti.2,
we derive a sampling criterion that favors pairs of points
straddling the decision boundary with maximum utility. We
present experimental results in section 3 that demonstrate
the superiority of the proposed method and finally we pro-
vide conclusions in section 4.

2 Density-Sensitive Sampling
In order to sample points that are likely to be maximally
informative to an active learner, we first seek to maximize
the chance that we will sample on both sides of a decision
boundary — sampling disproportionately on either side will
not optimize boundary placement in the learning process.
Maximizing the distance between two points is a step in the

Considerable research has focused in sampling strategiesright direction, but Euclidean distance may not be the op-

from a large volume of unlabeled data to optimize learn-
ing from the fewest number of labeled instances (Lewis &
Gale 1994; Cohn, Ghahramani, & Jordan 1996; McCallum
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timal measure; instead we investigate density-sensiiise d
tance functions.

2.1 Density-Sensitive Distance Estimation

According to the cluster hypothesis, the decision boundary
should lie in low density regions, and hence should not cut



clusters (Chapelle & Zien 2005). Our goal is to represent
the data in such a way that points in separate clusters are
assigned high-distances (equivalent to low similaritidg)
order to enforce this criterion, we chose to derive pairwise
similarities/dissimilarities in a fully-connected graphsed
representation of the data. L&t= (V, F) be a graph where

inequality:

zp:/\j, >(1-9) Zmam(ﬂ,)\i)

where A, <0\ and Ay > .2 X, >0 (3)

V'is the set of nodes each of which denotes a data point The 5 parameter is fixed 4.1 as specified in (Chapelle &
and E denotes the edges between nodes. Edge weights arezja, 2005), though it could potentially be optimized. L&t

Euclidean distances, i.élz — y||. p € V' is defined as a
path of lengthl = |p| that connects the nodes andz; if
(prsprt1) € Eforl < k <, andp; = x; andp, = z;.
Points in the same cluster can be connected via a path travel-
ing in that cluster, thereby a high density region. ConJgrse
any path connecting points in different clusters has toefrav
along a low density region. The density-sensitive distance
between any two points can be approximated by first se-
lecting the longest distance edge along each path, i.e. the
weakest link, then repeating this process for every path tha
connects these two points, and finally finding the minimum

among the longest distance edges. This approach was first

proposed by (Fischer, Roth, & Buhmann 2004) and used for
clustering:

1)

d(z, x5) = Jnin | max P85 — preta|
where P; ; is the set of all paths that conneeats and ;.
The above formulation does not take into account the length
of the paths. A long path connecting two points in differ-
ent clusters might have a very short edge; hence that single
outlier would dramatically disrupt the distance approxima
tion. In order to avoid this problem, we incorporate the path
length into the above equation by taking the sum over the
edge distances instead of the maximum:

[p|—1

Z (ePHpk—PkﬂH -1)
k=1

2
Equation 2 is proposed by Chapelle & Zien (2005). Equa-
tion 1 and 2 are equivalent when— oo. For large values
of p, the distances between points in the same cluster are
decreased whereas the distances between points in differ-
ent clusters are still dominated by the gaps between chister
For small values of, every edge contributes to the distance
calculation. We follow their approach by applying Multi-
dimensional Scaling (MDS) (Cox & Cox 1994) to the dis-
similarity matrix D, whereD;; = d(z;,z;) in Equation 2
to obtain a Euclidean representation of a set of objectsawhil
preserving their distance relationships. MDS first transf®
the distance matriX) into a new matrixA by definining
a;; = —3 D7 Matrix A is used to derive matrid = [5;]
such thatd;; = a;; — a; — a; + a, wherea; anda; are
row and column means of, respectively; and is the mean
of all elements inA. The eigenvalues)(, Ao, ..., A\x) and
eigenvectorsiy, us, ..., ux) of A are computed, and the lat-

teris scaled so thqy uyup = v/Ag. Chapelle & Zien (2005)
showed that it is safe to discard the eigenvectors with small
eigenvalues; hence we followed their formulization by tak-
ing only the first p eigenvectors that satisfy the following

