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Abstract

Active learning consists of principled on-line sampling over
unlabeled data to optimize supervised learning rates as a func-
tion of the number of labels requested from an external oracle.
A new sampling technique for active learning is developed
based on two key principles: 1) Balanced sampling on both
sides of the decision boundary is more effective than sam-
pling one side disproportionately, and 2) exploiting the natu-
ral grouping (clustering) of unlabeled data establishes a more
meaningful non-Euclidean distance function with respect to
estimated category membership. Our new paired-sampling
density-sensitive method embodying these principles yields
significantly superior performance in multiple active learn-
ing data sets over all other sampling methods in our compar-
ative study: representative sampling, uncertainty sampling,
density-based sampling, and random sampling.

1 Introduction
In many domains ripe for supervised machine learning tech-
niques, obtaining large amounts of unlabeled data is easy but
obtaining class labels is costly and time-consuming. For in-
stance, it is easy to crawl the web, but much more costly to
pay an army of human topic labelers. Likewise, it is simple
to collect images, but much harder to obtain good linguis-
tic content labels. It is also easier to obtain geological data
pertaining to regions that may contain oil, but much more
costly to drill multiple deep test holes to know which ones
really contain oil. Active learning consists of optimizing
sampling strategies over the unlabeled data in order to max-
imize the accuracy of supervised machine learning methods
and to minimize the number of samples that require defini-
tive categorization for training. Typically, the learner starts
with a very small number of labeled examples, trains a clas-
sifier or ranker, selects new sample(s) from the unlabeled
data in an on-line fashion, one or few at a time, re-trains the
learner and iterates. The objective is to optimize accuracyat
every step in the sampling-learning cycle.

Considerable research has focused in sampling strategies
from a large volume of unlabeled data to optimize learn-
ing from the fewest number of labeled instances (Lewis &
Gale 1994; Cohn, Ghahramani, & Jordan 1996; McCallum
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& Nigam 1998; Schohn & Cohn 2000; Tong & Koller 2000;
Melville & Mooney 2004). These approaches range from
uncertainty sampling (Lewis & Gale 1994), to representa-
tive sampling (Xuet al. 2003), to density-based sampling
(Nguyen & Smeulders 2004) to active ensemble methods
(Melville & Mooney 2004; Donmez, Carbonell, & Bennett
2007). While these methods all provide interesting insight
and functional active learning strategies, other factors could
be considered as well, in order to further improve active
sampling. With this goal in mind, we developed a new sam-
pling strategy based on: 1) maximizing the likelihood of
straddling the decision boundary with paired samples, 2) a
transformed distance function to effectively reduce distance
as a function of local density, and 3) rely on a utility-based
conditional-entropy maximization criterion to combine fac-
tors in making the sampling decision. As we show in the em-
pirical results section, the new sampling strategy proves to
be quite effective vis-̀a-vis the popular active-learning sam-
pling methods: representative sampling, density-based sam-
pling, uncertainty sampling and random sampling.

In the sections that follow, we first outline a transfor-
mation of the data exploiting the cluster hypothesis, which
states that the decision boundary should lie in low density
regions (i.e. inter-cluster, vs intra-cluster). In section 2.2,
we derive a sampling criterion that favors pairs of points
straddling the decision boundary with maximum utility. We
present experimental results in section 3 that demonstrate
the superiority of the proposed method and finally we pro-
vide conclusions in section 4.

2 Density-Sensitive Sampling
In order to sample points that are likely to be maximally
informative to an active learner, we first seek to maximize
the chance that we will sample on both sides of a decision
boundary – sampling disproportionately on either side will
not optimize boundary placement in the learning process.
Maximizing the distance between two points is a step in the
right direction, but Euclidean distance may not be the op-
timal measure; instead we investigate density-sensitive dis-
tance functions.

