
A Lazy Approach to Online Learning with Constraints

Branislav Kveton
Intel Research

Santa Clara, CA
branislav.kveton@intel.com

Jia Yuan Yu
Department of Electrical and

Computer Engineering
McGill University
jia.yu@mcgill.ca

Georgios Theocharous
Intel Research

Santa Clara, CA
georgios.theocharous@intel.com

Shie Mannor
Department of Electrical and

Computer Engineering
McGill University
shie@ece.mcgill.ca

Abstract

In this paper, we study a sequential decision making problem.
The objective is to maximize the total reward while satisfying
constraints, which are defined at every time step. The novelty
of the setup is our assumption that the rewards and constraints
are controlled by a potentially adverse opponent. To solve the
problem, we propose a novel expert algorithm that guarantees
a vanishing regret while violating only some bounded number
of constraints. The quality of our expert solutions is evaluated
on a challenging power management problem. Results of our
experiments show that online learning with constraints can be
carried out successfully in practice.

Introduction
Online learning with expert advice (Cesa-Bianchi & Lugosi
2006) has been studied extensively by the machine learning
community. The framework has been also successfully used
to solve many real-world problems, such as adaptive caching
(Gramacyet al. 2003) or power management (Helmboldet
al. 2000; Dhiman & Simunic 2006; Kvetonet al. 2007). The
major advantage of the online setting is that no assumption is
made about the environment. As a result, there is no need to
build its model and estimate its parameters. In turn, this type
of learning is naturally robust to environmental changes and
suitable for solving dynamic real-world problems.

In this paper, we study online learning problems with side
constraints. A similar setup was considered by Mannor and
Tsitsiklis (2006). Side constraints are common in real-world
domains. For instance, power management problems are of-
ten formulated as maximizing power savings subject to some
average performance criteria. The criteria usually restrict the
rate of bad power management actions and can be naturally
represented by constraints.

Our work makes two contributions. First, we show how to
apply prediction with expert advice to solve online optimiza-
tion problems with constraints. Our solution is both practical
and sound. Based on our knowledge, this is the first solution

with such properties. Second, we use the proposed approach
to solve a real-world power management (PM) problem.

The paper is structured as follows. First, we formulate our
optimization problem and relate it to the existing work. Sec-
ond, we propose and analyze a practical solution to the prob-
lem based on prediction with expert advice. Third, we eval-
uate the quality of our solution on a real-world PM problem.
Finally, we summarize our work and suggest future research
directions.

Online constrained optimization
In this paper, we study an online learning problem, where an
agent wants to maximize its total reward subject to average-
cost constraints. At every timet, the agent takes some action
θt from the action setA, and then receives a rewardrt(θt) ∈
[0, 1] and a costct(θt)∈ [0, 1]. We assume that our agent has
no prior knowledge on reward and cost functions except that
they are bounded. Therefore, they can be generated in a non-
stationary or even adverse way. The agent may consider only
the past rewardsr1, . . . , rt−1 and the past costsc1, . . . , ct−1
when deciding what actionθt to take.

To clarify our online learning problem and its challenges,
we first define anofflineversion of the problem. This offline
version simply assumes that our agents knows all reward and
cost terms in advance. In such a setting, the optimal strategy
of the agent can be expressed as a solution to the constrained
optimization problem:

maximizeθ
1

T

T∑

t=1

rt(θt) (1)

subject to: gt(θ) ≤ c0 ∀ t ∈ {1, . . . , T} ;

where the sequence of actionsθ = (θ1, . . . , θT ) is optimized
to maximize the average reward overT time steps subject to
T constraints. The constraints enforce the average costgt(θ)
to be less thanc0 at every time stept, wheregt(θ) is defined



as aτ -step average of instantaneous costs:

gt(θ) =





1

t

t∑

`=1

c`(θ`) if t < τ

1

τ

t∑

`=t−τ+1

c`(θ`) otherwise.

