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Abstract

Partially Observable Markov Decision Processes (POMDPSs)
have succeeded in many planning domains because they
can optimally trade between actions that increase an agent’
knowledge and actions that increase an agent’s reward. Un-
fortunately, most real-world POMDPs are defined with a large
number of parameters which are difficult to specify from do-
main knowledge alone.

In this paper, we treat the POMDP model parameters as addi-
tional hidden state in a larger “model-uncertainty” POMDP,
and develop an approximate algorithm for planning in the
induced ‘model-uncertainty” POMDP. This approximation,
coupled with model-directed queries, allows the plannacto
tively learn the true underlying POMDP and the accompany-
ing policy. We demonstrate our approach on several POMDP
problems.

1 Introduction
Partially Observable Markov Decision Processes (POMDPS)

2. Most domains require that the agent experience large
penalties (i.e., make critical mistakes) to learn to avoid
a poor decision. While these mistakes result in efficient
learning, the mistakes also reduce the perception of good
performance and reliability.

. Accurate numerical reward feedback is especially hard
to obtain from human users, and determining the reward
model without an explicit reinforcement signal (the in-
verse reinforcement learning problem) poses its own set
of challenges (Ng & Russell 2000).

Our objective is to propose a new framework for simultane-
ous learning and planning in POMDPs that overcomes the
above mentioned limitations, allowing us to build ageng th
behave effectively in domains with inherent model uncer-
tainty.

We discuss how our approach addresses each of these
three issues. To address the issue of long training peri-
ods, we adopt a Bayesian reinforcement learning approach.
By incorporating expert domain knowledge into priors over

have succeeded in many planning domains because they cammodels, the system begins the learning process as a robust,

reason in the face of uncertainty, optimally trading betwee

functional agent while retaining the ability to adapt oslio

actions that gather information and actions that achieve a novel situations. This prior can also provide the agent with

particular goal. This ability has made POMDPs attractive in
real-world problems, such as dialog management (Williams
& Young 2005), but such problems typically require a large
number of parameters that are difficult to speafyriori
from domain knowledge.

Traditional reinforcement learning approaches (Watkins
1989; Sutton 1988; Strehl, Li, & Littman 2006; Even-Dar,
Kakade, & Mansour 2005) to learning in MDP or POMDP
domains require an oracle to provide reinforcement feed-
back after each of the agent’s actions during a training pe-
riod. The feedback requirement may be immaterial if a
learning can be performed in simulation, but if learning mus
occur through interaction with a human expert, the tradi-
tional approach may be undesirable. The traditional ap-

a basic understanding of potential pitfalls.

To ensure robustness toward catastrophic mistakes, we
develop an active learning scheme that alerts the system
when additional information is necessary. If the agent deem
that the uncertainty in the model may cause it to take an un-
due risk, it queries an expert regarding what action it sthoul
perform. In addition to limiting the amount of training re-
quired, these queries allow the agent to infer the potential
consequences of an action without executing it. Asking for
policy information, instead of a traditional reward signal
also side-steps the issue of getting explicit reward feekiba
from the user or expert.

We are still left with the inverse reinforcement learn-
ing problem, as the user’s response regarding correct ac-

proach also does not provide robustness guarantees for theyjgng provides only implicit information about the underly

agent’s performance during the training period. We idgntif
three undesirable properties of the traditional approhah t
we will address in this work:

1. Thetime required to gather sufficient training data torlea

ing reward function. Bayesian reinforcement learningitrad

tionally has succeeded best with learning observation and
transition distributions (Jaulmes, Pineau, & Precup 2005;
Poupartet al. 2006), where updates have convenient, ana-

these parameters in a supervised manner may be pro-lytic forms. However, information from policy space (the in

hibitively expensive.
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formation usually provided by inverse reinforcement learn
ing) has proven difficult to integrate into algorithms that
learn parametric decision-theoretic models. In our work,



we instead use a non-parametric approach to model distribu-
tions over possible POMDPs; coupled with a simple action-
selection strategy, we show that our approach works well on
several standard problems.

Our method retains the decision-theoretic properties of
other (PO)MDP learning approaches (Jaulmes, Pineau,
& Precup 2005; Pouparet al. 2006) and expresses
model-uncertainty as additional hidden state in a larger,
continuously-valued POMDP. Within this framework, we
describe two important practical contributions. First, we
propose an approximation algorithm based on minimiz-
ing the immediate Bayes risk for choosing actions in a
POMDP with uncertain transition and observation probabil-
ities and uncertain rewards. The Bayes risk objective func-
tion avoids the computational intractability of solvingda,
continuously-valued POMDPs; we show that this approxi-
mation performs well in a variety of problems. Second, to
efficiently gather information about the model without as-
suming state observability, we introduce the notiometa-
gueries By allowing the agent to request information, the
meta-queries enable the agent to behave robustly in the face
of model uncertainty. The meta-queries accelerate legrnin
and help the agent to infer the consequences of a potential
pitfall without experiencing its negative effects. The met
gueries are a powerful way of gaining information, but also
make strong assumptions about the environment (namely
that the queries will be answered). Fortuantely, there are
a number of decision-making problems where this is a rea-
sonnable assumption, in particular in the area of collabo-
rative human-machine tasks (e.g. automated dialogue sys-
tems, shared robot control scenarios, etc.)