In(1 + min

pEP; ;

1
d(x;,x;) = —
(@i, 2;5) P

be ann x p matrix whose columns are the scaled eigenvec-
tors, then the rows df/ are the coordinates of the objects in
MDS space, i.ex; = U; .. The time complexity to com-
pute the distance matrik is O(n?(n + logn)) when Dijk-
stra’s shortest path length algorithm is adopted to implgme
the search for the next closest unexplored node in the graph
using a binary heap (Chapelle & Zien 2005). This is the
implementation we used in the paper. The MDS transforma-
tion takesO(n?) time since it computes the eigenvectors of
ann x n matrix. However, if a k nearest neighbor graph is
used instead of a fully-connected graph, and if only the first
p eigenvectors are considered, the time complexity for both
steps can be reduced.

2.2 Density-Sensitive Paired Sampling

Given a set of training data points in MDS spdce, y) =
{(x1,91), -, (xm, ym)}, We use logistic regression to ob-
tain the posterior class distribution. But our approacheis d
signed to be used with any probabilistic classifier includ-
ing Gaussian processes or Bayesian optimal classifiers. We
focus on binary problems in our evaluations, though our
method can be easily adapted to multi-class cases. We pro-
vide information on handling multi-class problems as appro
priate throughout the paper. The logistic regression mizdel

1
1t exp(—ywTx) “)

P(y |z, w) = o(yw’ )

wherey € {—1,4+1}. We use the regularized version to
find the parameter vectap which minimizes the negative
log-likelihood:

l(w) = Zlog(l + exp(—y;wT x;)) + éwTw (5)
=1 2
The minimization problem is convex so it can be solved
by a number of iterative algorithms. We use iteratively
reweighted least squares methag;,..,, = woqy — H 'g,
whereg andH are the gradient and Hessian 6i), respec-
tively:

dl(w) —~ .

S = Aw+i§:l—yzxz(l p(yi | @i, w))

02l (w) - T

s = A+ @] plys | @i, w)(1 = p(yi | i, w))

i=1
(6)
If there arem instances ofl dimensions, it take®) (md?)
time per iteration.

In order to maximize the likelihood of straddling the de-
cision boundary, and to halve the computational time, we



before=2aficr

v

Figure 1: lllustrative Example: The plus (minus) sign anetleis indicate the positively (negatively) labeled poiatsl unla-
beled data, respectively., r..r andzy.fore indicate the line before and after data is sampled for lalgelirhe selected points
are labeled either positive (shown in grey) or negative \ishm black). This example illustrates our motivation to géentwo
points with opposite labels at a time instead of a singletpoin

sample a pair of points to label at a time, in contrast to the new representation of the data, points in different cligster
traditional active learning methods that select one pdint a are assigned low similarity. It is then reasonable to define
each iteration. Figure 1 illustrates the motivation forrpdi P(y; # y; | z;, ;) as proportional to the distance between
sampling in active learning. Here we assume for simplic- z; andx;, i.e. P(y; # y; | i, 2;) « ||z; — x;||>. For an

ity the data is linearly separable. The dashed line shows empirical analysis justifying this claim, see Appendix.

the current decision boundary while the two solid lines de-  As the goal of active learning is to learn the model
fine the region where the true boundary is expected to lie; parameters accurately with the least number of labeled
namely the version space. The left figure in Figure 1 is examples, the selected instances need to be informative,
an example of sampling a pair for labeling from opposite e.g. the points whose labels we are most uncertain about.
sides of the current boundary. It greatly reduces the ver- Uncertainty-based active learning strategies have bezn pr
sion space since both points affect how the version space posed by a number of researchers (Lewis & Gale 1994;
will be bounded. The current boundary also shifts signifi- Tong & Koller 2000; Campbell, Cristianini, & Smola 2000;
cantly. On the other hand, the figure on the right shows that Schohn & Cohn 2000). Such strategies work fairly well in
only a single point is sampled for labeling. The amount of practice, and have nice theoretical properties related@o V
shift in the current hypothesis is relatively small. The-ver  dimension reduction (Tong & Koller 2000). Thus, in order
sion space is not reduced as significantly as in the previous to obtain a faster learning rate we need to select two points
scenario since only one point contributes to the reduction. that are likely to have opposite labelad high uncertainty.
These two scenarios illustrate why it is more advantageous We first define a scoring function for each pair of unlabeled
to straddle the decision boundary in order to reduce the set points as follows:

