A Lazy Approach to Online Learning with Constraints

Branidav Kveton
Intel Research
Santa Clara, CA
branislav.kveton@intel.com

Georgios Theocharous
Intel Research
Santa Clara, CA
georgios.theocharous@intel.com

Abstract

In this paper, we study a sequential decision making problem.
The objective is to maximize the total reward while satisfying
constraints, which are defined at every time step. The novelty

of the setup is our assumption that the rewards and constraints

are controlled by a potentially adverse opponent. To solve the

problem, we propose a novel expert algorithm that guarantees

a vanishing regret while violating only some bounded number
of constraints. The quality of our expert solutions is evaluated

on a challenging power management problem. Results of our

experiments show that online learning with constraints can be
carried out successfully in practice.

Introduction

Online learning with expert advice (Cesa-Bianchi & Lugosi

JiaYuan Yu
Department of Electrical and
Computer Engineering
McGill University
jia.yu@mcgill.ca

Shie Mannor
Department of Electrical and
Computer Engineering

McGill University
shie@ece.mcgill.ca

with such properties. Second, we use the proposed approach
to solve a real-world power management (PM) problem.

The paper is structured as follows. First, we formulate our
optimization problem and relate it to the existing work. Sec
ond, we propose and analyze a practical solution to the prob-
lem based on prediction with expert advice. Third, we eval-
uate the quality of our solution on a real-world PM problem.
Finally, we summarize our work and suggest future research
directions.

Online constrained optimization

In this paper, we study an online learning problem, where an
agent wants to maximize its total reward subject to average-
cost constraints. At every timethe agent takes some action
6; from the action se#, and then receives a reward6;) €

2006) ha_s been studied extensively by the machine learning [0,1] and a cost; (6;) € [0, 1]. We assume that our agent has
community. The framework has been also successfully used no prior knowledge on reward and cost functions except that
to solve many real-world problems, such as adaptive caching they are bounded. Therefore, they can be generated in a non-

(Gramacyet al. 2003) or power management (Helmbeitl
al. 2000; Dhiman & Simunic 2006; Kvetaet al. 2007). The

stationary or even adverse way. The agent may consider only
the past rewards, . ..,r;_1 and the past costs, ..., c;_1

major advantage of the online setting is that no assumpsion i when deciding what actiofy, to take.

build its model and estimate its parameters. In turn, tips ty

of learning is naturally robust to environmental changes an

suitable for solving dynamic real-world problems.

In this paper, we study online learning problems with side

we first define amfflineversion of the problem. This offline
version simply assumes that our agents knows all reward and
cost terms in advance. In such a setting, the optimal strateg
of the agent can be expressed as a solution to the constrained

constraints. A similar setup was considered by Mannor and gptimization problem:

Tsitsiklis (2006). Side constraints are common in realtdor

domains. For instance, power management problems are of-
ten formulated as maximizing power savings subject to some

average performance criteria. The criteria usually retstie

rate of bad power management actions and can be naturally

represented by constraints.

T
.. 1
maximize Tzn(et) (1)
t=1

subjectto: ¢:(0) <cy Vte{l,...,T};

Our work makes two contributions. First, we show how to where the sequence of actiaghs= (64, ..., 0r) is optimized

apply prediction with expert advice to solve online optiatiz
tion problems with constraints. Our solution is both preetiti

to maximize the average reward ovétime steps subject to
T constraints. The constraints enforce the averageye(}

and sound. Based on our knowledge, this is the first solution to be less than, at every time step, whereg, () is defined

as ar-step average of instantaneous costs:

¢
%206(9@) ift<r

9:(0) =) =)
- Z ce(0y) otherwise.
T l=t—7+1

This type of problems is common in the domains of financial

whereA(A) denotes the simplex of probability distributions
over the set of actiond. Based on their work, the reward in
hindsight, which corresponds to the solution of the optaniz
tion problem (4), is generally unattainable online. Resinlt
our paper do not contradict to this claim. The main reason is
that the quality of our online policies is compared to weaker
baselines. The baselines are expert policies that viotdte o

a limited number of constraints. One of our major contribu-
tions is that we show how to build these policies in practice.

