
Reinforcement Learning with Limited Reinforcement:
Using Bayes Risk for Active Learning in POMDPs

Finale Doshi and Nicholas Roy and Joelle Pineau

Abstract

Partially Observable Markov Decision Processes (POMDPs)
have succeeded in many planning domains because they
can optimally trade between actions that increase an agent’s
knowledge and actions that increase an agent’s reward. Un-
fortunately, most real-world POMDPs are defined with a large
number of parameters which are difficult to specify from do-
main knowledge alone.
In this paper, we treat the POMDP model parameters as addi-
tional hidden state in a larger “model-uncertainty” POMDP,
and develop an approximate algorithm for planning in the
induced ‘model-uncertainty” POMDP. This approximation,
coupled with model-directed queries, allows the planner toac-
tively learn the true underlying POMDP and the accompany-
ing policy. We demonstrate our approach on several POMDP
problems.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
have succeeded in many planning domains because they can
reason in the face of uncertainty, optimally trading between
actions that gather information and actions that achieve a
particular goal. This ability has made POMDPs attractive in
real-world problems, such as dialog management (Williams
& Young 2005), but such problems typically require a large
number of parameters that are difficult to specifya priori
from domain knowledge.

Traditional reinforcement learning approaches (Watkins
1989; Sutton 1988; Strehl, Li, & Littman 2006; Even-Dar,
Kakade, & Mansour 2005) to learning in MDP or POMDP
domains require an oracle to provide reinforcement feed-
back after each of the agent’s actions during a training pe-
riod. The feedback requirement may be immaterial if a
learning can be performed in simulation, but if learning must
occur through interaction with a human expert, the tradi-
tional approach may be undesirable. The traditional ap-
proach also does not provide robustness guarantees for the
agent’s performance during the training period. We identify
three undesirable properties of the traditional approach that
we will address in this work:

1. The time required to gather sufficient training data to learn
these parameters in a supervised manner may be pro-
hibitively expensive.

Copyright c© 2007, authors listed above. All rights reserved.

2. Most domains require that the agent experience large
penalties (i.e., make critical mistakes) to learn to avoid
a poor decision. While these mistakes result in efficient
learning, the mistakes also reduce the perception of good
performance and reliability.

3. Accurate numerical reward feedback is especially hard
to obtain from human users, and determining the reward
model without an explicit reinforcement signal (the in-
verse reinforcement learning problem) poses its own set
of challenges (Ng & Russell 2000).

Our objective is to propose a new framework for simultane-
ous learning and planning in POMDPs that overcomes the
above mentioned limitations, allowing us to build agents that
behave effectively in domains with inherent model uncer-
tainty.

We discuss how our approach addresses each of these
three issues. To address the issue of long training peri-
ods, we adopt a Bayesian reinforcement learning approach.
By incorporating expert domain knowledge into priors over
models, the system begins the learning process as a robust,
functional agent while retaining the ability to adapt online to
novel situations. This prior can also provide the agent with
a basic understanding of potential pitfalls.

To ensure robustness toward catastrophic mistakes, we
develop an active learning scheme that alerts the system
when additional information is necessary. If the agent deems
that the uncertainty in the model may cause it to take an un-
due risk, it queries an expert regarding what action it should
perform. In addition to limiting the amount of training re-
quired, these queries allow the agent to infer the potential
consequences of an action without executing it. Asking for
policy information, instead of a traditional reward signal,
also side-steps the issue of getting explicit reward feedback
from the user or expert.

We are still left with the inverse reinforcement learn-
ing problem, as the user’s response regarding correct ac-
tions provides only implicit information about the underly-
ing reward function. Bayesian reinforcement learning tradi-
tionally has succeeded best with learning observation and
transition distributions (Jaulmes, Pineau, & Precup 2005;
Poupartet al. 2006), where updates have convenient, ana-
lytic forms. However, information from policy space (the in-
formation usually provided by inverse reinforcement learn-
ing) has proven difficult to integrate into algorithms that
learn parametric decision-theoretic models. In our work,

we instead use a non-parametric approach to model distribu-
tions over possible POMDPs; coupled with a simple action-
selection strategy, we show that our approach works well on
several standard problems.

Our method retains the decision-theoretic properties of
other (PO)MDP learning approaches (Jaulmes, Pineau,
& Precup 2005; Poupartet al. 2006) and expresses
model-uncertainty as additional hidden state in a larger,
continuously-valued POMDP. Within this framework, we
describe two important practical contributions. First, we
propose an approximation algorithm based on minimiz-
ing the immediate Bayes risk for choosing actions in a
POMDP with uncertain transition and observation probabil-
ities and uncertain rewards. The Bayes risk objective func-
tion avoids the computational intractability of solving large,
continuously-valued POMDPs; we show that this approxi-
mation performs well in a variety of problems. Second, to
efficiently gather information about the model without as-
suming state observability, we introduce the notion ofmeta-
queries. By allowing the agent to request information, the
meta-queries enable the agent to behave robustly in the face
of model uncertainty. The meta-queries accelerate learning
and help the agent to infer the consequences of a potential
pitfall without experiencing its negative effects. The meta-
queries are a powerful way of gaining information, but also
make strong assumptions about the environment (namely
that the queries will be answered). Fortuantely, there are
a number of decision-making problems where this is a rea-
sonnable assumption, in particular in the area of collabo-
rative human-machine tasks (e.g. automated dialogue sys-
tems, shared robot control scenarios, etc.)