2.1 Density-Sensitive Distance Estimation
According to the cluster hypothesis, the decision boundary
should lie in low density regions, and hence should not cut



clusters (Chapelle & Zien 2005). Our goal is to represent
the data in such a way that points in separate clusters are
assigned high-distances (equivalent to low similarities). In
order to enforce this criterion, we chose to derive pairwise
similarities/dissimilarities in a fully-connected graph-based
representation of the data. LetG = (V,E) be a graph where
V is the set of nodes each of which denotes a data point
andE denotes the edges between nodes. Edge weights are
Euclidean distances, i.e.‖x − y‖. p ∈ V l is defined as a
path of lengthl = |p| that connects the nodesxi andxj if
(pk, pk+1) ∈ E for 1 ≤ k < l, andp1 = xi andpl = xj .
Points in the same cluster can be connected via a path travel-
ing in that cluster, thereby a high density region. Conversely,
any path connecting points in different clusters has to travel
along a low density region. The density-sensitive distance
between any two points can be approximated by first se-
lecting the longest distance edge along each path, i.e. the
weakest link, then repeating this process for every path that
connects these two points, and finally finding the minimum
among the longest distance edges. This approach was first
proposed by (Fischer, Roth, & Buhmann 2004) and used for
clustering:

d(xi, xj) = min
p∈Pi,j

max
1≤k<|p|

‖pk − pk+1‖ (1)

wherePi,j is the set of all paths that connectsxi andxj .
The above formulation does not take into account the length
of the paths. A long path connecting two points in differ-
ent clusters might have a very short edge; hence that single
outlier would dramatically disrupt the distance approxima-
tion. In order to avoid this problem, we incorporate the path
length into the above equation by taking the sum over the
edge distances instead of the maximum:

d(xi, xj) =
1

ρ



ln(1 + min

p∈Pi,j

|p|−1∑

k=1

(eρ‖pk−pk+1‖ − 1))




(2)

Equation 2 is proposed by Chapelle & Zien (2005). Equa-
tion 1 and 2 are equivalent whenρ → ∞. For large values
of ρ, the distances between points in the same cluster are
decreased whereas the distances between points in differ-
ent clusters are still dominated by the gaps between clusters.
For small values ofρ, every edge contributes to the distance
calculation. We follow their approach by applying Multi-
dimensional Scaling (MDS) (Cox & Cox 1994) to the dis-
similarity matrix D, whereDij = d(xi, xj) in Equation 2
to obtain a Euclidean representation of a set of objects while
preserving their distance relationships. MDS first transforms
the distance matrixD into a new matrixA by definining
aij = − 1

2
D2

ij . Matrix A is used to derive matrix∆ = [δij ]
such thatδij = aij − āi − āj + ā, where āi and āj are
row and column means ofA, respectively; and̄a is the mean
of all elements inA. The eigenvalues (λ1, λ2, ..., λk) and
eigenvectors (u1, u2, ..., uk) of ∆ are computed, and the lat-

ter is scaled so that
√

u
′

kuk =
√

λk. Chapelle & Zien (2005)
showed that it is safe to discard the eigenvectors with small
eigenvalues; hence we followed their formulization by tak-
ing only the first p eigenvectors that satisfy the following

inequality:

p∑

i=1

λi ≥ (1 − δ)
∑

max(0, λi)

where λp ≤ δλ1 and λ1 ≥ ... ≥ λn ≥ 0 (3)

The δ parameter is fixed at0.1 as specified in (Chapelle &
Zien 2005), though it could potentially be optimized. LetU
be ann x p matrix whose columns are the scaled eigenvec-
tors, then the rows ofU are the coordinates of the objects in
MDS space, i.e.̃xi,. = Ui,.. The time complexity to com-
pute the distance matrixD is O(n2(n + logn)) when Dijk-
stra’s shortest path length algorithm is adopted to implement
the search for the next closest unexplored node in the graph
using a binary heap (Chapelle & Zien 2005). This is the
implementation we used in the paper. The MDS transforma-
tion takesO(n3) time since it computes the eigenvectors of
ann x n matrix. However, if a k nearest neighbor graph is
used instead of a fully-connected graph, and if only the first
p eigenvectors are considered, the time complexity for both
steps can be reduced.