The remainder of the paper is structured as follows. Sec-
tions 2 and 3 provide an overview of the POMDP and our
approach for representing uncertainty in the POMDP param-
eters as a larger model-uncertainty POMDP. In Section 4,
we describe our approximation to the policy in this larger
model-uncertainty POMDP. We also present lower bounds
on the quality of our approximation, although we note that
these bounds are not tight and in practice our algorithm far
out-performs the bounds we provide. Section 5 contains the
results of our approach on several standard POMDP prob-
lems. We conclude with a discussion of our approach in the
context of prior work in Section 6.

2 The POMDP Model

Formallyy, a POMDP consists of the n-tuple
{5,A,0TQ,R~}. S, A, andO are sets of states, ac-
tions, and observations. The transition functib(s’|s, a)

is a distribution over the states to which the agent may
transition after taking actiom from states. The observation
functionQ(o|s, a) is a distribution over observatiomsthat
may be seen in state after taking actiora. The reward
function R(s, a) specifies the agent’s immediate reward for
each state-action pair. The discount factag [0, 1) relates
the importance of current and future rewards.

In the POMDP model, the agent must choose actions
based on past observations; the true state is hidden. The
belief, a probability distribution over states, is a suéiu
statistic for a history of actions and observations. Thesbel
at timet + 1 can be computed recursively from the previous
belief, b;, and most recent actiom and observatiow, by

applying Bayes rule:

Qols, a) 355 T (5|5, a)bi(s)
Yoes Uolo,a) 3o s T(ols, a)b(s)
The solution to a POMDP is a policy that maps beliefs to

actions. If the goal is to maximize the expected discounted
reward, then the optimal policy is given by:

by (s) = 1)

Vi(h) = max@Qy(b,a), (2)
Qi(b,a) = R(b,a)+7 Y Qolb,a)Vi(b™°), (3)

0€0

where the value functiof'(b) is the expected discounted
reward that an agent will receive if its current beliebiand
Q(b, a) is the value of taking actioa in beliefb. The exact
solution to equation 3 is PSPACE-hard, so we use a point-
based approximation (Pineau, Gordon, & Thrun 2003).

3 Modeling POMDP Uncertainty

We assume that the seis A, andO are fixed. The POMDP
learning problem is to determine the parametef,if2, and

R that describe the dynamics and objective of the problem
domain. A Bayesian approach is attractive in many real-

world settings because we may have strong notions regard-
ing certain parameters, but the value of those parameters

may be difficult to specify exactly. We place a prior over

the model parameters to express our domain knowledge, and

improve upon this prior with experience.

Since the state, action, and observation sets are discrete
T and () are collections of multinomial distributions. As
conjugates to the multinomial distribution, Dirichlet dlis
butions are a natural choice of prior férand2. We use
a uniform prior over expert-specified ranges for the reward
function R. Together these priors specify a distribution over
possible POMDP models. To build a POMDP that incorpo-
rates the model parameters into the hidden state, we conside
the joint state spac8’ = S x M, whereM is the space of
models as described by all valid values for the model param-

eters. The new state space is continuous and high dimen-

sional, but the transition model fa¥/ is simple (assuming
the true model is static).

The formulation above makes the agent aware of the un-
certainty in the model parameters but does not give it ac-
tions to explicitly reduce model uncertainty. To allow fara
tive learning, we augment the action spatef our original
POMDP with a set of meta-queri¢s,, }. The meta-queries
attempt to confirm the actiam€ A that the system thinks is
most appropriate. For example, the agent might ask:

“I think you {may, probably, definitelywant me to do
actiona;. Should | doa;?”

The adverb gives the user a qualitative sense of the agent’s

uncertainty. If the user answers to the negative, the agent
follows up with further questions:

“In that case, | think | should take actidm; } instead.
Is that correct?”

until it receives an affirmative response (the observation
space should be augmented with yes/no keywords if not al-



Table 1: POMDP active learning approach agent is a passive learner using Bayes risk action selection
: it will simply performa’.
ACTIVE LEARNING WITH BAYES RISK The pit?a)lll F())f always performing the least-risky actioh
e Sample POMDPs from a prior distribution over is that the riskBR(a") may still be quite large, and thus even
POMDPs (Section 4.2). the best action may incur significant losses. We would like
e Interact with the environment: our agent to be sensitive to absolute magnitude of the risks
— Use the POMDP samples to compute the action with that it takes. Unlike a passive learner, our active learnier w
minimal Bayes risk (Section 4.1). perform a meta-query iBR(a’) is less than-¢, that is, if
— If the risk is larger than a giveg, perform a meta- the Ieas_t expected loss is stlll_ more than a certain thrdshol
query (Section 4.1). ’ The series of meta-queries will lead us to choose the correct