(2)

This type of problems is common in the domains of financial
mathematics, caching, or power management. For example,
power management problems are often formulated as maxi-
mizing power savings subject to some performance criteria,
which are averages over finite periods of time.1

The offline version of our online optimization problem (1)
can be solved by standard techniques for nonlinear program-
ming (Bertsekas 1999). In this work, we attempt to solve the
problem online. The challenges of our online setting are that
the horizonT is unknown, and no assumption on the rewards
rt and costsct is made in advance. As a result, it may be too
ambitious to expect as good policies as in the offline setting.
Therefore, our objective is more modest. We want to learn a
policy that returns as high rewards as the best online solution
to our problem chosen offline from some set of experts. This
learning paradigm is known as prediction with expert advice
(Littlestone & Warmuth 1994). At the same time, our online
solution should satisfy all but a small number of constraints.

Existing work
This section positions our work with respect to the literature
on online convex programming (Zinkevich 2003) and online
learning with constraints (Mannor & Tsitsiklis 2006).

Online convex programming (Zinkevich 2003) involves a
convex feasible setF ⊂ Rn and a sequence of convex func-
tionsft : F → R. At every timet, a decision maker chooses
some actionθt ∈ F based on the past functionsf1, . . . , ft−1
and actionsθ1, . . . , θt−1. The goal is to minimize the regret:

T∑

t=1

ft(θt)−min
θ∈F

T∑

t=1

ft(θ). (3)

In contrast to online convex programming, the feasible setF
in our problem (1) may change arbitrarily over time because
our constraint functions (Equation 2) depend on the costsct.
A useful interpretation is that the feasible setF is controlled
by an adverse opponent. This is the main source of difficulty
in online constrained optimization.

Mannor and Tsitsiklis (2006) investigated online learning
in the context of the constrained optimization problem:

maximizeθ∈∆(A)
1

T

T∑

t=1

rt(θ) (4)

subject to:
1

T

T∑

t=1

ct(θ) ≤ c0;

1This paper generalizes to constraint functionsgt(θ), which are
arbitrary convex combinations of instantaneous costsct. Moreover,
our optimization problem may involve multiple constraints at every
time stept.

where∆(A) denotes the simplex of probability distributions
over the set of actionsA. Based on their work, the reward in
hindsight, which corresponds to the solution of the optimiza-
tion problem (4), is generally unattainable online. Results in
our paper do not contradict to this claim. The main reason is
that the quality of our online policies is compared to weaker
baselines. The baselines are expert policies that violate only
a limited number of constraints. One of our major contribu-
tions is that we show how to build these policies in practice.
Furthermore, note that the problem (4) involves only a single
terminal constraint while our agent satisfies a new constraint
at every time step (1).

Mannor and Tsitsiklis (2006) also suggested solving con-
strained optimization problems online based on a calibrated
forecaster of the opponent’s action. Unfortunately, the com-
plexity of existing calibrated forecasting schemes makes this
solution unattractive.

Online learning with constraints
In this section, we show how to learn an online policyθ from
a set of expertsξ1, . . . , ξN that guarantees a sublinear regret:

max
n=1,...,N

T∑

t=1

rt(ξn(t))−
T∑

t=1

E [rt(θt)] (5)

with respect to the best of the experts, and a sublinear bound
on the total number of constraint violations:

T∑

t=1

1[gt(θ)>c0]. (6)

In other words, we want to achieve close-to-optimal rewards
asT→∞ and satisfy all but a limited number of constraints.
Our approach is based on prediction with expert advice (Lit-
tlestone & Warmuth 1994), which is a standard online learn-
ing paradigm. To obtain guarantees on the regret, we employ
a randomized regret minimizing algorithm over a pool of ex-
perts. To prove a sublinear bound on the constraint violation,
we restrict the experts such that they violate only a sublinear
number of constraints. Unfortunately, this is not sufficient to
prove the bound because switching between the experts may
generate additional constraint violations. Hence, we modify
our regret minimizing algorithm to account for this problem.
Before we discuss details of our solution, we explain how to
build experts that violate only a small fraction of constraints.