2.2 Density-Sensitive Paired Sampling
Given a set of training data points in MDS space(X, y) =
{(x1, y1), ..., (xm, ym)}, we use logistic regression to ob-
tain the posterior class distribution. But our approach is de-
signed to be used with any probabilistic classifier includ-
ing Gaussian processes or Bayesian optimal classifiers. We
focus on binary problems in our evaluations, though our
method can be easily adapted to multi-class cases. We pro-
vide information on handling multi-class problems as appro-
priate throughout the paper. The logistic regression modelis

P (y | x, w) = σ(ywT x) =
1

1 + exp(−ywT x)
(4)

wherey ∈ {−1,+1}. We use the regularized version to
find the parameter vectorw which minimizes the negative
log-likelihood:

l(w) =

m∑

i=1

log(1 + exp(−yiw
T xi)) +

λ

2
wT w (5)

The minimization problem is convex so it can be solved
by a number of iterative algorithms. We use iteratively
reweighted least squares method:wnew = wold − H−1g,
whereg andH are the gradient and Hessian ofl(w), respec-
tively:

∂l(w)

∂w
= λw +

m∑

i=1

−yixi(1 − p(yi | xi,w))

∂2l(w)

∂2w
= λ +

m∑

i=1

xix
T
i p(yi | xi,w)(1 − p(yi | xi,w))

(6)

If there arem instances ofd dimensions, it takesO(md2)
time per iteration.

In order to maximize the likelihood of straddling the de-
cision boundary, and to halve the computational time, we
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Figure 1: Illustrative Example: The plus (minus) sign and circles indicate the positively (negatively) labeled pointsand unla-
beled data, respectively.xafter andxbefore indicate the line before and after data is sampled for labeling. The selected points
are labeled either positive (shown in grey) or negative (shown in black). This example illustrates our motivation to sample two
points with opposite labels at a time instead of a single point.

sample a pair of points to label at a time, in contrast to the
traditional active learning methods that select one point at
each iteration. Figure 1 illustrates the motivation for paired
sampling in active learning. Here we assume for simplic-
ity the data is linearly separable. The dashed line shows
the current decision boundary while the two solid lines de-
fine the region where the true boundary is expected to lie;
namely the version space. The left figure in Figure 1 is
an example of sampling a pair for labeling from opposite
sides of the current boundary. It greatly reduces the ver-
sion space since both points affect how the version space
will be bounded. The current boundary also shifts signifi-
cantly. On the other hand, the figure on the right shows that
only a single point is sampled for labeling. The amount of
shift in the current hypothesis is relatively small. The ver-
sion space is not reduced as significantly as in the previous
scenario since only one point contributes to the reduction.
These two scenarios illustrate why it is more advantageous
to straddle the decision boundary in order to reduce the set
of candidate hypotheses rapidly. With this goal in mind, we
strive to sample two points with opposite class labels. In
multi-class scenarios, this is equivalent to sampling as many
points as the number of classes at each iteration of active
learning, seeking to maximize the chance of sampling each
class once per round. Since the labels of the unlabeled data
are unknown, we need to approximate the likelihood that any
two points have opposite class labels,P (yi 6= yj | xi, xj),
for all i, j ∈ Iu whereIu is the set of indices of the unla-
beled points in the data. By our cluster assumption, points
in different clusters are likely to have different labels. In the

new representation of the data, points in different clusters
are assigned low similarity. It is then reasonable to define
P (yi 6= yj | xi, xj) as proportional to the distance between
xi andxj , i.e. P (yi 6= yj | xi, xj) ∝ ‖xi − xj‖2. For an
empirical analysis justifying this claim, see Appendix.