— Update each POMDP sample’s belief based onlthe action and thus accrue no risk.

observation received (Section 4.2). Intuitively, the Bayes risk criterion selects the currgntl
« Periodically resample from an updated prior over least risky action, hoping that the uncertainty over models
POMDPS (ySection 4.2) will be resolved at the next time step. Indeed, we can rear-
e range equation 4 to get:
Performance and termination bounds are in Sectiong 4.3
and 4.4. BR(a) = [ Q(bm,a)pr(m) —/ Q (b, ay,)par(m).
M M

ready present). We treat the cos{ of querying the user to . o ~(5)
be a fixed parameter of the problem. Since the second term is independent of the choice of ac-

Meta-queries may be applied to any situation where an ex- tion; to maximizeBR(a), one may simply maximize the
pert is available to guide an uncertain agent. Unlike the or- firstterm:
acle of Jaulmes, Pineau, & Precup (2005), the meta-queries Vi — b 6
ask for policy information, not state information. This as- br=Mmax | Q(bm, a)par(m). 6)
pect is important in applications where optimization pro-
cedures make the state-space unintuitive to the user, e. g.
(Williams & Young 2005). Policy-related questions may be
more amenable to deployment in such applications because
humans find it natural to give advice.

If we consider the distributiop; to be a belief over mod-
els, the Bayes risk criterion is similar to tie,; p p heuristic
(Littman, Cassandra, & Kaelbling 1995), which uses the ap-
proximationV (b) = max >, Q(s, a)b(s) to plan in known
POMDPs. In our case, the belief over statgs) is re-
. . placed by a belief over modets,; (m) and the action-value

4 Solution Techniques function over statef)(s, a) is rep(lac)ed by an action-value
Table 1 describes our overall approach to solve and apply function over belief)(b,,,a). Recall that the,pp ap-
the model-uncertainty POMDP. The approach requires two proximation is derived by assuming that the uncertainty ove
parts. First, given a history of actions and observatiors, w  states will be resolved after the next time step. Our Bayes-
must describe how to select the next action. Second, we risk criterion may be viewed as similarly assuming that the
must describe how to perform a belief update in the joint next action will resolve the agent’s uncertainty over medel
state-model spac#, that is, how to update our distribution Although similar, the Bayes risk action selection criterio
over model parameters given additional interactions wiéht  does differ fromQ;pp in two important ways. First, our
environment. In our continuous-valued POMDP, both steps actions come from POMDP solutions and thus do fully con-
are computationally intractable via standard POMDP solu- sider the uncertainty in the POMDP state. Unli®e;pp,
tion techniques. We present approximations and bounds for we do not act on the assumption that our state uncertainty
each of these steps. Section 5 contains an empirical evalua-will be resolved after taking the next action; our approxi-

tion of our approach. mation supposes that only the model uncertainty will be re-
. . . solved. In many practical applications, the model stochas-
4.1 Bayes-Risk Action Selection ticity is an important factor, and our approach will take ac-

To select actions, we follow the active learning framework tions to reduce state uncertainty. This observation isreue
for classification (Cohn, Ghahramani, & Jordan 1996). Let gardless of whether the agent is passive (does not ask meta-

the lossL(a, a*) of taking actioru in modelm beQ (b, a) — queries) or active.
Q(b,a*), wherea* is the optimal action according to model In the active learning setting, the second difference is the
m. Given a beliefpy;(m) over models, the expected loss meta-query. Without the meta-query, while the agent may
En[L] is exactly the Bayes risk: take actions to resolve state uncertainty, it will neveetak-
tions to reduce model uncertainty (since it believes that th
_ _ * model uncertainty will soon disappear). However, the meta-
BR(a) /M(Q(bm’ @) = QLbm, @z ))par(m), (4) query ensures that the agent rarely (with probabiltiakes

a less tharg-optimal action in expectation. These actions
both make the learning process robust from the start and pro-
vide the agent with information to resolve uncertainty ia th
model.

where M is the space of model$,, is the current belief
according to modein, anda}, is the optimal action for
the current beliefb,, according to modeh:.. Letd =

arg max,ec 4 BR(a) be the action with the least risk. If our

!In our tests, we used an abbreviated form of the meta-queries Approximation and bounds: ~ Since the integral in equa-
for simulation speed. tion 4 is computationally intractable, we approximate ithwi



a sum over a sample of POMDPs from the space of models:

~
~

BR(a) ~ Y (Q(bi,a) — Q(bi, a;))par(mi)

%

(@)

There are two main sources of approximation that can lead
to error in our computation of the Bayes risk; fortunately we
can bound the error induced by each.

e Error due to the Monte Carlo approximation of the in-
tegral in equation 4: Note that the maximum value of
the Q(b;,a) — Q(bs,af) is trivially upper bounded by

Lmax—min(Binin.) gnd Jower bounded by zero. Thus, a

1—
standardvapplication of the Hoeffding bound states that a
sampling erroe, with confidence will require

— mj )2
(Rmax — min(Rmin, §)) log 1
2(1 —7)2%e2 )

(8)

Ny =

samples.

e Error due to the point-based approximation@fb;, a):
The difference)(b;, a) — Q(b;, al) may have an error of

1
up toepp = W, whered g is the sampling

density of the belief points. This result is directly from
the error bound in (Pineau, Gordon, & Thrun 2003).