Arbitration
Expert policies that violate only a small subset of constraints
are the fundamental building blocks of our online solutions.
This section illustrates how to build these policies efficiently
by modifying ordinary policies. The rest of the paper simply
assumes that such policies exist.

Our solution assumes that we have a special actionθ0 that
guaranteesct(θ0) = 0 for all time stepst. The key is to play
the actionθ0 when the original policy may violate more than
an acceptable fraction of constraints. We refer to this process
asarbitration. An example of a simple arbitrator is provided
in Figure 1. The arbitrator overrides actions of the policyθ
such that all average-cost constraintsgt(θ̂)≤c0 are satisfied.



Inputs:
an arbitrated policŷθ up to the timet− 1
an actionθt suggested at the time stept
past cost functionsct−τ+1, . . . , ct−1

Algorithm:

if

(
1

τ

(
t−1∑

`=t−τ+1

c`(θ̂`) + 1

)
> c0

)

choose an action̂θt = θ0

else
choose an action̂θt = θt

Outputs:
an arbitrated policŷθ up to the timet

Figure 1: An arbitrator that overrides actions of the policyθ
such that all average-cost constraintsgt(θ̂)≤c0 are satisfied.
Since the value of the variablect(θt) is unknown at the time
of arbitration, we use its worst-case estimatect(θt) = 1.

Arbitration can be carried out in most real-world domains.
For instance, it corresponds to taking no power management
actions in the power management domain. It is conceptually
equivalent to having a non-empty feasible set in a traditional
optimization setting. Unfortunately, the arbitrating action θ0

often yields zero rewards. Therefore, it should be taken only
when necessary because it conflicts with our main objective
of maximizing rewards.

Finally, note that the greedy arbitrator (Figure 1) is a sim-
ple but rather conservative way of arbitrating policies. Inthe
rest of this section, we discuss how to mix arbitrated policies
online to obtain bounds on the regret and constraint violation
of our solutions.

An illustrative example
First, let us consider an online learning setup where we have
access to a pool of expertsξ1, . . . , ξN that never violate con-
straints. Moreover, suppose that we apply the standard expo-
nentially weighted forecaster (Cesa-Bianchi & Lugosi 2006)
to the experts without taking constraints into account. Based
on known results, the regret of the forecaster is bounded as:

max
n=1,...,N

T∑

t=1

rt(ξn(t))−
T∑

t=1

E [rt(θt)]

≤ log(N)
η

+
ηT

2
, (7)

whereη is its learning rate, and the expectation is taken with
respect to our randomized forecasting scheme. Forη=T−

1

2 ,
the bound is on the order ofO(

√
T ), and therefore sublinear

in T .
Unfortunately, although the presented solution yields sub-

linear regret, it may not satisfy all constraints. The following
example demonstrates this problem.

Inputs:
arbitrated expert policiesξ1, . . . , ξN
expert weightswt−1(1), . . . , wt−1(N)
a reward functionrt
a learning rateη
an expertet−1 followed at the time stept− 1

Algorithm:
if (t (mod L) ≡ 1)

randomly choose an expertet according to the distribution:

P (et) =
wt−1(et)∑
N

n=1
wt−1(n)

else
et = et−1

play an actionθt = ξet(t)

for everyn = 1, . . . , N
wt(n) = wt−1(n) exp[ηrt(ξn(t))]

Outputs:
an actionθt played at the time stept
updated expert weightswt(1), . . . , wt(N)
an expertet followed at the time stept

Figure 2: An exponentially weighted forecaster that permits
one expert switch perL time steps. We refer to the approach
as lazy learning.

Example 1. Suppose thatξ1 andξ2 are expert policies that
generate cost sequences:

(ct(ξ1(t)))t=1,...,T =
1

5
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . )

(ct(ξ2(t)))t=1,...,T = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . . ).