As the goal of active learning is to learn the model
parameters accurately with the least number of labeled
examples, the selected instances need to be informative,
e.g. the points whose labels we are most uncertain about.
Uncertainty-based active learning strategies have been pro-
posed by a number of researchers (Lewis & Gale 1994;
Tong & Koller 2000; Campbell, Cristianini, & Smola 2000;
Schohn & Cohn 2000). Such strategies work fairly well in
practice, and have nice theoretical properties related to VC
dimension reduction (Tong & Koller 2000). Thus, in order
to obtain a faster learning rate we need to select two points
that are likely to have opposite labelsandhigh uncertainty.
We first define a scoring function for each pair of unlabeled
points as follows:

S(i, j) = P (yi 6= yj | xi, xj) ∗ U(i, j)

= c‖xi − xj‖2 ∗ U(i, j) (7)

wherec is a normalization constant forP (yi 6= yj | xi, xj),
and U(i, j) is a complex utility score which will be ex-
plained soon. Before doing so, let us give an outline of how
our method works:
1. Compute the distance matrix D using Equation 2 and

transform the entire data into the MDS space

2. Compute the pairwise Euclidean distances,‖xi − xj‖, of
the transformed data



3. Train the logistic regression classifier using the current
training set in its transformed form and estimate the pos-
terior class probabilitiesP (y | x, ŵ)

4. For alli 6= j ∈ Iu

(a) Compute the scoreS(i, j) using Equation 7

5. Choose for labeling the pointsxi∗ ,xj∗ which have the
highest scoreS(i, j), add them to the training set and re-
movei∗, j∗ from Iu.

6. Repeat 3-5 until a desired amount is sampled

Another important factor for active sampling is to se-
lect points from high density regions. It is shown to boost
the performance in various studies (Cohn, Ghahramani,
& Jordan 1996; Zhang & Chen 2002; Xuet al. 2003;
Nguyen & Smeulders 2004; Donmez, Carbonell, & Bennett
2007). Obtaining the label of an instance with high density
has the advantage that it will significantly increase our con-
fidence in the labels of the neighbors. One drawback with
this approach is that it does not take into account the cur-
rent learner’s predictions. High density points may already
be correctly labeled by the current learner with high con-
fidence. In this case, there is no much benefit in querying
points with dense neighborhoods because it will not provide
much information about the labels of the remaining unla-
beled instances.

For a given pointx, p(x) can be estimated as the average

similarity to the remaining points,

Pn
i=1 exp(−‖x−xi‖

2)

n−1

Zn
, where

n is the total number of points, andZn is the normalization
constant. From an active learning point of view, however,
we are more interested in the close neighborhood of a point
since it will directly be affected by the labeling of that point.
Thus, we constrain the density estimation to the points in a
local neighborhood. That is, the density estimate for a given
point will depend only on those unlabeled neighbors whose
distance to the point is smaller than a pre-defined threshold:

p̂(x) =

∑
k∈Nx

exp(−‖x − xk‖2)

Z
′

n

(8)

whereNx = {r ∈ Iu| ‖x− xr‖ < t} is the set of indices of
the unlabeled points whose distance tox is smaller than the
thresholdt. Z

′

n is again the normalization constant. Note
that Equation 8 is not an average; it does not divide by the
size of the neighborhood;|Nx|. By enforcing the estimate in
Equation 8, we guarantee that it depends onthe number of
neighborsas well astheir proximity. As we discussed ear-
lier, a density measure itself cannot fully capture the infor-
mation content of a point in terms of the amount of surprise
we would get if we knew the true label. The conditional en-
tropy of the unknown labely given the instancex and the
modelw is:

H(Y | x, w) = −
∑

y

P (y | x, w) log P (y | x, w) (9)

It measures the amount of information (uncertainty) of the
discrete random variableY , and is maximum whenP (y |
x, w) = 1

|Y | , where|Y | is the number of values that the

class variableY can get. For binary problems, i.e.,y ∈
{−1,+1}, we have the following equality:

argmax
i∈Iu

H(Yi | xi, w) = argmax
i∈Iu

{ min
yi∈{±1}

{P (yi | xi, w)}}
(10)