of candidate hypotheses rapidly. With this goal in mind, we S(i.7) = P(u: Nz )« Ui i
strive to sample two points with opposite class labels. In (&7 (i # 5 Lx“%') * (27
multi-class scenarios, this is equivalent to sampling asyma = cllzi — z;||* * U (4, ) )

points as the number of classes at each iteration of active wherec is a normalization constant fae(y; # y; | z;, z;),
learning, seeking to maximize the chance of sampling each and U (i, j) is a complex utility score which will be ex-
class once per round. Since the labels of the unlabeled dataplained soon. Before doing so, let us give an outline of how
are unknown, we need to approximate the likelihood that any our method works:

two points have opposite class labelsy; 7 y; | =i, z;), 1. Compute the distance matrix D using Equation 2 and
for all i, j € I, wherel, is the set of indices of the unla- transform the entire data into the MDS space

beled points in the data. By our cluster assumption, points

in different clusters are likely to have different labels.the 2. Compute the pairwise Euclidean distandes, — ;| of

the transformed data



3. Train the logistic regression classifier using the curren
training set in its transformed form and estimate the pos-
terior class probabilitie® (y | x, W)

4. Foralli #j € I,
(a) Compute the scorg(s, j) using Equation 7

5. Choose for labeling the points;-, ;- which have the
highest score5 (3, j), add them to the training set and re-

movei*, 7* from I,,.
Repeat 3-5 until a desired amount is sampled

Another important factor for active sampling is to se-
lect points from high density regions. It is shown to boost
the performance in various studies (Cohn, Ghahramani,
& Jordan 1996; Zhang & Chen 2002; Xet al. 2003;
Nguyen & Smeulders 2004; Donmez, Carbonell, & Bennett
2007). Obtaining the label of an instance with high density
has the advantage that it will significantly increase our-con
fidence in the labels of the neighbors. One drawback with
this approach is that it does not take into account the cur-
rent learner’s predictions. High density points may alsead
be correctly labeled by the current learner with high con-
fidence. In this case, there is no much benefit in querying
points with dense neighborhoods because it will not provide
much information about the labels of the remaining unla-
beled instances.

For a given pointe, p(x) can be estimated as the average

Y7 eap(—lle—= %)
similarity to the remaining points; ”Z*ﬂl , Where
n is the total number of points, arig, is the normalization
constant. From an active learning point of view, however,
we are more interested in the close neighborhood of a point
since it will directly be affected by the labeling of that pbi
Thus, we constrain the density estimation to the points in a
local neighborhood. That is, the density estimate for argive
point will depend only on those unlabeled neighbors whose
distance to the point is smaller than a pre-defined threshold

~ Yken, erp(=llz —zx?)
= 7

n

p(x) (8)

whereN, = {r € I,| ||z — z,|| < t} is the set of indices of
the unlabeled points whose distancerts smaller than the
thresholdt. Z,, is again the normalization constant. Note
that Equation 8 is not an average; it does not divide by the
size of the neighborhoodlV,|. By enforcing the estimate in
Equation 8, we guarantee that it dependgtm number of
neighborsas well astheir proximity As we discussed ear-
lier, a density measure itself cannot fully capture the info
mation content of a point in terms of the amount of surprise
we would get if we knew the true label. The conditional en-
tropy of the unknown labej given the instance: and the
modelw is:

H(Y |z,w) =~ Ply|z,w)log P(y | z,w) (9)

Y

It measures the amount of information (uncertainty) of the
discrete random variabl¥, and is maximum whe®(y |