Moreover, let our average-cost constraints be defined by the
averaging windowτ = 5 and cost limitc0 = 0.2. The values
are set such that the expertsξ1 andξ2 satisfy all constraints.
Unfortunately, switching between the experts easily leadsto
constraint violations. For instance, if we follow the expert ξ1
at the timet = 1 and switch to the expertξ2 at the next time
step.

The above example illustrates that constraint violations may
simply result from switching between expert policies. Since
our average-cost constraints depend only on the most recent
τ time steps, their violations may happen only withinτ steps
of the most recent expert switch. Therefore, the total number
of the switching-induced violations can be bounded as:

T∑

t=1

1[gt(θ)>c0] ≤ Uτ, (8)

whereU is the number of expert switches. In the worst case,
the bound is not sublinear inT since the number of switches
may be proportional toT .



0 20 40 60 80 100 120
0.8

1

1.2

CPU activity pattern

Time [ms]

C
P

U
 v

ol
ta

ge
 [V

]

Figure 3: An example of a CPU activity pattern. The voltage ispresented as a function of time (in milliseconds). Black triangles
denote OS interrupts. Note that the distance between two consecutive OS interrupts is 15.6 ms. Due to this periodicity, software
interrupts in Microsoft Windows can be easily predicted.

Lazy learning
To allow a sublinear bound on switching-induced violations,
we alter the standard exponentially weighted forecaster such
that it switches between expert policies infrequently relative
to the time horizon. In particular, we partition the time steps
1, . . . , T into T/L segments of the lengthL:

(1, . . . , L)
(L+ 1, . . . , 2L)

...
...

...
(T − L+ 1, . . . , T )

(9)

and permit expert switches at the beginning of each segment
only. The parameterL can be chosen such that the maximum
number of violations(T/L)τ (Equation 8) is sublinear inT ,
which was one of our objectives. It remains to show that the
altered forecaster also guarantees a sublinear regret similarly
to Equation 7.

The forecaster is described in Figure 2. We refer to it as a
lazy learner because the pool of experts is greedily arbitrated
to guarantee that no expert violates more than some bounded
number of constraints.

Assumption 1. Every expert policyξn is allowed to violate
at mostx constraints. The assumption can be formalized as:

max
n=1,...,N

T∑

t=1

1[gt(ξn)>c0] ≤ x, (10)

where the scalarx is potentially a function ofT .

Under this assumption, we can prove the following bound on
the performance of the forecaster.

Proposition 1. Letξ1, . . . , ξN be expert policies that satisfy
Assumption 1. Then the regret of the lazy learner (Figure 2)
is bounded as:

max
n=1,...,N

T∑

t=1

rt(ξn(t))−
T∑

t=1

E [rt(θt)] ≤
log(N)

η
+
ηTL

2
.

Moreover, the number of constraints violated by the learner
is bounded as:

T∑

t=1

1[gt(θ)>0] ≤ Nx+ Uτ,

whereU is the number of switches between the experts.

Proof: Our first claim is proved by interpreting lazy learning
as a standard online learning problem:

max
n=1,...,N

T∑

t=1

rt(ξn(t))−
T∑

t=1

E [rt(θt)]

= max
n=1,...,N

T/L−1∑

m=0

(m+1)L∑

t=mL+1

(rt(ξn(t))− E [rt(θt)])

≤ log(N)
η

+
η

2

T/L−1∑

m=0

max
n=1,...,N



(m+1)L∑

t=mL+1

(rt(ξn(t))− E [rt(θt)])



2

≤ log(N)
η

+
η

2

T

L
L2

=
log(N)

η
+
ηTL

2
.

The first step of the proof follows by algebra, the second step
follows from Theorem 1 (Cesa-Bianchi & Lugosi 2006), and
the third step results from the reward termsrt being bounded
on the interval[0, 1].