mathematics, caching, or power management. For example, Furthermore, note that the problem (4) involves only a sing|

power management problems are often formulated as maxi-

mizing power savings subject to some performance criteria,
which are averages over finite periods of tifne.
The offline version of our online optimization problem (1)

can be solved by standard techniques for nonlinear program-

ming (Bertsekas 1999). In this work, we attempt to solve the
problem online. The challenges of our online setting are tha
the horizorl" is unknown, and no assumption on the rewards
r, and costg; is made in advance. As aresult, it may be too
ambitious to expect as good policies as in the offline setting
Therefore, our objective is more modest. We want to learn a
policy that returns as high rewards as the best online swiluti
to our problem chosen offline from some set of experts. This
learning paradigm is known as prediction with expert advice
(Littlestone & Warmuth 1994). At the same time, our online
solution should satisfy all but a small number of constsint

Existing work

This section positions our work with respect to the literatu
on online convex programming (Zinkevich 2003) and online
learning with constraints (Mannor & Tsitsiklis 2006).
Online convex programming (Zinkevich 2003) involves a
convex feasible sef ¢ R™ and a sequence of convex func-
tionsf; : F — R. Atevery timet, a decision maker chooses
some actiod; € F based on the past functioffs, .. ., f;_1
and action®,, ..., 60,_1. The goal is to minimize the regret:

T T
D fulf) —miny fi(6).
t=1 t=1

In contrast to online convex programming, the feasiblefset
in our problem (1) may change arbitrarily over time because
our constraint functions (Equation 2) depend on the cgsts
A useful interpretation is that the feasible éts controlled
by an adverse opponent. This is the main source of difficulty
in online constrained optimization.

Mannor and Tsitsiklis (2006) investigated online learning
in the context of the constrained optimization problem:;

®3)

T
L 1
maximizeea () > ri0) (4)
t=1
1 T
subject to: - > e(0) < co;

t=1

1This paper generalizes to constraint functign@), which are
arbitrary convex combinations of instantaneous castdoreover,
our optimization problem may involve multiple constraints at every
time stept.

terminal constraint while our agent satisfies a new constrai
at every time step (1).

Mannor and Tsitsiklis (2006) also suggested solving con-
strained optimization problems online based on a calidrate
forecaster of the opponent’s action. Unfortunately, thao
plexity of existing calibrated forecasting schemes makiss t
solution unattractive.

Online learning with constraints
In this section, we show how to learn an online policfyom

a set of experts, . .., £y that guarantees a sublinear regret:
T T
L BLICIOED DLIICY B

with respect to the best of the experts, and a sublinear bound
on the total number of constraint violations:

T
Z 1ig,(6)>co]-
t=1

In other words, we want to achieve close-to-optimal rewards
asT — oo and satisfy all but a limited number of constraints.
Our approach is based on prediction with expert advice (Lit-
tlestone & Warmuth 1994), which is a standard online learn-
ing paradigm. To obtain guarantees on the regret, we employ
a randomized regret minimizing algorithm over a pool of ex-
perts. To prove a sublinear bound on the constraint viafatio
we restrict the experts such that they violate only a subline
number of constraints. Unfortunately, this is not suffitien
prove the bound because switching between the experts may
generate additional constraint violations. Hence, we figodi
our regret minimizing algorithm to account for this problem
Before we discuss details of our solution, we explain how to
build experts that violate only a small fraction of congitai

(6)

Arbitration

Expert policies that violate only a small subset of conatsai
are the fundamental building blocks of our online solutions
This section illustrates how to build these policies effitiy

by modifying ordinary policies. The rest of the paper simply
assumes that such policies exist.

Our solution assumes that we have a special aéfighat
guarantees; (0°) = 0 for all time steps. The key is to play
the action?® when the original policy may violate more than
an acceptable fraction of constraints. We refer to thisgsec
asarbitration. An example of a simple arbitrator is provided
in Figure 1. The arbitrator overrides actions of the policy

-~

such that all average-cost constraifnt®) < ¢, are satisfied.

Inputs:

an arbitrated policﬁ up to the timet — 1
an actiord; suggested at the time step
past cost functiong,_,+1,...,ci—1

Algorithm:
t—1

if (71_ (Z Cg(é\g) + 1> > Co)
l=t—T1+1

choose an actiof, = 9°
else

choose an actioat =6,

Outputs:
an arbitrated policy up to the time

Figure 1: An arbitrator that overrides actions of the policy

-~

such that all average-cost constraifpt®) < ¢, are satisfied.
Since the value of the variabtg(6,) is unknown at the time
of arbitration, we use its worst-case estimat@;) = 1.