We adopted the latter for the experiments reported in this
paper. For multi-class problems, the conditional entropy can
be equivalently used. Since we do not know the true model
w, we used its approximation̂w from the logistic regression
classifier trained with the data seen up to the present point.
Finally, we propose using an uncertainty weighted density
measure:

p̂(x) =
∑

k∈Nx

exp(−‖x−xk‖2)∗ min
yk∈{−1,+1}

{P (yk | xk, ŵ)}

(11)
For simplicity, we leave out the normalization constant since
we are interested in the relative density rather than the abso-
lute density. Equation 11 captures both the density of a given
point and also the information content of its neighbors. Fur-
thermore, each neighbor’s contribution to the density score
is weighed by its uncertainty; hence it reduces the effect of
the neighbors at which the current learner has high confi-
dence. Formally, we define the utilityU(i, j) of a pair of
points as the sum of the density estimate for each point. By
the definition ofNx, it includes the pointx in considera-
tion. Hence, Equation 11 includes the uncertainty of the
point itself, miny∈{−1,+1}{P (y | x, w)}, as a summand
with weight equals toexp(−‖x − x‖2) = 1. We propose
to give more flexibility to that uncertainty term by introduc-
ing a regularization coefficient. It quantifies a trade-off of
the information content of an instance with the proximity
weighted information content of its neighbors. This allows
us to define the utility function as follows:

U(i, j) = log{p̂(xi) + p̂(xj)} =

log

{ ∑

k 6=i∈Nxi

exp(−‖xi−xk‖2)∗ min
yk∈{±1}

{P (yk | xk, ŵ)}

+
∑

r 6=j∈Nxj

exp(−‖xj − xr‖2) ∗ min
yr∈{±1}

{P (yr | xr, ŵ)}

+s∗( min
yi∈{±1}

{P (yi | xi, ŵ)}+ min
yj∈{±1}

{P (yj | xj, ŵ)} )

}

(12)

Note xi andxj are treated separately in the last summand
wheres is the regularization constant. We tried a range of
values from 1 to 3 fors on another dataset that is not reported
in this paper. Different values did not effect the results inany
significant way; hence we pickeds = 2 which is reasonable
given the restriction on the size of the neighborhood. Equa-
tion 12 is substituted into Equation 7 to get the final score
S(i, j). Thus, our strategy is to select instances for labeling
that have the largest score:

{i∗, j∗} = argmax
i6=j∈Iu

S(i, j) = argmax
i6=j∈Iu

‖xi − xj‖2 ∗ U(i, j)

(13)
The pseucode of the algorithm is given as Algorithm 1.



Algorithm 1 Paired Sampling

Input: Data(X, y) = {(x1, y1), ..., (xm, ym)}
Output: Logistic Regression Classifier
Program
Compute the distance matrixD
for all (xi,xj) ∈ X do

Dij = 1

ρ

{
ln(1 + minp∈Pi,j

∑|p|−1

k=1
(eρ‖pk−pk+1‖ − 1))

}

end for
Apply MDS to D to obtain the data in MDS space
(X̃, y) = {(x̃1, y1), ..., (x̃m, ym)}
Divide the data into training setT and unlabeled setU s.t.
(X̃, y) = T ∪ U
repeat

Train logistic regression onT to getP (y | x̃, ŵ)
for all i 6= j ∈ Iu do

ComputeS(i, j) = ‖x̃i− x̃j‖2 ∗U(i, j) using Equa-
tion 12

end for
Pick{i∗, j∗} = argmaxi6=j∈Iu

S(i, j)
UpdateT = T ∪ {(x̃i∗ , yi∗), (x̃j∗ , yj∗)} and
Iu = Iu − {i∗, j∗}

until stopping criterion

Data Breast Heart Flare Face Glass2 g50c
Size 277 270 1066 2500 163 550
+/- 0.413 0.800 1.234 1 1.144 1
Dim 9 13 13 400 9 50

Table 1: Properties of the datasets used in our experiments

3 Experimental Results
3.1 Data
We conducted a set of experiments in order to evaluate our
method on six binary datasets: one artificial dataset, four
real world datasets from UCI Repository (Newmanet al.
1998), and one face detection dataset used in (Pham, Wor-
ring, & Smeulders 2002). The original face dataset has
393360 images in total from which we used a random sub-
sample of size 2500. The artifial dataset, called g50c, is
used in (Huang & Kecman 2005; Chapelle & Zien 2005;
Collobert et al. 2006). It is generated from two unit-
covariance normal distributions with equal probabilities, and
the class means are adjusted so that the Bayes error is 5%.
Table 1 gives information about the datasets. All the pre-
defined parameters are tuned and fixed on a separate dataset
not reported in this paper; i.e.λ in Equation 5 is fixed at
0.1, the scaling parameterρ in Equation 2 is fixed at1, the
thresholdt for determining the number of neighbors for each
unlabeled pointx is fixed so that the size ofNx will not ex-
ceed 15.