Combining these bounds, to obtain confiderdceshen
calculating if the Bayes risk is greater thaig, we can set
es = £ — epp, and compute the appropriate number of sam-
plesn from equation 8. We note however that the Hoeffding
bounds used to derive this approximation are quite loose; in
practice we found that we could often achieve good perfor-

mance with a set of 15 samples, whereas equation 8 suggest
over 800 samples were necessary to achieve that same leve

of performance.

4.2 Updating the Model Distribution

As described in Section 4.1, we must sample POMDPs from
our belief over models to compute the Bayes risk of a par-
ticular action. Initially, we have some prior distributiomer

the model that we can use to sample POMDPs. However,
as the agent gains information through interactions wigh th
environment and meta-queries, this distribution should be

updated (and the corresponding sample set should change

to reflect our posterior belief over models. While this up-
date can theoretically be performed at any time, we will
see that, for episodic tasks, it will make most sense to re-
sample POMDPs at the end of each trial. The posterior
must be updated as a result of two sources of information—
interactions and meta-queries. While specific interastion
(action-observation sequences) allow us to maintain tise po
terior in closed form, we will also see that the introduction
of meta-queries prevents us from representing the posterio
in closed form.
The first source of information is a histofy of action-

observation pairs since the last resampling. To use this in-
formation, we will also require the beliefs of the sampled

2An error ofe with confidence means that the probability that
the difference between the estimated and true value isegrdan
e is less thard. Small values of imply that our bound on the error
is more likely to hold.

POMDPs at the time of the last resampling. In episodic
tasks, keeping track of the initial belief is especially pien
since all sampled POMDPs begin with some task-specific
starting belief at the start of each episode. In non-epésodi
tasks, we may need to store a longer history of actions
and observations in order to reconstruct the belief of each
POMDP at the time of the last resampling. We will formu-
late a closed-form update to the posterior given a history
so aside from the initial belief question, we only need to
store action-observation sequences until each resampling
The second source of information is a recagd =
{(g,r, ')} of all the meta-queries it has asked. Herés
the queryy is the response, and is the history of actions
and observations from the start of the episode containing
the query to when the query was asked. Unlike in the case
of storing histories, we must keep record of all the meta-
queries, not just the most recent, because we do not have
a closed-form update to the posterior over models that in-
corporates query information. As before, we note that if all
episodes start in the same belief, then we carmise“play
forward” from some starting belief to the point at which the
query was asked. If the episodes start out in different fslie
then the record s&p must also contain the starting belief for
the episode in which the query was asked so we can “play
forward” to the point of the query in a similar manner.
Givenh and@, the posteriop,; ;o over models is:

Puin,g(mlh, Q) = np(Qm)p(h|m)par(m),  (9)

where@ andh are conditionally independent given be-
cause they are both computed from the model parameters.
If par is a Dirichlet distribution, them'p(h|m)py(m) is

Qlso a Dirichlet distribution since the likelihogdh|m) is

;’-1 product of multinomials. The second likelihopy|m)
runcates the Dirichlet distribution and prevents us frawh
ing a closed-form expression fof;, o. To sample from

Pa|n,@y We use the updated Diric let distribution—which

incorporates information from the most recent histbrras

our proposal distribution, and then use rejection sampbng
discard samples that are inconsistent with our set of gsierie
and responseq. In this way, we are able to draw samples
from the posterior over models.

ction-Observation Histories: Dirichlet Update. Re-
call that we have placed Dirichlet priors over the obseorati
and transition parameters. These priors may be interpreted
as counts; for example, the Dirichlet parameter for the ob-
servation probabilit§2(o|s, a) corresponds to the number of
times we have seen observatioafter performing actiom
in states. Updating the prior simply involves adding counts
to the Dirichlet parameters corresponding to the transitio
(s', s,a) and observation®, s, a) the agent has experienced
during an episode.

Unfortunately, this simple update requires knowing the
underlying state for each step in the episode, and our agent
only has access to history of actions and observations. We
therefore update our parameters using an online extension
of the standard EM algorithm. In the E-step, we estimate
the distribution over the underlying state for each time ste
during an episode. In the M-step, we use our distribution
over the underlying states to update counts on our Dirichlet
prior. The difference between the online EM algorithm and



the batch EM algorithm is that we receive additional data—a

on the set of feasible models, rather than evidence of model

new history—between iterations. Just as with the standard likelihood that can be incorporated into the Dirichlet prio

EM algorithm, the online version will cause the parameters
to converge to a local optimum (Sato 1999).