Arbitration can be carried out in most real-world domains.

For instance, it corresponds to taking no power management

Inputs:
arbitrated expert policie&, . .., &N
expert weightsvs 1 (1), ..., wi—1(N)
a reward function;
a learning ratey
an expere;_; followed at the time step— 1

Algorithm:
if (¢t (mod L) =1)
randomly choose an expett according to the distribution:
P(et) wt—l(et)

St W1

(n)

else
€t = €t—1

play an actiord, = &, (t)

foreveryn=1,...,N
wi(n) = wi—1(n) explnre(§n(t))]

Outputs:
an actiond; played at the time step
updated expert weights, (1), ..., w;(N)
an expert; followed at the time step

actions in the power management domain. Itis conceptually Fgure 2: An exponentially weighted forecaster that pesmit

equivalent to having a non-empty feasible set in a tradition
optimization setting. Unfortunately, the arbitratingiantg®
often yields zero rewards. Therefore, it should be takewy onl
when necessary because it conflicts with our main objective
of maximizing rewards.

Finally, note that the greedy arbitrator (Figure 1) is a sim-
ple but rather conservative way of arbitrating policiestha
rest of this section, we discuss how to mix arbitrated pesici
online to obtain bounds on the regret and constraint viotati
of our solutions.

An illustrative example

one expert switch pel time steps. We refer to the approach
as lazy learning.

Example 1. Suppose that; and¢, are expert policies that
generate cost sequences:

(€)=, 7
(ct(&2(t))i=r,.. 1

Moreover, let our average-cost constraints be defined by the

1
=(1,1,1,1,1,1,1,1,1,1,1,...)
5

(0,0,0,0,1,0,0,0,0,1,0,...).

First, let us consider an online learning setup where we have averaging window = 5 and cost limitcy = 0.2. The values

access to a pool of expeds, . . . , £y that never violate con-
straints. Moreover, suppose that we apply the standard expo
nentially weighted forecaster (Cesa-Bianchi & Lugosi 2006
to the experts without taking constraints into account.eBas
on known results, the regret of the forecaster is bounded as:

T
max D riGn(t) =Y E[ri(6,)]
t=1 t=1
< log(V) T ’
< o 5
wheren is its learning rate, and the expectation is taken with
respect to our randomized forecasting schemenFef 2,
the bound is on the order 6f(+/T'), and therefore sublinear
inT.
Unfortunately, although the presented solution yields sub
linear regret, it may not satisfy all constraints. The faling
example demonstrates this problem.

()

are set such that the expegtsand¢, satisfy all constraints.
Unfortunately, switching between the experts easily leads
constraint violations. For instance, if we follow the exipgr
at the timet = 1 and switch to the expeé: at the next time
step.

The above example illustrates that constraint violatioag m
simply result from switching between expert policies. ®inc
our average-cost constraints depend only on the most recent
7 time steps, their violations may happen only withisteps

of the most recent expert switch. Therefore, the total numbe
of the switching-induced violations can be bounded as:

Z 14, (0)>co) < UT, (8)

t=1

whereU is the number of expert switches. In the worst case,
the bound is not sublinear ifi since the number of switches
may be proportional t@".

CPU activity pattern

v T

=
N

-

CPU voltage [V]

v

©
©

20 40 60

80 100 120

Time [ms]

Figure 3: An example of a CPU activity pattern. The voltageresented as a function of time (in milliseconds). Blackrtgles
denote OS interrupts. Note that the distance between twsecotive OS interrupts is 15.6 ms. Due to this periodicdftveare

interrupts in Microsoft Windows can be easily predicted.

Lazy learning
To allow a sublinear bound on switching-induced violations
we alter the standard exponentially weighted forecastgr su
that it switches between expert policies infrequentlytieda
to the time horizon. In particular, we partition the timepste

., T into T/L segments of the length:

(1, . L)
(L+1, ... oL)

: : ()
(T-L+1, ..., T)

and permit expert switches at the beginning of each segment
only. The parametell can be chosen such that the maximum
number of violationgT'/ L)t (Equation 8) is sublinear if,
which was one of our objectives. It remains to show that the
altered forecaster also guarantees a sublinear regréagimi
to Equation 7.

The forecaster is described in Figure 2. We refertoitas a
lazy learner because the pool of experts is greedily atbira
to guarantee that no expert violates more than some bounded
number of constraints.