The remainder of the paper is structured as follows. Sec-
tions 2 and 3 provide an overview of the POMDP and our
approach for representing uncertainty in the POMDP param-
eters as a larger model-uncertainty POMDP. In Section 4,
we describe our approximation to the policy in this larger
model-uncertainty POMDP. We also present lower bounds
on the quality of our approximation, although we note that
these bounds are not tight and in practice our algorithm far
out-performs the bounds we provide. Section 5 contains the
results of our approach on several standard POMDP prob-
lems. We conclude with a discussion of our approach in the
context of prior work in Section 6.

2 The POMDP Model
Formally, a POMDP consists of the n-tuple
{S,A,O,T ,Ω,R,γ}. S, A, and O are sets of states, ac-
tions, and observations. The transition functionT (s′|s, a)
is a distribution over the states to which the agent may
transition after taking actiona from states. The observation
functionΩ(o|s, a) is a distribution over observationso that
may be seen in states after taking actiona. The reward
functionR(s, a) specifies the agent’s immediate reward for
each state-action pair. The discount factorγ ∈ [0, 1) relates
the importance of current and future rewards.

In the POMDP model, the agent must choose actions
based on past observations; the true state is hidden. The
belief, a probability distribution over states, is a sufficient
statistic for a history of actions and observations. The belief
at timet + 1 can be computed recursively from the previous
belief, bt, and most recent actiona and observationo, by

applying Bayes rule:

ba,o
t+1(s) =

Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s)
∑

σ∈S Ω(o|σ, a)
∑

s∈S T (σ|s, a)bt(s)
(1)

The solution to a POMDP is a policy that maps beliefs to
actions. If the goal is to maximize the expected discounted
reward, then the optimal policy is given by:

Vt(b) = max
a∈A

Qt(b, a), (2)

Qt(b, a) = R(b, a) + γ
∑

o∈O

Ω(o|b, a)Vt(b
a,o), (3)

where the value functionV (b) is the expected discounted
reward that an agent will receive if its current belief isb and
Q(b, a) is the value of taking actiona in belief b. The exact
solution to equation 3 is PSPACE-hard, so we use a point-
based approximation (Pineau, Gordon, & Thrun 2003).

3 Modeling POMDP Uncertainty
We assume that the setsS, A, andO are fixed. The POMDP
learning problem is to determine the parameters inT , Ω, and
R that describe the dynamics and objective of the problem
domain. A Bayesian approach is attractive in many real-
world settings because we may have strong notions regard-
ing certain parameters, but the value of those parameters
may be difficult to specify exactly. We place a prior over
the model parameters to express our domain knowledge, and
improve upon this prior with experience.

Since the state, action, and observation sets are discrete,
T and Ω are collections of multinomial distributions. As
conjugates to the multinomial distribution, Dirichlet distri-
butions are a natural choice of prior forT andΩ. We use
a uniform prior over expert-specified ranges for the reward
functionR. Together these priors specify a distribution over
possible POMDP models. To build a POMDP that incorpo-
rates the model parameters into the hidden state, we consider
the joint state spaceS′ = S × M , whereM is the space of
models as described by all valid values for the model param-
eters. The new state space is continuous and high dimen-
sional, but the transition model forM is simple (assuming
the true model is static).

The formulation above makes the agent aware of the un-
certainty in the model parameters but does not give it ac-
tions to explicitly reduce model uncertainty. To allow for ac-
tive learning, we augment the action spaceA of our original
POMDP with a set of meta-queries{qm}. The meta-queries
attempt to confirm the actiona ∈ A that the system thinks is
most appropriate. For example, the agent might ask:

“I think you {may, probably, definitely} want me to do
actionai. Should I doai?”

The adverb gives the user a qualitative sense of the agent’s
uncertainty. If the user answers to the negative, the agent
follows up with further questions:

“In that case, I think I should take action{aj} instead.
Is that correct?”

until it receives an affirmative response (the observation
space should be augmented with yes/no keywords if not al-

Table 1: POMDP active learning approach.
ACTIVE LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution over
POMDPs (Section 4.2).

• Interact with the environment:

– Use the POMDP samples to compute the action with
minimal Bayes risk (Section 4.1).

– If the risk is larger than a givenξ, perform a meta-
query (Section 4.1).

– Update each POMDP sample’s belief based on the
observation received (Section 4.2).

• Periodically resample from an updated prior over
POMDPs (Section 4.2).

Performance and termination bounds are in Sections 4.3
and 4.4.

ready present).1 We treat the costξ of querying the user to
be a fixed parameter of the problem.

Meta-queries may be applied to any situation where an ex-
pert is available to guide an uncertain agent. Unlike the or-
acle of Jaulmes, Pineau, & Precup (2005), the meta-queries
ask for policy information, not state information. This as-
pect is important in applications where optimization pro-
cedures make the state-space unintuitive to the user, e. g.
(Williams & Young 2005). Policy-related questions may be
more amenable to deployment in such applications because
humans find it natural to give advice.