T, w) = ﬁ where|Y| is the number of values that the

class variableY” can get. For binary problems, i.gy, €
{-1,+1}, we have the following equality:

argmax H(Y; | ;, w) = argmax{ min {P(y; | z;,w)}}
i€l iel,  yie{+1}
(10)

We adopted the latter for the experiments reported in this
paper. For multi-class problems, the conditional entrcguy ¢
be equivalently used. Since we do not know the true model
w, we used its approximatio from the logistic regression
classifier trained with the data seen up to the present point.
Finally, we propose using an uncertainty weighted density
measure:

Y e (—|le—a?)x

kEN

min

P .
yke{_17+1}{ Uk | T, W)}

(11)
For simplicity, we leave out the normalization constantsin
we are interested in the relative density rather than the-abs
lute density. Equation 11 captures both the density of axgive
point and also the information content of its neighbors - Fur
thermore, each neighbor’s contribution to the density escor
is weighed by its uncertainty; hence it reduces the effect of
the neighbors at which the current learner has high confi-
dence. Formally, we define the utility (¢, j) of a pair of
points as the sum of the density estimate for each point. By
the definition of V., it includes the pointe in considera-
tion. Hence, Equation 11 includes the uncertainty of the
point itself, minye;_1 413 {P(y | =,w)}, as a summand
with weight equals texp(—||z — z||?) = 1. We propose
to give more flexibility to that uncertainty term by introduc
ing a regularization coefficient. It quantifies a trade-dff o
the information content of an instance with the proximity
weighted information content of its neighbors. This allows
us to define the utility function as follows:

p(x)

Ui, j) = log{p(w:) + p(x;)} =

1og{ S exp(—llzi—zel?)¢ min {Ply | kb))
kAIEN,, yr€{£1}

+ Y ew(-le; —a?)

min {P(y, | @, ®)}

TAJENS; yre{£1}
+s#( min {P(y; | T5, W)+ min {P(y; | ¢, W
(,min (PO | @ @)b wmin (P |5, 0)))

(12)

Note 2; andx; are treated separately in the last summand
wheres is the regularization constant. We tried a range of
values from 1 to 3 fog on another dataset that is not reported
in this paper. Different values did not effect the resultary
significant way; hence we picked= 2 which is reasonable
given the restriction on the size of the neighborhood. Equa-
tion 12 is substituted into Equation 7 to get the final score
S(i,4). Thus, our strategy is to select instances for labeling
that have the largest score:

{i*,j*} = argmax S(4, j) = argmax ||x; — x;|* * U(i, )
i#jE€L, i£jEL,
(13)

The pseucode of the algorithm is given as Algorithm 1.



Algorithm 1 Paired Sampling
Input: Data(X,y) = {(x1,91), s (T, Ym)}
Output: Logistic Regression Classifier
Program
Compute the distance matrix
for all (xi,acj) € X do

Dij = 4 {1+ mingep,, TYL (el 1))}
end for

14
Apply MDS to D to obtain the data in MDS space

(X7 y) = {(%17 91)7 ey (ima ym)}
Divide the data into training s&t and unlabeled séf s.t.
(X,y)=TUU
repeat
Train logistic regression oft to getP(y | z, W)
foralli # j € I, do
ComputeS(i, j) = ||z; —;||*«U (i, j) using Equa-
tion 12
end for
Pick {i*, j*} = argmax; 4, S(i,j)
Update? = T U {(@;+, v+ ), (-, y;-) } and
Iu - [u - {Z*v.j*}
until stopping criterion

Data | Breast Heart Flare Face Glass2 g50c
Size | 277 270 1066 2500 163 550
+/- 0.413 0.800 1.234 1 1.144 1
Dim 9 13 13 400 9 50