3.2 Experiments
For each dataset, we conducted 10 runs. For each run, we
randomly picked just 2 instances, one from each class, to
form the initial training set. This number is usually largerfor

2 8 16 24 32 40
Labeled Data Size

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cl
as

sif
ica

tio
n 

Er
ro

r

Proposed Method
Most Uncertain
Density Only
Random
Representative Sampling

Breast

Figure 2: Results on UCI Breast data. The solid horizon-
tal line indicates the 10-fold cross-validation error using the
entire data as the training data.

many active learning studies including (Nguyen & Smeul-
ders 2004; Schein & Ungar 2005). We left the remaining
data as the unlabeled pool. We ran each active learning
method for 20 iterations and at each iteration we selected 2
instances to label. Hence, we actively sampled 40 instances
in total. Every time a new pair of samples is added to the
training set, the classifier is re-trained and evaluated on the
remaining unlabeled portion of the data. At each iteration,
we reported the error of the active sampling method. We av-
eraged those results over 10 runs for comparison. We com-
pared our proposed method with four other strategies:

1. Most Uncertain: We rank the unlabeled points according
to their uncertainty, i.e.,miny{P (y | x, ŵ)} (via Equa-
tion 4), in descending order. Then, we select the top two
points with the most uncertainty.

2. Density Only: It differs from the proposed method by
considering only the proximity of the neighbors for com-
puting the density.

3. Representative Sampling (Xuet al. 2003): The unlabeled
points that fall inside the margin are clustered using k-
means in a linear SVM framework. The centroids of the
two largest clusters are chosen to be labeled. Penalty fac-
tor C in SVM, and k in clustering are optimized minimiz-
ing the test error to obtain the best possible performance1.

4. Random Sampling

3.3 Results
Figure 2 shows the results on the UCI Breast data compar-
ing the five methods. Our method has the steepest decrease
in error as well as the density-only version of our method.
However, our method has the lowest final error rate and does
better than all the other methods. Even though the most un-
certain and the density only version are not individually the
best performers, our approach combines the best of each ap-
proach and yields superior results. Representative sampling

1Parameter tuning minimizing the test error has only been used
for representative sampling. Parameters in other methods are tuned
as explained in Section 3.1.
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Figure 3: Results on four different datasets

does worse than random sampling at the beginning, but their
performances converge towards the end. We noted that the
final error rate for our method is close to the 10-fold cross-
validation error on the entire data for all 6 problems, which
we explicitly show on Breast data. We also noticed that our
method selects a pair with opposite labels for the majority of
the time. Figure 3 shows the results on four of the remaining
datasets. We only show three methods in each graph to ease
visual legibility. The top two graphs in Figure 3 compare
our method against uncertainty sampling and representative
sampling, whereas the bottom two graphs compare it against
the density only version and representative sampling. Our
method outperforms the others on each data. The density
only version performs slightly better than our method for the
initial iterations on Flare-Solar, and similarly representative
sampling performs slightly better on early iterations on Face
detection. But our method readily achieves significantly bet-
ter performance on both cases as more data is sampled. A
more thorough comparison of all methods on six datasets is
given in Table 2.