Assumption 1. Every expert policy¥,, is allowed to violate
at mostx constraints. The assumption can be formalized as:

T
A,;g;]{gdﬁn)>cd <z,

where the scalat is potentially a function of .

(10)

max
n=1,..,

Under this assumption, we can prove the following bound on
the performance of the forecaster.

Proposition 1. Let&y, ..., &N be expert policies that satisfy
Assumption 1. Then the regret of the lazy learner (Figure 2)
is bounded as:

T T

re(n(t)) = D E[re(6:)] <

t=1

log(N)
t=1 n

Moreover, the number of constraints violated by the learner
is bounded as:

nTL
+ 7

max
n=1,...,

T
Z 14, 6)>0) < Nz + U,
t=1

whereU is the number of switches between the experts.

Proof: Our first claim is proved by interpreting lazy learning

as a standard online learning problem:

T
n:Irll,aX,N 2 7+ (& (2) ZE r+(64)]
T/L—1 (m+1)L
= max Z Z (re(&n(t)) — E[r(0:)])
m=0 t=mL+1
T/L-1
log(N) | n
< + 5
U 2 mz::o
(m+1)L 2
,max Z (1¢(§n(t)) — E[r:(6)])
t=mL+1
log(N) nT ,
< ——L
- 7 + 2L
log(N TL
_ log(N) nTL
n 2

The first step of the proof follows by algebra, the second step
follows from Theorem 1 (Cesa-Bianchi & Lugosi 2006), and
the third step results from the reward term$eing bounded
on the interval0, 1].

Our second claim follows from the construction of the al-
gorithm. In particular, the terrfff = provides an upper bound
on the total number of constraint violations due to switghin
between the experts, ..., &y. Without taking the switch-
ing into account, the experts can together violate at rivast
constraints. Hence, the lazy learner cannot violate mane th
Nz + Ut constraints in totalm

The above proposition demonstrates that we can bound both
the regret and constraint violation of online learned pe$ic
The parameterg and L can be chosen such that our bounds
are sublinear iff". For instance, fon = T-% andL =Tz,
the regret bound is on the order@f7'%). To show that the
constraint violation bound is sublinear in T at the same time
we note that/ < T'//L and assume = T'z. As a result, the
number of constraint violations can be bounded on the order
of O(T'2). Finally, note that the segment lengtiaturally
allows for trading off the tightness of the two bounds.

In the rest of the paper, we evaluate the performance of the
lazy learner on a power management problem. The nature of

MMOS trace Heavy workload trace
: : : 35 : : : :
78¢1
76+ 301
g 74f g
- = 25}
2 2
(] 72 ()
o o
0 0 20+
& 70f 2
68 15}
66
10
El E2 E3 E4 E5 E6 LL LB El E2 E3 E4 E5 E6 LL LB

Figure 4: Comparison of lazily-learned policies (LL) to ithgools of experts (E1, ..., E6). The policies are comparethbir

average residency for three different latency budggt®.02 (black bars), 0.04 (dark gray bars), and 0.06 (lighydrars). We
also report lower bounds on the residency of the learnedipsl{LB) as suggested by Proposition 1. The evaluationris dm
two CPU activity traces: MMO05 and a heavy workload trace.

the problem is not adversarial as typically assumed in enlin are predictable. This setting is suggested by domain expert
learning. Therefore, although our approach learns alnosta In the experimental section, we consider a pool of experts,
good policies as the best experts, our bounds are a litteloo which are adaptive timeout policies. The policies adafit the
to justify its performance. This issue is discussed in dgtai timeout parameters at every OS interrupt (Figure 3) based on

the experimental section. the current workload. Kvetoet al. (2007) showed that they
perform significantly better than static timeout policiesam
Package power management applied to package PM.

Our online solution is evaluated on a challenging real-diorl .
problem. We look at the power management of the complete Experiments
processing unit including multi-core processors, L1 and L2 The main goal of the experimental section is to demonstrate
caches, and associated circuitry. Solving this PM probkem i online learning with constraints in practice. Our experitse
important because the complete processing unit may accountare performed on the package PM problem. We simulate the
for as much as 40 percent of the power consumed by mobile package in MATLAB on two CPU activity traces, which are
computers. In the rest of this paper, we use the feankage collected from the Intel Core Duo CPU.
to refer to the complete processing unit. i