Table 1: Properties of the datasets used in our experiments

3 Experimental Results
3.1 Data

We conducted a set of experiments in order to evaluate our
method on six binary datasets: one artificial dataset, four
real world datasets from UCI Repository (Newmenal.
1998), and one face detection dataset used in (Pham, Wor-
ring, & Smeulders 2002). The original face dataset has
393360 images in total from which we used a random sub-
sample of size 2500. The artifial dataset, called g50c, is
used in (Huang & Kecman 2005; Chapelle & Zien 2005;
Collobert et al. 2006). It is generated from two unit-
covariance normal distributions with equal probabilitiesd

the class means are adjusted so that the Bayes error is 5%
Table 1 gives information about the datasets. All the pre-
defined parameters are tuned and fixed on a separate datas
not reported in this paper; i.eA in Equation 5 is fixed at
0.1, the scaling parameterin Equation 2 is fixed at, the
threshold for determining the number of neighbors for each
unlabeled pointe is fixed so that the size d@¥, will not ex-
ceed 15.

3.2 Experiments
For each dataset, we conducted 10 runs. For each run, we

2.
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Figure 2: Results on UCI Breast data. The solid horizon-
tal line indicates the 10-fold cross-validation error w@gthe
entire data as the training data.

many active learning studies including (Nguyen & Smeul-
ders 2004; Schein & Ungar 2005). We left the remaining
data as the unlabeled pool. We ran each active learning
method for 20 iterations and at each iteration we selected 2
instances to label. Hence, we actively sampled 40 instances
in total. Every time a new pair of samples is added to the
training set, the classifier is re-trained and evaluatechen t
remaining unlabeled portion of the data. At each iteration,
we reported the error of the active sampling method. We av-
eraged those results over 10 runs for comparison. We com-
pared our proposed method with four other strategies:

1. Most Uncertain: We rank the unlabeled points according

to their uncertainty, i.emin,{P(y | =, w)} (via Equa-
tion 4), in descending order. Then, we select the top two
points with the most uncertainty.

Density Only: It differs from the proposed method by
considering only the proximity of the neighbors for com-
puting the density.

Representative Sampling (&t al. 2003): The unlabeled
points that fall inside the margin are clustered using k-
means in a linear SVM framework. The centroids of the
two largest clusters are chosen to be labeled. Penalty fac-
tor C'in SVM, and k in clustering are optimized minimiz-
ing the test error to obtain the best possible performaince

4. Random Sampling

3.3 Reaults

eItzigure 2 shows the results on the UCI Breast data compar-

ing the five methods. Our method has the steepest decrease
in error as well as the density-only version of our method.
However, our method has the lowest final error rate and does
better than all the other methods. Even though the most un-
certain and the density only version are not individually th
best performers, our approach combines the best of each ap-
proach and yields superior results. Representative sagpli

!Parameter tuning minimizing the test error has only been used

randomly picked just 2 instances, one from each class, to for representative sampling. Parameters in other methods are tuned

form the initial training set. This number is usually larder

as explained in Section 3.1.
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Figure 3: Results on four different datasets