Our second claim follows from the construction of the al-
gorithm. In particular, the termUτ provides an upper bound
on the total number of constraint violations due to switching
between the expertsξ1, . . . , ξN . Without taking the switch-
ing into account, the experts can together violate at mostNx
constraints. Hence, the lazy learner cannot violate more than
Nx+ Uτ constraints in total.
The above proposition demonstrates that we can bound both
the regret and constraint violation of online learned policies.
The parametersη andL can be chosen such that our bounds
are sublinear inT . For instance, forη = T−

3

4 andL = T
1

2 ,
the regret bound is on the order ofO(T

3

4 ). To show that the
constraint violation bound is sublinear in T at the same time,
we note thatU ≤ T/L and assumex = T

1

2 . As a result, the
number of constraint violations can be bounded on the order
of O(T

1

2 ). Finally, note that the segment lengthL naturally
allows for trading off the tightness of the two bounds.

In the rest of the paper, we evaluate the performance of the
lazy learner on a power management problem. The nature of



E1 E2 E3 E4 E5 E6 LL LB

66

68

70

72

74

76

78

MM05 trace

R
es

id
en

cy
 [%

]

E1 E2 E3 E4 E5 E6 LL LB
10

15

20

25

30

35
Heavy workload trace

R
es

id
en

cy
 [%

]

Figure 4: Comparison of lazily-learned policies (LL) to their pools of experts (E1, . . . , E6). The policies are compared by their
average residency for three different latency budgetsc0: 0.02 (black bars), 0.04 (dark gray bars), and 0.06 (light gray bars). We
also report lower bounds on the residency of the learned policies (LB) as suggested by Proposition 1. The evaluation is done on
two CPU activity traces: MM05 and a heavy workload trace.

the problem is not adversarial as typically assumed in online
learning. Therefore, although our approach learns almost as
good policies as the best experts, our bounds are a little loose
to justify its performance. This issue is discussed in detail in
the experimental section.

Package power management
Our online solution is evaluated on a challenging real-world
problem. We look at the power management of the complete
processing unit including multi-core processors, L1 and L2
caches, and associated circuitry. Solving this PM problem is
important because the complete processing unit may account
for as much as 40 percent of the power consumed by mobile
computers. In the rest of this paper, we use the termpackage
to refer to the complete processing unit.

The primary goal of package PM is to minimize the power
consumption of the package without impacting its perceived
performance. This performance objective can be restated as
maximizing theresidencyof the package in low power states
while minimizing thelatencyin serving hardware interrupts.
The latency is a delay caused by waking up the package from
low power states. The central component of package PM is a
prediction module, which predicts idle CPU periods that are
sufficiently long to power down the package. This prediction
is done at every OS interrupt. Under normal circumstances,
Microsoft Windows generates OS interrupts periodically ev-
ery 15.6 ms (Figure 3).

A state-of-the-art solution to package PM are static time-
out policies. Astatic timeout policy(Karlin et al. 1994) is a
simple power management strategy, which is parameterized
by the timeout parameterT . When the package remains idle
for more thanT ms, the policy puts it into a low power state.
When an unpredicted hardware interrupt occurs, the package
must wake up to serve it. Due to the delay in performing this
task, the package incurs a 1 ms latency penalty. The package
wakes up ahead of the OS interrupts because these interrupts

are predictable. This setting is suggested by domain experts.
In the experimental section, we consider a pool of experts,

which are adaptive timeout policies. The policies adapt their
timeout parameters at every OS interrupt (Figure 3) based on
the current workload. Kvetonet al. (2007) showed that they
perform significantly better than static timeout policies when
applied to package PM.

Experiments
The main goal of the experimental section is to demonstrate
online learning with constraints in practice. Our experiments
are performed on the package PM problem. We simulate the
package in MATLAB on two CPU activity traces, which are
collected from the Intel Core Duo CPU.