The primary goal of package PM is to minimize the power EXperimental setup
consumption of the package without impacting its perceived The first trace is recorded during running MobileMark 2005
performance. This performance objective can be restated as(MMO05). MMO5 is a performance benchmark that simulates
maximizing theresidencyof the package in low power states the activity of an average Microsoft Windows user. A corre-
while minimizing thelatencyin serving hardware interrupts. sponding CPU activity trace is 90 minutes long and contains
The latency is a delay caused by waking up the package from more than 500,000 OS interrupts. The second trace is gener-
low power states. The central component of package PM is a ated by running Adobe Photoshop, Microsoft Windows Ex-
prediction module, which predicts idle CPU periods that are plorer, Microsoft WordPad, and Microsoft Media Player. It
sufficiently long to power down the package. This prediction reflects 30 minutes of human activity and contains more than
is done at every OS interrupt. Under normal circumstances, 200,000 OS interrupts. In the rest of the section, we refer to
Microsoft Windows generates OS interrupts periodically ev it as a heavy workload trace.

ery 15.6 ms (Figure 3). Our goal is to maximize the residency of the package sub-
A state-of-the-art solution to package PM are static time- ject to latency constraints. This is a constrained optitiorpa
out policies. Astatic timeout policyKarlin et al. 1994) is a problem, where the residency and latency of the package be-

simple power management strategy, which is parameterized tween two consecutive OS interrupts represent instanteneo
by the timeout paramet&f. When the package remainsidle rewards-;(6,) and costs;(6,), respectively. The variabtg

for more tharil’ ms, the policy puts itinto a low power state. denotes the timeout parameter of the package PM module at
When an unpredicted hardware interrupt occurs, the packagethe time steg. Our latency constraints are averages over 10
must wake up to serve it. Due to the delay in performing this second periods, which correspondste: 640. The purpose
task, the package incurs a 1 ms latency penalty. The packageof the constraints is to restrict the rate of bad PM actiores ov
wakes up ahead of the OS interrupts because these interruptdonger periods of time, which may affect the performance of

MMO5 trace Residency [%] Residency regret [% Constraint violation [%]
Latency budget, Lazy learnef Best expert Lazy learnef Bound| Lazy learnef BoundUr| Bound(7T/L)T
0.02 74.78 74.89 0.11 8.36 0.00 9.30 85.22
0.04 77.93 77.87 —0.06 8.36 0.05 35.48 85.22
0.06 78.63 78.75 0.12 8.36 0.01 39.11 85.22
Heavy workload trace Residency [%] Residency regret [% Constraint violation [%]
Latency budgeto Lazy learnef Best expert Lazy learnef Bound| Lazy learnef BoundUr| Bound(7T/L)T
0.02 24.38 24.77 0.39| 10.33 0.65 5.28 130.08
0.04 29.77 29.79 0.02| 10.33 0.98 60.73 130.08
0.06 32.50 32.68 0.18| 10.33 0.23 11.62 130.08

Figure 5: Evaluation of our bounds on the quality of laziéatned policies. The experimental setup is identical toreig.

the computer. We experiment with different latency budgets

co to show the generality of our solution. 60 ‘ ‘ - Res‘idenc ré o
All online solutions to our optimization problem are com- B cy regre
. 50} [] Constraint violation ||
puted by the lazy learner (Figure 2). The expéits .., ¢
are adaptive timeout policies, which adapt their timeout pa a0l

rameterst,, (t) by the standard weighted majority algorithm
(Kvetonet al. 2007). Their loss function is defined as:

—71(&n (1)) + Anci(€n (D), (11)

where the parametex, reflects the preference of the expert
&, for maximizing rewards and incurring costs. Our pool of 10l
experts involves six policies, which are parameterizedby t

following values\,,: l

A=0 X3=4 X5=38
12
=2 M=6 Xg=10. (12) Time horizon T

Tightness [%)]
w
o

201

6 hours 1day 1week 1month 1year

The values represent the aggressiveness by which the gxpert _))

switch to a conservative timeout parameter. The policies ar Figure 6: Tightness of our bounds with respect to an increas-
arbitrated to satisfy all latency constraints. Since tHes ing time horizorT'.

perform significantly better than state-of-the-art salos to

package PM (Kvetoet al. 2007), we use them as baselines . . L
for evaluating the quality of lazily-learned policies. Figure 5 illustrates that both the regret and constraint vio