does worse than random sampling at the beginning, but their thus we plan to examine the relation between the difficulty
performances converge towards the end. We noted that the of a classification task and the capacity of active learning
final error rate for our method is close to the 10-fold cross- methods as a follow-up work.
validation error on the entire data for all 6 problems, which We see that our method is the best on all except few cases.
we explicitly show on Breast data. We also noticed that our To quantify this, we did a 2-sided paired t-test at the 95%
method selects a pair with opposite labels for the majofity 0  confidence level on the entire reported operating range to
the time. Figure 3 shows the results on four of the remaining test the hypothesis that our method has significantly lower
datasets. We only show three methods in each graph to easeerror than each of its competitors. Thus, it was tested agjain
visual legibility. The top two graphs in Figure 3 compare each method separately and the corresponding p-values were
our method against uncertainty sampling and represeatativ recorded. Our method always performed significantly better
sampling, whereas the bottom two graphs compare it against (p < 0.001) than the density only version on all datasets. It
the density only version and representative sampling. Our also outperformed most uncertain wjth< 0.001 on all ex-
method outperforms the others on each data. The density cept the Heart data whepe< 0.05. It outperformed random
only version performs slightly better than our method farth  sampling on Flare withh < 0.05, on Face wittp < 0.01 and
initial iterations on Flare-Solar, and similarly repretsive with p < 0.001 on the rest. Moreover, it outperformed rep-
sampling performs slightly better on early iterations ond-a  resentative sampling with < 0.001 on Breast, Flare, g50c,
detection. But our method readily achieves significantly be  and withp < 0.05 on Face whereas both are comparable
ter performance on both cases as more data is sampled. Aon Glass2 and Heart datasets. However, Table 2 shows that
more thorough comparison of all methods on six datasets is our method improves more steeply and wins in the later it-
given in Table 2. erations on these two datasets. When we only compared the
In Table 2, we show the error rates for each method at €fTors for the last 10 iterations on Glass2 and Heart, then ou
three different points in iteration: 5th, 11th and 17th-iter ~Method wins withp < 0.05 andp < 0.001, respectively.
ations. The first column in Table 2 shows the dataset and We also conducted another set of experiments to evalu-
the corresponding iteration at which the error rates are-com ate the cluster assumption. We re-ran our method without
pared. The percentage error reduction against the random transforming the data. In other words, we computed the Eu-
sampling baseline is given in parenthesis. Lowest err@srat  clidean pairwise distances in the original input space s@ad
are given in bold. Our method wins on the majority of the lected the instances to label according to Equation 13.rit pe
cases. Whenever it loses, there is only a slight difference formed worse than or comparable with our original method.
between our method and the winner so our method is still On Heart and g50c they both did equally well. In fact, the
comparable on cases where it is not the best. Furthermore, it average absolute difference between the errors of the two
can be seen that each method does worse than random sammethods on Heart data is016 4 0.009, and0.01 + 0.005
pling on Flare 5th. We note the poor separability of the data; on g50c data. On Glass2, Flare, Face and Breast datasets the



Data Proposed Method Most Uncertain Density Only Representative Random
Breast 5 0.278 (-24.6%) 0.334 (-9.04%) 0.293 (-20.5%) 0.380 (+2.9%) 0.369
Breast 11 0.264 (-20%) 0.285 (-13.6%) 0.297 (-10%) 0.347 (+5.1%) 0.330
Breast 17 0.249 (-18.8%) 0.269 (-12.3%) 0.264 (-14%) 0.302 (-1.6%) 0.307
Heart 5 0.213 (-18.3%) 0.245 (-6.1%) 0.220 (-15.7%) 0.216 (-17.2%) 0.261
Heart 11 0.198 (-4.3%) 0.208 (+0.4%) 0.220 (+6.2%) 0.205 (-0.9%) 0.207
Heart 17 0.166 (-13.5%) 0.164 (-14.5%) 0.219 (+14%) 0.20 (+4.1%) 0.192
Flare 5 0.465 (+5.2%) 0.454 (+2.7%) 0.454 (+2.7%) 0.478 (+8.1%) 0.442
Flare 11 0.394 (-1.6%) 0.451 (+10%) 0.422 (+2.9%) 0.417 (+1.7%) 0.410
Flare 17 0.366 (-8.7%) 0.449 (+11.9%) 0.401 (0%) 0.393 (-1.9%) 0.401
Face 5 0.350 (-1.9%) 0.468 (+31%) 0.420 (+17.6%) 0.313 (-12.3%) 0.357
Face 11 0.210 (-23.3%) 0.312 (+13.8%) 0.287 (+4.7%) 0.252 (-8%) 0.274
Face 17 0.151 (-32.5%) 0.196 (-12.5%) 0.189 (-15.6%) 0.202 (-9.8%) 0.224
Glass2 5 0.339 (-11%) 0.442 (+16%) 0.392 (+2.8%) 0.326 (-14.4%) 0.381
Glass2 11 0.317 (-7%) 0.341 (0%) 0.324 (-4.9%) 0.31(-9%) 0.341
Glass2 17 0.266 (-8.9%) 0.292 (0%) 0.275 (-5.8%) 0.30 (+2.7%) 0.292
g50c 5 0.169 (-46.3%) 0.242 (-23.1%) 0.187 (-40.6%) 0.241 (-23.4%) 0.315
g50c 11 0.110 (-37.8%) 0.136 (-23.1%) 0.128 (-27.6%) 0.168 (-5%) 0.177
g50c 17 0.079 (-34.1%) 0.094 (-21.6%) 0.102 (-15%) 0.139 (+15.8%) 0.120