Experimental setup
The first trace is recorded during running MobileMark 2005
(MM05). MM05 is a performance benchmark that simulates
the activity of an average Microsoft Windows user. A corre-
sponding CPU activity trace is 90 minutes long and contains
more than 500,000 OS interrupts. The second trace is gener-
ated by running Adobe Photoshop, Microsoft Windows Ex-
plorer, Microsoft WordPad, and Microsoft Media Player. It
reflects 30 minutes of human activity and contains more than
200,000 OS interrupts. In the rest of the section, we refer to
it as a heavy workload trace.

Our goal is to maximize the residency of the package sub-
ject to latency constraints. This is a constrained optimization
problem, where the residency and latency of the package be-
tween two consecutive OS interrupts represent instantaneous
rewardsrt(θt) and costsct(θt), respectively. The variableθt
denotes the timeout parameter of the package PM module at
the time stept. Our latency constraints are averages over 10
second periods, which corresponds toτ = 640. The purpose
of the constraints is to restrict the rate of bad PM actions over
longer periods of time, which may affect the performance of



MM05 trace Residency [%] Residency regret [%] Constraint violation [%]
Latency budgetc0 Lazy learner Best expert Lazy learner Bound Lazy learner BoundUτ Bound(T/L)τ
0.02 74.78 74.89 0.11 8.36 0.00 9.30 85.22
0.04 77.93 77.87 −0.06 8.36 0.05 35.48 85.22
0.06 78.63 78.75 0.12 8.36 0.01 39.11 85.22

Heavy workload trace Residency [%] Residency regret [%] Constraint violation [%]
Latency budgetc0 Lazy learner Best expert Lazy learner Bound Lazy learner BoundUτ Bound(T/L)τ
0.02 24.38 24.77 0.39 10.33 0.65 5.28 130.08
0.04 29.77 29.79 0.02 10.33 0.98 60.73 130.08
0.06 32.50 32.68 0.18 10.33 0.23 11.62 130.08

Figure 5: Evaluation of our bounds on the quality of lazily-learned policies. The experimental setup is identical to Figure 4.

the computer. We experiment with different latency budgets
c0 to show the generality of our solution.

All online solutions to our optimization problem are com-
puted by the lazy learner (Figure 2). The expertsξ1, . . . , ξN
are adaptive timeout policies, which adapt their timeout pa-
rametersξn(t) by the standard weighted majority algorithm
(Kvetonet al. 2007). Their loss function is defined as:

−rt(ξn(t)) + λnct(ξn(t)), (11)

where the parameterλn reflects the preference of the expert
ξn for maximizing rewards and incurring costs. Our pool of
experts involves six policies, which are parameterized by the
following valuesλn:

λ1 = 0 λ3 = 4 λ5 = 8
λ2 = 2 λ4 = 6 λ6 = 10.

(12)

The values represent the aggressiveness by which the experts
switch to a conservative timeout parameter. The policies are
arbitrated to satisfy all latency constraints. Since the policies
perform significantly better than state-of-the-art solutions to
package PM (Kvetonet al. 2007), we use them as baselines
for evaluating the quality of lazily-learned policies.

The learning rateη and the segment lengthL are set to the
values ofT−

3

4 andT
1

2 , respectively. This setting guarantees
that both bounds in Proposition 1 are sublinear inT . In turn,
the average regret and constraint violation of the lazy learner
vanish with an increasing time horizonT . Our experimental
results are presented in Figures 4 and 5. Without loss of gen-
erality, we report average residency and constraint violation
results, and not the total values. Our bounds in Proposition1
are additionally normalized by the time horizonT to account
for this difference.

Experimental results
Figure 4 demonstrates that our lazily-learned online policies
yield almost as high residency as the best expert in hindsight.
The difference in residencies is always less than 0.5 percent.
The policies also perform significantly better than the worst
experts, which often yield less than 5 percent residency than
the best experts. On the heavy workload trace, this 5 percent
absolute improvement corresponds to a 20 percent improve-
ment when measured in relative numbers. At the same time,
our policies violate less than 1 percent of all constraints (Fig-
ure 5). These results suggest that lazy learning is a practical
way of solving constrained optimization problems online.