For the E-step, we first must estimate the true state his-
tory in order to update our Dirichlet parameters. When
computing the distribution over states for some time step,
we have two sources of uncertainty: model stochasticity

In particular,p(Q|m) is binary: either the modeth is con-
sistent with the set of meta-query responses or it is not.
Thus, the true posterigry ;g is a truncated Dirichlet
distribution, wherev5,,o(m) = 0if p(Q|m) = 0, other-
wise, the model likelihood is given by the Dirichlet distiib
tions over the model parameters. We do not have a closed-

and unknown model parameters. To compute the expecta- form representation for the truncated Dirichlet, but we can

tion with respect to model stochasticity, we use the conven-
tional HMM forward-backward algorithm (Rabiner 1989) to

evaluate relative likelihoods, which allows us to use sam-
pling strategies such as rejection sampling. In particolar

obtain a distribution over states at each time-step for each proposal distribution is the model likelihood given by the

POMDP sample. Next, we combine the distributions for

Dirichlets computed from the action-observation histarie

each sample based on the sample’s weight. For example,(h|m), and our target distribution is the model posterior

suppose there are POMDP samples with weights;, and
at some time-stepy each sample assigns a probabiliys)
to being in states. Then the expected probabilif(s) of
being in states is

p(s) = Z w; * Pi(8). (10)

Recall that our set of samples represents a continuous distr
bution over POMDP models, so the summation above is an
approximation to an expectation over all models.

Next, we update our Dirichlet counts based on both the
probability that a POMDP assigns to a particular state and
the probability of that POMDP. Given an actianand ob-
servationo corresponding to time, we would update our
Dirichlet count fore, ; , in the following manner with

(11)

for each state. Note that this update combines prior knowl-
edge about the parameters—the original valuex9f ,—
with new information from the current episoggs).

While convergence to a local optimum is guaranteed,
the global quality of the update procedure will depend on
the quality of the estimates(s). In practice, most prob-

Qop,s,a = Uo,s,a + ﬁ(S)

given in equation 9. The probability of accepting a sampled
model is the ratio of the target to the proposal distribution
which (under the assumption of a uniform model prior) is
justp(Q|m). Whenp(Q|m) = 0, the model is rejected with
probability 1, otherwise the target and proposal distidng

are equal and the model is accepted with probability 1.

To sample POMDPs from the true posterior, we there-
fore first sample POMDPs from the updated Dirichlet pri-
ors. Next, we solve for the optimal policy of each model
(which can be done much faster than trying to solve the
model-uncertainty POMDP, since each sampled POMDP is
discrete) and check if each models’ policy is consistert wit
the previous meta-query responses store@inWe reject
inconsistent samples; the remaining samples are therefore
distributed as if they were drawn from the true posterior.

Practical Sampling Considerations. The approach out-
lined above rejects any POMDP that is inconsistent with any
of the previous queries-response pairs. While theoréical
sound, we found that it was nearly impossible to sample
fully-consistent POMDPs. One reason is that the approxi-
mation techniques used to solve the sampled POMDPs in-
troduces significant noise in the solution, especially when
dealing with real-time systems. As the number of queries

lems have natural break points such as “goal-reached’states increases, the feasible set of rewards also shrinks and lead

where backtracking in the forward-backward algorithm to

to a high rejection rate. We note that we must solve a sam-

determine the prior state sequence becomes more accuratepled POMDP to evaluate its consistency withand solving

For example, consider a navigation scenario in a robot grid-
world. If the robot is simply lost in the maze, then trying
to estimate its position may be inaccurate. However, once

POMDPs is computationally expensive (although still possi
ble in near real-time). The time required to solve a POMDP
effectively constrains the total number of POMDPs we can

the robot reaches the end of the maze, it knows both its start sample before the agent must again be ready to respond to

and end position, providing more information for it to re-
cover its position at intermediate time-steps. We update ou

priors and resample POMDPs at these episode-termination

points’.

Policy-Query Histories: Rejection Sampling. Incorpo-
rating information about the action-observation histeads
to a closed-form update of our Dirichlet prior, but unfortu-
nately incorporating meta-query information requiresfa di

ferent approach. Each meta-query response provides infor-

mation about the policy, not the parameters—models are
feasible if their policy is consistent with all meta-quegy r
sponses. Each componeni@fs therefore a hard constraint

3In our simulations we also reset the problem if a maximum
number of steps was reached.

the environment. Thus, high rejection rates can be quite
problematic for real applications.