4 Solution Techniques
Table 1 describes our overall approach to solve and apply
the model-uncertainty POMDP. The approach requires two
parts. First, given a history of actions and observations, we
must describe how to select the next action. Second, we
must describe how to perform a belief update in the joint
state-model spaceS′, that is, how to update our distribution
over model parameters given additional interactions with the
environment. In our continuous-valued POMDP, both steps
are computationally intractable via standard POMDP solu-
tion techniques. We present approximations and bounds for
each of these steps. Section 5 contains an empirical evalua-
tion of our approach.

4.1 Bayes-Risk Action Selection
To select actions, we follow the active learning framework
for classification (Cohn, Ghahramani, & Jordan 1996). Let
the lossL(a, a∗) of taking actiona in modelm beQ(b, a)−
Q(b, a∗), wherea∗ is the optimal action according to model
m. Given a beliefpM (m) over models, the expected loss
EM [L] is exactly the Bayes risk:

BR(a) =

∫

M

(Q(bm, a) − Q(bm, a∗
m))pM (m), (4)

whereM is the space of models,bm is the current belief
according to modelm, and a∗

m is the optimal action for
the current beliefbm according to modelm. Let a′ =
arg maxa∈A BR(a) be the action with the least risk. If our

1In our tests, we used an abbreviated form of the meta-queries
for simulation speed.

agent is a passive learner using Bayes risk action selection,
it will simply performa′.

The pitfall of always performing the least-risky actiona′

is that the riskBR(a′) may still be quite large, and thus even
the best action may incur significant losses. We would like
our agent to be sensitive to absolute magnitude of the risks
that it takes. Unlike a passive learner, our active learner will
perform a meta-query ifBR(a′) is less than−ξ, that is, if
the least expected loss is still more than a certain threshold.
The series of meta-queries will lead us to choose the correct
action and thus accrue no risk.

Intuitively, the Bayes risk criterion selects the currently
least risky action, hoping that the uncertainty over models
will be resolved at the next time step. Indeed, we can rear-
range equation 4 to get:

BR(a) =

∫

M

Q(bm, a)pM (m) −

∫

M

Q(bm, a∗
m)pM (m).

(5)
Since the second term is independent of the choice of ac-
tion; to maximizeBR(a), one may simply maximize the
first term:

VBR = max

∫

M

Q(bm, a)pM (m). (6)

If we consider the distributionpM to be a belief over mod-
els, the Bayes risk criterion is similar to theQMDP heuristic
(Littman, Cassandra, & Kaelbling 1995), which uses the ap-
proximationV (b) = max

∑

s Q(s, a)b(s) to plan in known
POMDPs. In our case, the belief over statesb(s) is re-
placed by a belief over modelspM (m) and the action-value
function over statesQ(s, a) is replaced by an action-value
function over beliefsQ(bm, a). Recall that theQMDP ap-
proximation is derived by assuming that the uncertainty over
states will be resolved after the next time step. Our Bayes-
risk criterion may be viewed as similarly assuming that the
next action will resolve the agent’s uncertainty over models.

Although similar, the Bayes risk action selection criterion
does differ fromQMDP in two important ways. First, our
actions come from POMDP solutions and thus do fully con-
sider the uncertainty in the POMDP state. UnlikeQMDP ,
we do not act on the assumption that our state uncertainty
will be resolved after taking the next action; our approxi-
mation supposes that only the model uncertainty will be re-
solved. In many practical applications, the model stochas-
ticity is an important factor, and our approach will take ac-
tions to reduce state uncertainty. This observation is truere-
gardless of whether the agent is passive (does not ask meta-
queries) or active.

In the active learning setting, the second difference is the
meta-query. Without the meta-query, while the agent may
take actions to resolve state uncertainty, it will never take ac-
tions to reduce model uncertainty (since it believes that the
model uncertainty will soon disappear). However, the meta-
query ensures that the agent rarely (with probabilityδ) takes
a less thanξ-optimal action in expectation. These actions
both make the learning process robust from the start and pro-
vide the agent with information to resolve uncertainty in the
model.

Approximation and bounds: Since the integral in equa-
tion 4 is computationally intractable, we approximate it with

a sum over a sample of POMDPs from the space of models:

BR(a) ≈
∑

i

(Q(bi, a) − Q(bi, a
∗
i))pM (mi) (7)

There are two main sources of approximation that can lead
to error in our computation of the Bayes risk; fortunately we
can bound the error induced by each.

• Error due to the Monte Carlo approximation of the in-
tegral in equation 4: Note that the maximum value of
the Q(bi, a) − Q(bi, a

∗
i) is trivially upper bounded by

Rmax−min(Rmin,ξ)
1−γ and lower bounded by zero. Thus, a

standard application of the Hoeffding bound states that a
sampling errorǫs with confidenceδ will require

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2ǫ2s
log

1

δ
(8)

samples.2

• Error due to the point-based approximation ofQ(bi, a):
The differenceQ(bi, a) − Q(bi, a

∗
i) may have an error of

up to ǫPB = 2(Rmax−Rmin)δB

(1−γ)2 , whereδB is the sampling
density of the belief points. This result is directly from
the error bound in (Pineau, Gordon, & Thrun 2003).