Table 2: Comparison of five different active learners on atbdets

untransformed version is outperformed by our method with

p < 0.001 significance.

4 Conclusion

In this paper, we explored a proximity-weighted conditiena
entropy-based criterion for active learning. This apploac
it combines the density,
uncertainty and dissimilarity-across-classificationsbdary

is unique in two ways:

First,

Second,

it uses a

0.6

0.5

Probability(opposite labels)
03 04

strategies into a unified framework.
density-sensitive distance metric to measure the dissimil

ity between pairwise instances, maximizing the likelinood Figure 4: Graph of’(y; # y; | ;, z;) versus|z; — 2| on
of sampling both sides of a decision boundary in a totally 950c dataset

unsupervised process. Distances of points within the same

pairwise distance

cluster are reduced while those from different clusters are
dominated by the inter-cluster distances. We presented em-
pirical results on various domains. The results demorestrat
that our method outperforms others in terms of both error
reduction and fewer number of labeling queries required to
obtain a certain level of accuracy. We note that the time com-
plexity of the data transforming process prohibit the aqmpli
tion to very large datasets. In the future, we plan to address
efficiency improvements, for instance by extending kdgree
and by computing a k-nearest-neighbor fanout graph, vs the
full graph. We further note that our scoring functist, ;)
must be computed for each pair of points in the unlabeled
pool, which take®) (|1, |?) time per iteration. In order to re-
duce computational cost, we rank the unlabeled points from
most to least uncertain. The top p% is selected and pair-
wise scores are computed for this subset. The algorithm
then picks instances to label from this representative sub-
set of unlabeled data. This is only enforced on the Flare and
Face datasets by setting p to 30% and 20%, respectively.
We also plan to extend this work to other probabilistic clas-

sifiers, such as Gaussian Process Classifiers, which shouldy; | [|z; — z;|) > P(y: # i | |z — xx])) < ||z —

require minimal effort, and we also plan to explore the ef-

fects of different kernels on the active learning technigpee
proposed in this paper.
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6 Appendix

We estimated the probabilit) (y; # y; | z;, ;) as a func-

tion of the pairwise distander; —x;||. Figure 4 is generated

on g50c dataset. We sorted the pairwise distances in increas

ing order and divided them into 30 equal intervals. For each

interval, all pairs(z;,z;) with distance||z; — ;| falling

within that interval were examinedP(y; # vy; | s, ;)

was estimated as the relative frequency of pairs in that in-

terval with opposite class labels. As shown in Figure 4,
P(y; # y; | =i, z;) monotonically increases with the pair-

wise distance. This analysis empirically shows tﬁayl
zj|| = )
llx; — xx||. The curve may differ for other datasets, but if



the class membership is a well-defined (e.g. smooth) func-
tion, the same principle applies. The dotted line is the prob
ability P(y; # y;) = Ply; = Ly; = —1) + Ply; =
—1,y; = 1), independent of any knowledge regarding the
data distribution. Since binary classes are equally balnc
on this dataset, this probability 55. The absolute differ-
ence between the two curves at any point indicates the loss
\P(yi # y;) — P(y: # ;| o — 2;]))| introduced by re-
lying on ||z; — «;||. Hence, sampling distant pairs increases
the likelihood that they have opposite class labels without
sacrificing a large penalty. This procedure is conductey onl
to support our claim, i.eP(y; # y; | i, x;) « ||z; — z;]|?;

the proposed active sampling strategy is carried on a com-
pletely unsupervised manner.
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