We therefore smooth the rejection sampling probabilities
in the following manner to address the problem of noise
in the approximate POMDP solutions and use likelihood
weights to model this noise in the samples L&t the num-
ber of meta-query responses with which a models in-
consistent. Instead of rejecting all POMDPs with a hon-zero
number of inconsistencies, we assign samples a likelihood
weight ofw = p(Q|m) = 7 u(k’ — k), whereu is the unit
step function and’ is a free parameter. This function is es-
sentially an ad-hoc model of the noise in our estimate of the
query responses. Samples with a few inconsistent responses
receive lower weights but are not rejected completely.

“We experimented with several violation-tolerant weightin



The question remains of how to &t Given a current
set of samples, we set the paramétewith the following
heuristic: given our current set of POMDPs, ket and k™
respectively be the minimum and maximum number of vi-

Finally, the agent’s first action puts it in state 1 with prob-
ability 1 — § and state 2 with probability. Thus, alower
bound on the expected valués:

olated meta-query constraints in the set. Wekéet k™, V= (1-0)Vi+dVs (15)

thus, all of the current samples in our set have non-zero B v 13 1 Rpin 16

weight. Then we sample POMDPs until all POMDPs = V' =)+ —n7—. (16)
Lo 1—x 1—7

havek < k~ violations (we have a “balanced sample set”)

or we reach a maximum number of sample attempts. Intu- Where

itively, our heuristic attempts to ensure that new sampies a (1-0)(1—19) 17)

at least as good as current samples. Essentially, this:appro =T v(1=96) "
imation assumes that the high-weight samples will dominate

in the Bayes risk approximation; we therefore attemptto get 4.4 Model Convergence

a small, representative set of high-weight samples by throw - Gjven the algorithm in Table 1, we would like to know if the
ing out POMDPs with low weight. learner will eventually stop asking meta-queries. We state
To further reduce rejection rates when there are a large that the model isonvergedf BR(a') > —¢ for all histo-

number of constraints, we focus our sampling away from ries. Our convergence argument involves two steps. First,
regions where we have observed greater thaviolations.  |et ys ignore the reward model and consider only the obser-
We do so by occasionally taking a random convex combi- yation and transition models. As long as standard reinforce
nation of a new sample and a known good POMDP to pro- ment learning conditions—periodic resets to a start stade a
duce a hopefully better sample. This change means we arenformation about all states (via visits or meta-queries)—
trying to draw samples from something closer to the com- hod, the prior will peak around some value (perhaps to a
bined prior. Formally, this change would require us to as- |ocal extremum) in a bounded number of interactions from
sign weightsw; /q(mn) to the samples, wheigm) was the the properties of the online EM algorithm (Sato 1999). We
probability of i from this modified proposal distribution.  next argue that once the observation and transition param-
However, since our choice of noise function to assign like- eters have converged, we can bound the number of meta-

lihood weights was already heuristic, we do not make any queries required for the reward parameters to converge.
changes to the weights. While not fully principled, we find

that this approach allowed us to apply our algorithm to near

real-time applications in practice. Observation and Transition Convergence. To discuss

the convergence of the observation and transition distribu
tions, we apply a weaker sufficient condition than the con-
vergence of the EM algorithm. We note that the number
of interactions bounds the number of meta-queries, since
we ask at most one meta-query for each normal interac-
tion. We also note that the counts on the Dirichlet priors
increase monotonically. Once the Dirichlet parameters are
sufficiently large, the variance in the sampled models will
be small; even if the mean of the Dirichlet distribution shif
with time, no additional meta-queries will be asked.

The specific convergence rate of the active learning will
depend heavily upon the problem, which precludes a closed-
form expression for the convergence rate. However, we can
provide a procedure to determineriadditional interactions
are sufficient such that the probability of asking a meta-
query isp, with confidence),. To do so, we will sample
random beliefs and test if less thapaproportion have a
Bayes risk greater thah For our test to be sufficiently pre-
cise, we must consider error due to the belief sampling and
(12) our Bayes risk approximation.

1. Sampling a Sufficient Number of Beliefs. To test ifr
interactions leads to a probability, of additional meta-

4.3 Performance Bounds

Let V* be the value of the optimal policy. From our risk cri-
terion, the expected loss at each action is never moregthan
(with confidence)). However, with probabilityy the agent
may choose a bad action due to an error in the model esti-
mate, receiving a reward as smallRs;,. Even worse, this
action may put the agent in an absorbing state in which it
receivesR,,,;,, forever.

To determine the expected discounted reward over the in-
finite horizon, consider a Markov chain with two states. The
first state is the “normal” state, in which the agent receaves
reward of R — &, whereR is the value the agent would have
received under the optimal policy. The second state is the
“bad” absorbing state, in which the agent receives a reward
of Ruin. The following equation describes the transitions in
this simple chain and the values of the states:

1 R—-¢ 1-6 6|\
Va| = | Runin ”‘ (AR

Solving the linear set of equations gives us

~vVo+ R —€ queries with confidencé,, we compute the Bayes risk
i = m (13) for ny, beliefs sampled uniformly. If fewer than, = pyns
beliefs require meta-queries afteinteractions, we accept
Vo = Fmin ’ (14) the value ofr. We therefore sample from the posterior
1—7 Dirichlet givenr interactions and estimaf®, = n,/n.

functions, including:=* andu(k’ — k), and found that our function
seemed to strike a good balance between not penalizingiviata
too heavily while still giving sufficiently higher weight ®OMDPs
with few violations.