In Table 2, we show the error rates for each method at
three different points in iteration: 5th, 11th and 17th iter-
ations. The first column in Table 2 shows the dataset and
the corresponding iteration at which the error rates are com-
pared. The percentage error reduction against the random
sampling baseline is given in parenthesis. Lowest error rates
are given in bold. Our method wins on the majority of the
cases. Whenever it loses, there is only a slight difference
between our method and the winner so our method is still
comparable on cases where it is not the best. Furthermore, it
can be seen that each method does worse than random sam-
pling on Flare 5th. We note the poor separability of the data;

thus we plan to examine the relation between the difficulty
of a classification task and the capacity of active learning
methods as a follow-up work.

We see that our method is the best on all except few cases.
To quantify this, we did a 2-sided paired t-test at the 95%
confidence level on the entire reported operating range to
test the hypothesis that our method has significantly lower
error than each of its competitors. Thus, it was tested against
each method separately and the corresponding p-values were
recorded. Our method always performed significantly better
(p < 0.001) than the density only version on all datasets. It
also outperformed most uncertain withp < 0.001 on all ex-
cept the Heart data wherep < 0.05. It outperformed random
sampling on Flare withp < 0.05, on Face withp < 0.01 and
with p < 0.001 on the rest. Moreover, it outperformed rep-
resentative sampling withp < 0.001 on Breast, Flare, g50c,
and withp < 0.05 on Face whereas both are comparable
on Glass2 and Heart datasets. However, Table 2 shows that
our method improves more steeply and wins in the later it-
erations on these two datasets. When we only compared the
errors for the last 10 iterations on Glass2 and Heart, then our
method wins withp < 0.05 andp < 0.001, respectively.

We also conducted another set of experiments to evalu-
ate the cluster assumption. We re-ran our method without
transforming the data. In other words, we computed the Eu-
clidean pairwise distances in the original input space, andse-
lected the instances to label according to Equation 13. It per-
formed worse than or comparable with our original method.
On Heart and g50c they both did equally well. In fact, the
average absolute difference between the errors of the two
methods on Heart data is0.016 ± 0.009, and0.01 ± 0.005
on g50c data. On Glass2, Flare, Face and Breast datasets the



Data Proposed Method Most Uncertain Density Only Representative Random

Breast 5 0.278 (-24.6%) 0.334 (-9.04%) 0.293 (-20.5%) 0.380 (+2.9%) 0.369

Breast 11 0.264 (-20%) 0.285 (-13.6%) 0.297 (-10%) 0.347 (+5.1%) 0.330

Breast 17 0.249 (-18.8%) 0.269 (-12.3%) 0.264 (-14%) 0.302 (-1.6%) 0.307

Heart 5 0.213 (-18.3%) 0.245 (-6.1%) 0.220 (-15.7%) 0.216 (-17.2%) 0.261

Heart 11 0.198 (-4.3%) 0.208 (+0.4%) 0.220 (+6.2%) 0.205 (-0.9%) 0.207

Heart 17 0.166 (-13.5%) 0.164 (-14.5%) 0.219 (+14%) 0.20 (+4.1%) 0.192

Flare 5 0.465 (+5.2%) 0.454 (+2.7%) 0.454 (+2.7%) 0.478 (+8.1%) 0.442

Flare 11 0.394 (-1.6%) 0.451 (+10%) 0.422 (+2.9%) 0.417 (+1.7%) 0.410

Flare 17 0.366 (-8.7%) 0.449 (+11.9%) 0.401 (0%) 0.393 (-1.9%) 0.401

Face 5 0.350 (-1.9%) 0.468 (+31%) 0.420 (+17.6%) 0.313 (-12.3%) 0.357

Face 11 0.210 (-23.3%) 0.312 (+13.8%) 0.287 (+4.7%) 0.252 (-8%) 0.274

Face 17 0.151 (-32.5%) 0.196 (-12.5%) 0.189 (-15.6%) 0.202 (-9.8%) 0.224

Glass2 5 0.339 (-11%) 0.442 (+16%) 0.392 (+2.8%) 0.326 (-14.4%) 0.381

Glass2 11 0.317 (-7%) 0.341 (0%) 0.324 (-4.9%) 0.31 (-9%) 0.341

Glass2 17 0.266 (-8.9%) 0.292 (0%) 0.275 (-5.8%) 0.30 (+2.7%) 0.292

g50c 5 0.169 (-46.3%) 0.242 (-23.1%) 0.187 (-40.6%) 0.241 (-23.4%) 0.315

g50c 11 0.110 (-37.8%) 0.136 (-23.1%) 0.128 (-27.6%) 0.168 (-5%) 0.177

g50c 17 0.079 (-34.1%) 0.094 (-21.6%) 0.102 (-15%) 0.139 (+15.8%) 0.120

Table 2: Comparison of five different active learners on all datasets

untransformed version is outperformed by our method with
p < 0.001 significance.