Combining these bounds, to obtain confidenceδ when
calculating if the Bayes risk is greater than−ξ, we can set
ǫs = ξ − ǫPB, and compute the appropriate number of sam-
plesn from equation 8. We note however that the Hoeffding
bounds used to derive this approximation are quite loose; in
practice we found that we could often achieve good perfor-
mance with a set of 15 samples, whereas equation 8 suggests
over 800 samples were necessary to achieve that same level
of performance.

4.2 Updating the Model Distribution
As described in Section 4.1, we must sample POMDPs from
our belief over models to compute the Bayes risk of a par-
ticular action. Initially, we have some prior distributionover
the model that we can use to sample POMDPs. However,
as the agent gains information through interactions with the
environment and meta-queries, this distribution should be
updated (and the corresponding sample set should change)
to reflect our posterior belief over models. While this up-
date can theoretically be performed at any time, we will
see that, for episodic tasks, it will make most sense to re-
sample POMDPs at the end of each trial. The posterior
must be updated as a result of two sources of information—
interactions and meta-queries. While specific interactions
(action-observation sequences) allow us to maintain the pos-
terior in closed form, we will also see that the introduction
of meta-queries prevents us from representing the posterior
in closed form.

The first source of information is a historyh of action-
observation pairs since the last resampling. To use this in-
formation, we will also require the beliefs of the sampled

2An error ofǫ with confidenceδ means that the probability that
the difference between the estimated and true value is greater than
ǫ is less thanδ. Small values ofδ imply that our bound on the error
is more likely to hold.

POMDPs at the time of the last resampling. In episodic
tasks, keeping track of the initial belief is especially simple,
since all sampled POMDPs begin with some task-specific
starting belief at the start of each episode. In non-episodic
tasks, we may need to store a longer history of actions
and observations in order to reconstruct the belief of each
POMDP at the time of the last resampling. We will formu-
late a closed-form update to the posterior given a historyh,
so aside from the initial belief question, we only need to
store action-observation sequences until each resampling.

The second source of information is a recordQ =
{(q, r, h′)} of all the meta-queries it has asked. Here,q is
the query,r is the response, andh′ is the history of actions
and observations from the start of the episode containing
the query to when the query was asked. Unlike in the case
of storing histories, we must keep record of all the meta-
queries, not just the most recent, because we do not have
a closed-form update to the posterior over models that in-
corporates query information. As before, we note that if all
episodes start in the same belief, then we can useh′ to “play
forward” from some starting belief to the point at which the
query was asked. If the episodes start out in different beliefs,
then the record setQ must also contain the starting belief for
the episode in which the query was asked so we can “play
forward” to the point of the query in a similar manner.

Givenh andQ, the posteriorpM|h,Q over models is:

pM|h,Q(m|h, Q) = ηp(Q|m)p(h|m)pM (m), (9)

whereQ andh are conditionally independent givenm be-
cause they are both computed from the model parameters.
If pM is a Dirichlet distribution, thenη′p(h|m)pM (m) is
also a Dirichlet distribution since the likelihoodp(h|m) is
a product of multinomials. The second likelihoodp(Q|m)
truncates the Dirichlet distribution and prevents us from hav-
ing a closed-form expression forpM|h,Q. To sample from
pM|h,Q, we use the updated Dirichlet distribution—which
incorporates information from the most recent historyh—as
our proposal distribution, and then use rejection samplingto
discard samples that are inconsistent with our set of queries
and responsesQ. In this way, we are able to draw samples
from the posterior over models.

Action-Observation Histories: Dirichlet Update. Re-
call that we have placed Dirichlet priors over the observation
and transition parameters. These priors may be interpreted
as counts; for example, the Dirichlet parameter for the ob-
servation probabilityΩ(o|s, a) corresponds to the number of
times we have seen observationo after performing actiona
in states. Updating the prior simply involves adding counts
to the Dirichlet parameters corresponding to the transitions
(s′, s, a) and observations(o, s, a) the agent has experienced
during an episode.

Unfortunately, this simple update requires knowing the
underlying state for each step in the episode, and our agent
only has access to history of actions and observations. We
therefore update our parameters using an online extension
of the standard EM algorithm. In the E-step, we estimate
the distribution over the underlying state for each time step
during an episode. In the M-step, we use our distribution
over the underlying states to update counts on our Dirichlet
prior. The difference between the online EM algorithm and

the batch EM algorithm is that we receive additional data—a
new history—between iterations. Just as with the standard
EM algorithm, the online version will cause the parameters
to converge to a local optimum (Sato 1999).

For the E-step, we first must estimate the true state his-
tory in order to update our Dirichlet parameters. When
computing the distribution over states for some time step,
we have two sources of uncertainty: model stochasticity
and unknown model parameters. To compute the expecta-
tion with respect to model stochasticity, we use the conven-
tional HMM forward-backward algorithm (Rabiner 1989) to
obtain a distribution over states at each time-step for each
POMDP sample. Next, we combine the distributions for
each sample based on the sample’s weight. For example,
suppose there aren POMDP samples with weightswi, and
at some time-stept, each sample assigns a probabilitypi(s)
to being in states. Then the expected probabilitŷp(s) of
being in states is

p̂(s) =

n
∑

i

wi ∗ pi(s). (10)

Recall that our set of samples represents a continuous distri-
bution over POMDP models, so the summation above is an
approximation to an expectation over all models.