To determine how many beliefg, are required to estimate
pq, We apply a Chernoff bound and check if the sampled
proportion is withine, of p;, = p, — ¢, with probability

4. Using the Chernoff bound}, = e ™Pia/3 we sete,



to %pq to minimize the samples required to:

1

ny > —— log —.
dg

4(pq)?

. Computing Bayes Risk from a Conservative Posterior.
We next compute the Bayes risk for each belief given a hy-
pothesized set of interactions. We do not know priori
the response to the interactions, so we use the maximum-
entropy Dirichlet posterior to compute the posterior Bayes
risk. To compute the maximum-entropy posterior Dirich-
let, we note that that each interaction represents a count of
some parameter in the model. Giverounts, the max-
entropy posterior Dirichlet distribution assigns an equal
number of counts to each variable. Thus, we distribute
ther counts equally among our Dirichlet parameters. We
compute the Bayes risk of each belief from this posterior
and accept if p; < pq.

. Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over
sampled POMDP models, and the number of modegls
required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells us
if a beliefb has riskBR(a) < —¢ with confidence. Sup-
pose we sample,, beliefs, and the true fraction of beliefs
in which meta-queries are askedpig Due to misclas-
sifications, however, the expected value we will observe
is only (1 — §)p,. We can then apply a second Chernoff
bound to determine that with probabilily no more than
2(1 — §)ny, beliefs will be misclassified.Let

Pq = Pq(1 = 2(1 = 9)), (19)

be the minimum fraction of beliefs queries we expect to
observe requiring meta-queries if the true fractiopis

Thus, to test ifr interactions lead to a probability @f,
additional meta-queries with confidentg we computey
according to equation 19, sampig beliefs uniformly ac-
cording to equation 18, update the Dirichlet posteriors to
be maximum-entropy posteriors, sample thg models ac-
cording to equation 8, and finally compute the posterior
Bayes risk for each belief. If less thanpg-proportion of
beliefs require meta-queries, theris an upper bound on
the number of remaining meta-queries with probabitify
and confidencé,. If we find thatr interactions are not
sufficient, we can next test i = 2r interactions will be
sufficient, et cetera. By testing several values ofve can
determine a bound on the number of meta-queries for the
desired values gf, andd,.

(18)

Reward Convergence. The cost of a meta-query limits
the resolution to which we need to know the rewards. Sup-
pose that we know that a particular POMDPhas an opti-
mal policyr with valueV'. If we adjusted all the rewards by
some smalk,., then the value of the same poligywill dif-

fer fromV by at most;*= (since we will receive at worst.

less reward at each time step). This value is a lower-bound
on the optimal policy in the new POMDP. Thus, a POMDP

This bound requires;, > 3 log %, but we will find that our
final bound forn;, is greater than this value.

with all its rewards within(1 — +)¢& of P will have a policy
of valueV =+ £. In this way, the valu€ imposes a minimal
level of discretization over the reward space.

The rewards are bounded betweBp;, and Ry.x. |f
our reward space hasdimensions, then our discretization
will yield at most(%)d POMDPs. In practice, the

discretization simply involves limiting the precision dfet
sampled rewards. Finally, we note that each meta-query in-
validates at least one POMDP sample—otherwise we would
not have asked the question. Since there are a finite number
of samples, we must eventually stop asking meta-queries.

5 Results

In this section, we first present results in which we solve the
model-uncertainty POMDP directly, rather than use the ap-
proach outlined in Table 1. This method does not scale, but
we can use it to evaluate the utility of meta-queries. We next
show results using meta-queries coupled with our Bayés-ris
action selection criterion for robust learning of continge
valued unknown POMDP parameters.

5.1 Learning Discrete Parameters

In domains where model uncertainty is limited to a few, dis-
crete parameters, we may be able to solve for the complete
model-uncertainty POMDP using standard POMDP meth-
ods We consider a simple POMDP-based dialog manage-
ment task where the reward in unknown. We presume the
correct reward is one of four (discrete) possible levelg- Fi
ure 1 compares the performance of the optimal poliy
meta-queries (left column), an optimal polisythoutmeta-
queries (middle column), and our Bayes risk poligith
meta-queries (right column). While the difference in media
performance is small, the reduction in variance provided by
the meta-queries is substantial. The difference in perfor-
mance in both median and variance is negligible between
the optimal policy and the Bayes risk approximation.
Unfortunately, discretizing the model space does not
scale; increasing from 4 to 48 possible reward levels, we
could no longer obtain high-quality global solutions using
standard techniques. Next, we present results only using ou
Bayes-risk action selection criterion as an approximaton
acting in a continuous-valued model uncertainty POMDP.