The learning rate and the segment lengfhare set to the lation of our online policies are within the bounds suggeste
values of P~ andT'#, respectively. This setting guarantees 0¥ Proposition 1. Unfortunately, the bounds are ratherdoos
that both bounds in Proposition 1 are sublinedFirin turn, to explain the performance of the policies. The reason is tha
the average regret and constraint violation of the lazylear '€ bounds hold against an arbitrarily adverse opponent. Ou
vanish with an increasing time horizah Our experimental CPU traces are definitely not generated in such a fashion.

results are presented in Figures 4 and 5. Without loss of gen- Nevertheless, note that our bounds get tighter with longer

erality, we report average residency and constraint vaiat :'rr;]fehor'g?enf ((alzgllé)rr? 6)'[}12?:0322&””(;%%]‘ (r)(lejtrbco Plr': daCt(')V'% be
results, and not the total values. Our bounds in Proposltion S W yeariong, St yreg und wou

are additionally normalized by the time horizéro account 1.1 percent, and the constraint violation bound WOU".j be 1.4
for this difference. percent. These theoretical guarantees would be suffi@gent f

practical purposes.
Experimental results

Figure 4 demonstrates that our lazily-learned online pesic Conclusions

yield almost as high residency as the best expertin hintlsigh Although online learning has been studied extensively by th
The difference in residencies is always less than 0.5 percen machine learning community, solving constrained optimiza
The policies also perform significantly better than the wors tion problems online remains a challenging problem. In this
experts, which often yield less than 5 percent residenay tha paper, we proposed a practical online solution to consthin
the best experts. On the heavy workload trace, this 5 percent optimization problems with average-cost constraints. é4or
absolute improvement corresponds to a 20 percent improve- over, we provided guarantees on its regret and the amount of
ment when measured in relative numbers. At the same time, constraint violations. Finally, we evaluated the solutiora
our policies violate less than 1 percent of all constraiRig-(challenging real-world problem. Results of our experirsent
ure 5). These results suggest that lazy learning is a pedctic show that online learning with constraints can be carrigd ou
way of solving constrained optimization problems online. successfully in practice.

Results of this paper can be extended in several directions.
First, our online learning solution generalizes to corised
optimization problems, which involve multiple averagesto
constraints at every time stépAn interesting open question
is how the quality of arbitration deteriorates in such asgtt
Second, arbitration is by no means the most efficient way of
guaranteeing that online learned policies violate only albm
number of constraints. Since arbitration typically yietdso
rewards, it is important to develop online learning solnsio
that do not require it. Note that the work of Mannor and Tsit-
siklis (2006) implies that it is generally infeasible to asle
close-to-optimal rewards without violating constraints.

Acknowledgment

We thank anonymous reviewers for comments that led to the
improvement of this paper.

References

Bertsekas, D. 1999Nonlinear Programming Belmont, MA:
Athena Scientific.

Cesa-Bianchi, N., and Lugosi, G. 200@rediction, Learning,
and GamesNew York, NY: Cambridge University Press.

Dhiman, G., and Simunic, T. 2006. Dynamic power management
using machine learning. IRroceedings of the 2006 IEEE / ACM
International Conference on Computer-Aided Design

Gramacy, R.; Warmuth, M.; Brandt, S.; and Ari, |. 2003. Adap-
tive caching by refetching. IAdvances in Neural Information
Processing Systems, 15465-1472.

Helmbold, D.; Long, D.; Sconyers, T.; and Sherrod, B. 2000.
Adaptive disk spin-down for mobile computeiMobile Networks
and Application$(4):285—-297.

Karlin, A.; Manasse, M.; McGeoch, L.; and Owicki, S. 1994.
Competitive randomized algorithms for nonuniform problems.
Algorithmicall1(6):542-571.

Kveton, B.; Gandhi, P.; Theocharous, G.; Mannor, S.; Rosario,
B.; and Shah, N. 2007. Adaptive timeout policies for fast fine-
grained power management. Pmoceedings of the 19th Confer-
ence on Innovative Applications of Artificial Intelligence

Littlestone, N., and Warmuth, M. 1994. The weighted majority
algorithm. Information and Computatioh08(2):212—261.

Mannor, S., and Tsitsiklis, J. 2006. Online learning with con-
straints. InProceedings of 19th Annual Conference on Learning
Theory 529-543.

Zinkevich, M. 2003. Online convex programming and gener-
alized infinitesimal gradient ascent. Rroceedings of the 20th
International Conference on Machine Learnjrg28-936.