Next, we update our Dirichlet counts based on both the
probability that a POMDP assigns to a particular state and
the probability of that POMDP. Given an actiona and ob-
servationo corresponding to timet, we would update our
Dirichlet count forαo,s,a in the following manner with

αo,s,a = αo,s,a + p̂(s) (11)

for each states. Note that this update combines prior knowl-
edge about the parameters—the original value ofαo,s,a—
with new information from the current episode,p̂(s).

While convergence to a local optimum is guaranteed,
the global quality of the update procedure will depend on
the quality of the estimateŝp(s). In practice, most prob-
lems have natural break points such as “goal-reached states”
where backtracking in the forward-backward algorithm to
determine the prior state sequence becomes more accurate.
For example, consider a navigation scenario in a robot grid-
world. If the robot is simply lost in the maze, then trying
to estimate its position may be inaccurate. However, once
the robot reaches the end of the maze, it knows both its start
and end position, providing more information for it to re-
cover its position at intermediate time-steps. We update our
priors and resample POMDPs at these episode-termination
points3.

Policy-Query Histories: Rejection Sampling. Incorpo-
rating information about the action-observation history leads
to a closed-form update of our Dirichlet prior, but unfortu-
nately incorporating meta-query information requires a dif-
ferent approach. Each meta-query response provides infor-
mation about the policy, not the parameters—models are
feasible if their policy is consistent with all meta-query re-
sponses. Each component ofQ is therefore a hard constraint

3In our simulations we also reset the problem if a maximum
number of steps was reached.

on the set of feasible models, rather than evidence of model
likelihood that can be incorporated into the Dirichlet prior.
In particular,p(Q|m) is binary: either the modelm is con-
sistent with the set of meta-query responses or it is not.

Thus, the true posteriorpM|h,Q is a truncated Dirichlet
distribution, wherepM|h,Q(m) = 0 if p(Q|m) = 0, other-
wise, the model likelihood is given by the Dirichlet distribu-
tions over the model parameters. We do not have a closed-
form representation for the truncated Dirichlet, but we can
evaluate relative likelihoods, which allows us to use sam-
pling strategies such as rejection sampling. In particular, our
proposal distribution is the model likelihood given by the
Dirichlets computed from the action-observation histories,
p(h|m), and our target distribution is the model posterior
given in equation 9. The probability of accepting a sampled
model is the ratio of the target to the proposal distribution,
which (under the assumption of a uniform model prior) is
justp(Q|m). Whenp(Q|m) = 0, the model is rejected with
probability 1, otherwise the target and proposal distributions
are equal and the model is accepted with probability 1.

To sample POMDPs from the true posterior, we there-
fore first sample POMDPs from the updated Dirichlet pri-
ors. Next, we solve for the optimal policy of each model
(which can be done much faster than trying to solve the
model-uncertainty POMDP, since each sampled POMDP is
discrete) and check if each models’ policy is consistent with
the previous meta-query responses stored inQ. We reject
inconsistent samples; the remaining samples are therefore
distributed as if they were drawn from the true posterior.

Practical Sampling Considerations. The approach out-
lined above rejects any POMDP that is inconsistent with any
of the previous queries-response pairs. While theoretically
sound, we found that it was nearly impossible to sample
fully-consistent POMDPs. One reason is that the approxi-
mation techniques used to solve the sampled POMDPs in-
troduces significant noise in the solution, especially when
dealing with real-time systems. As the number of queries
increases, the feasible set of rewards also shrinks and leads
to a high rejection rate. We note that we must solve a sam-
pled POMDP to evaluate its consistency withQ, and solving
POMDPs is computationally expensive (although still possi-
ble in near real-time). The time required to solve a POMDP
effectively constrains the total number of POMDPs we can
sample before the agent must again be ready to respond to
the environment. Thus, high rejection rates can be quite
problematic for real applications.

We therefore smooth the rejection sampling probabilities
in the following manner to address the problem of noise
in the approximate POMDP solutions and use likelihood
weights to model this noise in the samples Letk be the num-
ber of meta-query responses with which a modelm is in-
consistent. Instead of rejecting all POMDPs with a non-zero
number of inconsistencies, we assign samples a likelihood
weight ofw = p(Q|m) = 1

1+ku(k′−k), whereu is the unit
step function andk′ is a free parameter. This function is es-
sentially an ad-hoc model of the noise in our estimate of the
query responses. Samples with a few inconsistent responses
receive lower weights but are not rejected completely.4

4We experimented with several violation-tolerant weighting

The question remains of how to setk′. Given a current
set of samples, we set the parameterk′ with the following
heuristic: given our current set of POMDPs, letk− andk+

respectively be the minimum and maximum number of vi-
olated meta-query constraints in the set. We setk′ = k+,
thus, all of the current samples in our set have non-zero
weight. Then we sample POMDPs until alln POMDPs
havek ≤ k− violations (we have a “balanced sample set”)
or we reach a maximum number of sample attempts. Intu-
itively, our heuristic attempts to ensure that new samples are
at least as good as current samples. Essentially, this approx-
imation assumes that the high-weight samples will dominate
in the Bayes risk approximation; we therefore attempt to get
a small, representative set of high-weight samples by throw-
ing out POMDPs with low weight.