4 Conclusion
In this paper, we explored a proximity-weighted conditional-
entropy-based criterion for active learning. This approach
is unique in two ways: First, it combines the density,
uncertainty and dissimilarity-across-classification-boundary
strategies into a unified framework. Second, it uses a
density-sensitive distance metric to measure the dissimilar-
ity between pairwise instances, maximizing the likelihood
of sampling both sides of a decision boundary in a totally
unsupervised process. Distances of points within the same
cluster are reduced while those from different clusters are
dominated by the inter-cluster distances. We presented em-
pirical results on various domains. The results demonstrate
that our method outperforms others in terms of both error
reduction and fewer number of labeling queries required to
obtain a certain level of accuracy. We note that the time com-
plexity of the data transforming process prohibit the applica-
tion to very large datasets. In the future, we plan to address
efficiency improvements, for instance by extending kd-trees
and by computing a k-nearest-neighbor fanout graph, vs the
full graph. We further note that our scoring functionS(i, j)
must be computed for each pair of points in the unlabeled
pool, which takesO(|Iu|2) time per iteration. In order to re-
duce computational cost, we rank the unlabeled points from
most to least uncertain. The top p% is selected and pair-
wise scores are computed for this subset. The algorithm
then picks instances to label from this representative sub-
set of unlabeled data. This is only enforced on the Flare and
Face datasets by setting p to 30% and 20%, respectively.
We also plan to extend this work to other probabilistic clas-
sifiers, such as Gaussian Process Classifiers, which should
require minimal effort, and we also plan to explore the ef-
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Figure 4: Graph of̂P (yi 6= yj | xi, xj) versus‖xi − xj‖ on
g50c dataset

fects of different kernels on the active learning techniquewe
proposed in this paper.
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6 Appendix
We estimated the probabilityP (yi 6= yj | xi, xj) as a func-
tion of the pairwise distance‖xi−xj‖. Figure 4 is generated
on g50c dataset. We sorted the pairwise distances in increas-
ing order and divided them into 30 equal intervals. For each
interval, all pairs(xi, xj) with distance‖xi − xj‖ falling
within that interval were examined.P (yi 6= yj | xi, xj)
was estimated as the relative frequency of pairs in that in-
terval with opposite class labels. As shown in Figure 4,
P (yi 6= yj | xi, xj) monotonically increases with the pair-
wise distance. This analysis empirically shows thatP̂ (yi 6=
yj | ‖xi − xj‖) ≥ P̂ (yi 6= yk | ‖xi − xk‖) ⇔ ‖xi − xj‖ ≥
‖xi − xk‖. The curve may differ for other datasets, but if



the class membership is a well-defined (e.g. smooth) func-
tion, the same principle applies. The dotted line is the prob-
ability P (yi 6= yj) = P (yi = 1, yj = −1) + P (yi =
−1, yj = 1), independent of any knowledge regarding the
data distribution. Since binary classes are equally balanced
on this dataset, this probability is0.5. The absolute differ-
ence between the two curves at any point indicates the loss
|P (yi 6= yj) − P̂ (yi 6= yj | ‖xi − xj‖)| introduced by re-
lying on‖xi − xj‖. Hence, sampling distant pairs increases
the likelihood that they have opposite class labels without
sacrificing a large penalty. This procedure is conducted only
to support our claim, i.e.P (yi 6= yj | xi, xj) ∝ ‖xi −xj‖2;
the proposed active sampling strategy is carried on a com-
pletely unsupervised manner.
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