6 hours 1 day 1 week 1 month 1 year
0

10

20

30

40

50

60

Time horizon T

T
ig

ht
ne

ss
 [%

]

 

 
Residency regret
Constraint violation

Figure 6: Tightness of our bounds with respect to an increas-
ing time horizonT .

Figure 5 illustrates that both the regret and constraint vio-
lation of our online policies are within the bounds suggested
by Proposition 1. Unfortunately, the bounds are rather loose
to explain the performance of the policies. The reason is that
the bounds hold against an arbitrarily adverse opponent. Our
CPU traces are definitely not generated in such a fashion.

Nevertheless, note that our bounds get tighter with longer
time horizonsT (Figure 6). For instance, if our CPU activity
traces were 1 year long, the residency regret bound would be
1.1 percent, and the constraint violation bound would be 1.4
percent. These theoretical guarantees would be sufficient for
practical purposes.

Conclusions
Although online learning has been studied extensively by the
machine learning community, solving constrained optimiza-
tion problems online remains a challenging problem. In this
paper, we proposed a practical online solution to constrained
optimization problems with average-cost constraints. More-
over, we provided guarantees on its regret and the amount of
constraint violations. Finally, we evaluated the solutionon a
challenging real-world problem. Results of our experiments
show that online learning with constraints can be carried out
successfully in practice.



Results of this paper can be extended in several directions.
First, our online learning solution generalizes to constrained
optimization problems, which involve multiple average-cost
constraints at every time stept. An interesting open question
is how the quality of arbitration deteriorates in such a setting.
Second, arbitration is by no means the most efficient way of
guaranteeing that online learned policies violate only a small
number of constraints. Since arbitration typically yieldszero
rewards, it is important to develop online learning solutions
that do not require it. Note that the work of Mannor and Tsit-
siklis (2006) implies that it is generally infeasible to achieve
close-to-optimal rewards without violating constraints.

Acknowledgment
We thank anonymous reviewers for comments that led to the
improvement of this paper.

References
Bertsekas, D. 1999.Nonlinear Programming. Belmont, MA:
Athena Scientific.

Cesa-Bianchi, N., and Lugosi, G. 2006.Prediction, Learning,
and Games. New York, NY: Cambridge University Press.

Dhiman, G., and Simunic, T. 2006. Dynamic power management
using machine learning. InProceedings of the 2006 IEEE / ACM
International Conference on Computer-Aided Design.

Gramacy, R.; Warmuth, M.; Brandt, S.; and Ari, I. 2003. Adap-
tive caching by refetching. InAdvances in Neural Information
Processing Systems 15, 1465–1472.

Helmbold, D.; Long, D.; Sconyers, T.; and Sherrod, B. 2000.
Adaptive disk spin-down for mobile computers.Mobile Networks
and Applications5(4):285–297.

Karlin, A.; Manasse, M.; McGeoch, L.; and Owicki, S. 1994.
Competitive randomized algorithms for nonuniform problems.
Algorithmica11(6):542–571.

Kveton, B.; Gandhi, P.; Theocharous, G.; Mannor, S.; Rosario,
B.; and Shah, N. 2007. Adaptive timeout policies for fast fine-
grained power management. InProceedings of the 19th Confer-
ence on Innovative Applications of Artificial Intelligence.

Littlestone, N., and Warmuth, M. 1994. The weighted majority
algorithm. Information and Computation108(2):212–261.

Mannor, S., and Tsitsiklis, J. 2006. Online learning with con-
straints. InProceedings of 19th Annual Conference on Learning
Theory, 529–543.

Zinkevich, M. 2003. Online convex programming and gener-
alized infinitesimal gradient ascent. InProceedings of the 20th
International Conference on Machine Learning, 928–936.