To further reduce rejection rates when there are a large
number of constraints, we focus our sampling away from
regions where we have observed greater thank′ violations.
We do so by occasionally taking a random convex combi-
nation of a new sample and a known good POMDP to pro-
duce a hopefully better sample. This change means we are
trying to draw samples from something closer to the com-
bined prior. Formally, this change would require us to as-
sign weightswi/q(m) to the samples, whereq(m) was the
probability of m from this modified proposal distribution.
However, since our choice of noise function to assign like-
lihood weights was already heuristic, we do not make any
changes to the weights. While not fully principled, we find
that this approach allowed us to apply our algorithm to near
real-time applications in practice.

4.3 Performance Bounds
Let V ∗ be the value of the optimal policy. From our risk cri-
terion, the expected loss at each action is never more thanξ
(with confidenceδ). However, with probabilityδ the agent
may choose a bad action due to an error in the model esti-
mate, receiving a reward as small asRmin. Even worse, this
action may put the agent in an absorbing state in which it
receivesRmin forever.

To determine the expected discounted reward over the in-
finite horizon, consider a Markov chain with two states. The
first state is the “normal” state, in which the agent receivesa
reward ofR− ξ, whereR is the value the agent would have
received under the optimal policy. The second state is the
“bad” absorbing state, in which the agent receives a reward
of Rmin. The following equation describes the transitions in
this simple chain and the values of the states:

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

=

∣

∣

∣

∣

R − ξ
Rmin

∣

∣

∣

∣

+ γ

∣

∣

∣

∣

1 − δ δ
0 1

∣

∣

∣

∣

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

. (12)

Solving the linear set of equations gives us

V1 =
γδV2 + R − ξ

1 − γ(1 − δ)
(13)

V2 =
Rmin

1 − γ
, (14)

functions, includinge−k andu(k′−k), and found that our function
seemed to strike a good balance between not penalizing violations
too heavily while still giving sufficiently higher weight toPOMDPs
with few violations.

Finally, the agent’s first action puts it in state 1 with prob-
ability 1 − δ and state 2 with probabilityδ. Thus, alower
bound on the expected valueis:

V ′ = (1 − δ)V1 + δV2 (15)

= η(V ∗ −
ξ

1 − γ
) + (1 − η)

Rmin

1 − γ
, (16)

where

η =
(1 − δ)(1 − γ)

1 − γ(1 − δ)
. (17)

4.4 Model Convergence
Given the algorithm in Table 1, we would like to know if the
learner will eventually stop asking meta-queries. We state
that the model isconvergedif BR(a′) > −ξ for all histo-
ries. Our convergence argument involves two steps. First,
let us ignore the reward model and consider only the obser-
vation and transition models. As long as standard reinforce-
ment learning conditions—periodic resets to a start state and
information about all states (via visits or meta-queries)—
hold, the prior will peak around some value (perhaps to a
local extremum) in a bounded number of interactions from
the properties of the online EM algorithm (Sato 1999). We
next argue that once the observation and transition param-
eters have converged, we can bound the number of meta-
queries required for the reward parameters to converge.

Observation and Transition Convergence. To discuss
the convergence of the observation and transition distribu-
tions, we apply a weaker sufficient condition than the con-
vergence of the EM algorithm. We note that the number
of interactions bounds the number of meta-queries, since
we ask at most one meta-query for each normal interac-
tion. We also note that the counts on the Dirichlet priors
increase monotonically. Once the Dirichlet parameters are
sufficiently large, the variance in the sampled models will
be small; even if the mean of the Dirichlet distribution shifts
with time, no additional meta-queries will be asked.

The specific convergence rate of the active learning will
depend heavily upon the problem, which precludes a closed-
form expression for the convergence rate. However, we can
provide a procedure to determine ifr additional interactions
are sufficient such that the probability of asking a meta-
query ispq with confidenceδq. To do so, we will sample
random beliefs and test if less than apq-proportion have a
Bayes risk greater thanξ. For our test to be sufficiently pre-
cise, we must consider error due to the belief sampling and
our Bayes risk approximation.

1. Sampling a Sufficient Number of Beliefs. To test if r
interactions leads to a probabilitypq of additional meta-
queries with confidenceδq, we compute the Bayes risk
for nb beliefs sampled uniformly. If fewer thannq = pqnb

beliefs require meta-queries afterr interactions, we accept
the value ofr. We therefore sample from the posterior
Dirichlet givenr interactions and estimatêpq = nq/nb.
To determine how many beliefsnb are required to estimate
pq, we apply a Chernoff bound and check if the sampled
proportion is withinǫq of p′q = pq − ǫq with probability

δq. Using the Chernoff boundδq = e−nbp′

qǫ2q/3, we setǫq

to 2
3pq to minimize the samples required to:

nb >
27

4(pq)3
log

1

δq
. (18)

2. Computing Bayes Risk from a Conservative Posterior.
We next compute the Bayes risk for each belief given a hy-
pothesized set ofr interactions. We do not knowa priori
the response to the interactions, so we use the maximum-
entropy Dirichlet posterior to compute the posterior Bayes
risk. To compute the maximum-entropy posterior Dirich-
let, we note that that each interaction represents a count of
some parameter in the model. Givenr counts, the max-
entropy posterior Dirichlet distribution assigns an equal
number of counts to each variable. Thus, we distribute
ther counts equally among our Dirichlet parameters. We
compute the Bayes risk of each belief from this posterior
and acceptr if p̂q < pq.

3. Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over
sampled POMDP models, and the number of modelsnm

required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells us
if a beliefb has riskBR(a) < −ξ with confidenceδ. Sup-
pose we samplenb beliefs, and the true fraction of beliefs
in which meta-queries are asked ispq. Due to misclas-
sifications, however, the expected value we will observe
is only (1 − δ)pq. We can then apply a second Chernoff
bound to determine that with probabilityδ, no more than
2(1 − δ)nb beliefs will be misclassified.5 Let

p′′q = pq(1 − 2(1 − δ)), (19)

be the minimum fraction of beliefs queries we expect to
observe requiring meta-queries if the true fraction ispq.

Thus, to test ifr interactions lead to a probability ofpq

additional meta-queries with confidenceδq, we computep′′q
according to equation 19, samplenb beliefs uniformly ac-
cording to equation 18, update the Dirichlet posteriors to
be maximum-entropy posteriors, sample thenm models ac-
cording to equation 8, and finally compute the posterior
Bayes risk for each belief. If less than apq-proportion of
beliefs require meta-queries, thenr is an upper bound on
the number of remaining meta-queries with probabilitypq

and confidenceδq. If we find that r interactions are not
sufficient, we can next test ifr′ = 2r interactions will be
sufficient, et cetera. By testing several values ofr, we can
determine a bound on the number of meta-queries for the
desired values ofpq andδq.

Reward Convergence. The cost of a meta-query limits
the resolution to which we need to know the rewards. Sup-
pose that we know that a particular POMDPP has an opti-
mal policyπ with valueV . If we adjusted all the rewards by
some smallǫr, then the value of the same policyπ will dif-
fer fromV by at most ǫr

1−γ (since we will receive at worstǫr

less reward at each time step). This value is a lower-bound
on the optimal policy in the new POMDP. Thus, a POMDP

5This bound requiresnb >
3

δ
log 1

δ
, but we will find that our

final bound fornb is greater than this value.

with all its rewards within(1 − γ)ξ of P will have a policy
of valueV ± ξ. In this way, the valueξ imposes a minimal
level of discretization over the reward space.

The rewards are bounded betweenRmin and Rmax. If
our reward space hasd dimensions, then our discretization
will yield at most(Rmax−Rmin

(1−γ)ξ)d POMDPs. In practice, the
discretization simply involves limiting the precision of the
sampled rewards. Finally, we note that each meta-query in-
validates at least one POMDP sample—otherwise we would
not have asked the question. Since there are a finite number
of samples, we must eventually stop asking meta-queries.

5 Results
In this section, we first present results in which we solve the
model-uncertainty POMDP directly, rather than use the ap-
proach outlined in Table 1. This method does not scale, but
we can use it to evaluate the utility of meta-queries. We next
show results using meta-queries coupled with our Bayes-risk
action selection criterion for robust learning of continuous-
valued unknown POMDP parameters.

5.1 Learning Discrete Parameters
In domains where model uncertainty is limited to a few, dis-
crete parameters, we may be able to solve for the complete
model-uncertainty POMDP using standard POMDP meth-
ods We consider a simple POMDP-based dialog manage-
ment task where the reward in unknown. We presume the
correct reward is one of four (discrete) possible levels. Fig-
ure 1 compares the performance of the optimal policywith
meta-queries (left column), an optimal policywithoutmeta-
queries (middle column), and our Bayes risk policywith
meta-queries (right column). While the difference in median
performance is small, the reduction in variance provided by
the meta-queries is substantial. The difference in perfor-
mance in both median and variance is negligible between
the optimal policy and the Bayes risk approximation.

Unfortunately, discretizing the model space does not
scale; increasing from 4 to 48 possible reward levels, we
could no longer obtain high-quality global solutions using
standard techniques. Next, we present results only using our
Bayes-risk action selection criterion as an approximationfor
acting in a continuous-valued model uncertainty POMDP.

Figure 1: Boxplot of POMDP learning performance with a dis-
crete set of four possible models. Although the medians of the two
policies are not so different, the active learner (left) makes fewer
mistakes than the passive learner (center). The Bayes risk action
selection criterion (right) does not cause the performanceto suffer.

Table 2: Difference between optimal and accrued rewards for various problems (smaller = better).

Problem # States No Learning Passive Learning Active Learning

5x5 Gridworld 26 107.17 111.96 15.46
Tiger-Grid 36 5.83 17.89 0.72
Hallway 57 39.05 39.05 0.85

0 5 10 15 20 25 30 35 40 45 50
−40

−35

−30

−25

−20

−15

−10

−5

trial number

m
ea

n
di

ffe
re

nc
e

in
 r

ew
ar

d

Hallway: Mean difference between optimal and system rewards
when learning both observation and reward spaces

no learning
passive learning
active learning

Figure 2: Performance of the non-learner, passive learner, and ac-
tive learner on the hallway problem. Performance curves forthe
tiger-grid and gridworld problems were very similar.