Total Reward in Directly Solved
Model-Uncertainty POMDP

=

MetaQueriesand Direct
Solution

100

95

50

85

Total Reward

80

70

MetaQueries and Bayes
Risk

No MetaQueries

Figure 1. Boxplot of POMDP learning performance with a dis-
crete set of four possible models. Although the mediansefito
policies are not so different, the active learner (left) emkewer
mistakes than the passive learner (center). The Bayescigka
selection criterion (right) does not cause the performaosaffer.



Table 2: Difference between optimal and accrued rewards for varmroblems (smaller = better).

Problem # States No Learning Passive Learning Active Learmig
5x5 Gridworld 26 107.17 111.96 15.46
Tiger-Grid 36 5.83 17.89 0.72
Hallway 57 39.05 39.05 0.85

Hallway: Mean difference between optimal and system rewards
when learning both observation and reward spaces

ce in reward

5
c
&
b3}
E

25
trial number

Figure 2: Performance of the non-learner, passive learner, and ac-
tive learner on the hallway problem. Performance curvestfer
tiger-grid and gridworld problems were very similar.

5.2 Learning Continuous Parameters

Table 2 shows our approach applied to several POMDP
problem$. In each case, we used 15 POMDP samples
and resampled at the completion of each trial. The non-
learner used the 15 samples from the initial prior to make
decisions using the Bayes-risk action selection criteritm

6 Discussion and Conclusion

Prior work in MDP and POMDP learning has also consid-
ered sampling approaches to model a distribution over un-
certain models. Dearden et. al. (Dearden, Friedman, &
Andre 1999) discusses several approaches for representing
and updating priors over MDPs using sampling and value
function updates. Strens (Strens 2000) shows that in the
MDP case, randomly sampling only one model from a prior
over models, and using that model to make decisions, is still
guaranteed to converge to the optimal policy as long as one
resamples the MDP sufficiently frequently from an updated
prior over models. However, Strens’ approach does not con-
sider risk during the learning process, so the algorithnots n
robust to poor initial choices of prior.

One recent approach to MDP model learning, the Bee-
tle algorithm (Pouparet al. 2006), converts a discrete
MDP into a continuous POMDP with state variables for each
MDP parameter. As we saw in section 5.1, however, the
computationally-intensive solution techniques requifed
continuous POMDPs do not scale well enough to handle the
entire model as a hidden state in POMDPs. Also, since the
MDP is fully observable, Beetle can easily adjust its prior
over the MDP parameters as it acquires experience; in our
POMDP scenario, we needed to estimate the possible states

prior did not change based on the action-observation histo- that the agent had visited.

ries that it experienced, nor did it ask any meta-queries to
gain additional information. The passive learner resathple
its POMDP set after updating its prior over transitions and
observations using the forward-backward algorithm. The ac
tive learner used both the action-observation histories an

Another recent approach targeting the problem of
Bayesian POMDP learning, is Medusa (Jaulmes, Pineau, &
Precup 2005). This approach also captures uncertaintgin th
model by sampling POMDPs from a prior. Medusa avoids
the problem of knowing how to update the prior by occa-

meta-queries for learning. None of the systems received ex- sionally requesting the true state according to variousiseu

plicit reward information, but the active learner used meta
gueries to infer information about the reward model.

tics. Medusa guarantees convergence to the true model, but
the learning process may make several mistakes before con-

Figure 2 shows the performance of the non-learner, pas- vergence occurs. Furthermore, a state oracle may be un-

sive learner, and active learner on the hallway problem (all

achievable in many domains; we believe that meta-queries

problems had similar results). In each case, the agent beganare often a more intuitive form of feedback. Our conserva-

with observation and transition priors with high variancé b
peaked toward the correct value (that is, slightly bettanth
uniform). We created these priors by applying a diffusion
filter to the ground-truth transition and observation dlsty
tions and using the result as our initial Dirichlet paramete
All reward priors were uniform between the minimum and
maximum reward values of the ground-truth model. The ac-

tive action-selection policy makes us robust to mistakes.

We developed a new approach for active learning in
POMDPs that robustly determines a near-optimal policy.
Meta-queries—questions about actions that the agent is
thinking of taking—and a risk-averse action selection cri-
terion are proposed, to allow our agent to behave robustly
even when its knowledge of the POMDP model is uncer-

tive learner started (and remained) with good performance tajn. We analyze the theoretical properties of our algorith
because it used meta-queries when initially confused about pyt also include several practical approximations thatieen

the model. Thus, its performance was robust from the start.

®Tiger-grid and hallway are directly from (Littman, Cassend
& Kaelbling 1995); the 5x5 gridworld is an extension of the34x
gridworld of (Littman, Cassandra, & Kaelbling 1995).

the method tractable. Finally, we demonstrate the approach
on several problems in the POMDP literature. In our future
work, we hope to develop more efficient POMDP sampling
schemes to allow our approach to be deployed on larger,
real-time applications.
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