5.2 Learning Continuous Parameters

Table 2 shows our approach applied to several POMDP
problems6. In each case, we used 15 POMDP samples
and resampled at the completion of each trial. The non-
learner used the 15 samples from the initial prior to make
decisions using the Bayes-risk action selection criterion. Its
prior did not change based on the action-observation histo-
ries that it experienced, nor did it ask any meta-queries to
gain additional information. The passive learner resampled
its POMDP set after updating its prior over transitions and
observations using the forward-backward algorithm. The ac-
tive learner used both the action-observation histories and
meta-queries for learning. None of the systems received ex-
plicit reward information, but the active learner used meta-
queries to infer information about the reward model.

Figure 2 shows the performance of the non-learner, pas-
sive learner, and active learner on the hallway problem (all
problems had similar results). In each case, the agent began
with observation and transition priors with high variance but
peaked toward the correct value (that is, slightly better than
uniform). We created these priors by applying a diffusion
filter to the ground-truth transition and observation distribu-
tions and using the result as our initial Dirichlet parameters.
All reward priors were uniform between the minimum and
maximum reward values of the ground-truth model. The ac-
tive learner started (and remained) with good performance
because it used meta-queries when initially confused about
the model. Thus, its performance was robust from the start.

6Tiger-grid and hallway are directly from (Littman, Cassandra,
& Kaelbling 1995); the 5x5 gridworld is an extension of the 4x3
gridworld of (Littman, Cassandra, & Kaelbling 1995).

6 Discussion and Conclusion

Prior work in MDP and POMDP learning has also consid-
ered sampling approaches to model a distribution over un-
certain models. Dearden et. al. (Dearden, Friedman, &
Andre 1999) discusses several approaches for representing
and updating priors over MDPs using sampling and value
function updates. Strens (Strens 2000) shows that in the
MDP case, randomly sampling only one model from a prior
over models, and using that model to make decisions, is still
guaranteed to converge to the optimal policy as long as one
resamples the MDP sufficiently frequently from an updated
prior over models. However, Strens’ approach does not con-
sider risk during the learning process, so the algorithm is not
robust to poor initial choices of prior.

One recent approach to MDP model learning, the Bee-
tle algorithm (Poupartet al. 2006), converts a discrete
MDP into a continuous POMDP with state variables for each
MDP parameter. As we saw in section 5.1, however, the
computationally-intensive solution techniques requiredfor
continuous POMDPs do not scale well enough to handle the
entire model as a hidden state in POMDPs. Also, since the
MDP is fully observable, Beetle can easily adjust its prior
over the MDP parameters as it acquires experience; in our
POMDP scenario, we needed to estimate the possible states
that the agent had visited.

Another recent approach targeting the problem of
Bayesian POMDP learning, is Medusa (Jaulmes, Pineau, &
Precup 2005). This approach also captures uncertainty in the
model by sampling POMDPs from a prior. Medusa avoids
the problem of knowing how to update the prior by occa-
sionally requesting the true state according to various heuris-
tics. Medusa guarantees convergence to the true model, but
the learning process may make several mistakes before con-
vergence occurs. Furthermore, a state oracle may be un-
achievable in many domains; we believe that meta-queries
are often a more intuitive form of feedback. Our conserva-
tive action-selection policy makes us robust to mistakes.

We developed a new approach for active learning in
POMDPs that robustly determines a near-optimal policy.
Meta-queries—questions about actions that the agent is
thinking of taking—and a risk-averse action selection cri-
terion are proposed, to allow our agent to behave robustly
even when its knowledge of the POMDP model is uncer-
tain. We analyze the theoretical properties of our algorithm,
but also include several practical approximations that render
the method tractable. Finally, we demonstrate the approach
on several problems in the POMDP literature. In our future
work, we hope to develop more efficient POMDP sampling
schemes to allow our approach to be deployed on larger,
real-time applications.

References
Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996.
Active learning with statistical models.Journal of Artificial
Intelligence Research4:129–145.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based bayesian exploration. 150–159.
Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2005. Re-
inforcement learning in pomdps without resets. InIJCAI,
690–695.
Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Learning in
non-stationary partially observable markov decision pro-
cesses. InECML Workshop.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable environ-
ments: scaling up.ICML.
Ng, A., and Russell, S. 2000. Algorithms for inverse rein-
forcement learning. InProceedings of ICML.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for pomdps.IJCAI.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete bayesian reinforcement learn-
ing. In ICML, 697–704. New York, NY, USA: ACM Press.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition.Proceed-
ings of the IEEE77(2):257–286.
Sato, M. 1999. Fast learning of on-line em algorithm.Tech-
nical Report, TR-H-281, ATR Human Information Process-
ing Research Laboratorie.
Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremen-
tal model-based learners with formal learning-time guar-
antees. InProceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence.
Strens, M. 2000. A bayesian framework for reinforcement
learning. InProc. of the 17th International Conf. on Ma-
chine Learning.
Sutton, R. 1988. Learning to predict by the methods of
temporal differences.Machine Learning3.
Watkins, C. 1989.Learning from Delayed Rewards. Ph.D.
Dissertation, Cambridge University.
Williams, J., and Young, S. 2005. Scaling up pomdps for
dialogue management: The ”summary pomdp” method. In
Proceedings of the IEEE ASRU Workshop.

