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Abstract

In this work, we study a special semi-Markov decision pro-
cess that formalizes a route-planning problem in stochastic
transportation networks. We explore two versions of the
planning problem: one in which the planner knows the ini-
tial traffic situation but does not have access to further in-
formation once it begins executing the plan (open-loop), and
one in which the planner receives continuous traffic updates
(closed-loop). Since exact versions of these planning prob-
lems are intractable, we study their heuristic approximations.
We present a new class of Monte-Carlo route planning al-
gorithms that optimize the route using a sample of multiple
traffic-state trajectories. We show that these methods are able
to outperform Monte-Carlo methods based on greedy policy
look-aheads applied most frequently to solve the stochastic
decision problems.

1 Introduction
The dynamic behavior of real-world traffic systems is sub-
ject to stochastic fluctuations. It is the result of complex spa-
tiotemporal interaction between traffic volumes, speeds and
physical infrastructure properties. The stochastic behavior
of the systems has a huge effect on a variety of traffic-related
tasks. In this paper, we study the route planning problem in
which the goal is to guide a vehicle through traffic so that the
target destination is reached in the minimal expected time.

Multiple versions of the route-planning problem (Pallot-
tino & Scutella 2003; Bander & White 2002; Fu, Sun, &
Rilett 2006) can be formulated depending on the optimiza-
tion goal and the available information. In our work, we as-
sume that the information about the traffic situation is avail-
able to the planner before and during the plan execution. The
collection of online traffic information is made possible by
sensor networks installed on many highways. We assume
that the routing decisions made for the individual target ve-
hicle have a negligible effect on overall traffic volumes and
the future traffic behavior.

In general, the vehicle routing problem can be formulated
as a Semi-Markov decision process (SMDP), where states
correspond to the traffic conditions (speeds, volumes in dif-
ferent parts of the road network) and the current location
of the vehicle we want to route; and the actions correspond
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to possible route choices the driver can make at intersec-
tions. A dynamic model represents the behavior of the traf-
fic through time. The costs correspond to the time it takes
the vehicle to travel to the next location.

A traffic system involves a large number of interconnected
road components. This leads to a semi-MDP with a high-
dimensional state space. In addition, all quantities (volumes,
speeds etc) are continuous which makes the exact solution
of the full semi-MDP infeasible. To alleviate the state space
problem, we study a variety of route planning approxima-
tions.

Many SMDP-solving approaches have been developed.
Among the most popular are reinforcement learning (RL) al-
gorithms: (Bradtke & Duff 1995) bring discrete-time MDP
into the semi-MDP context. RL approaches that derive from
single-step, TD(0)-type updating (Das et al. 1999) are
likely to suffer poor initial performance in problems with
delayed rewards. More importantly, all work with an im-
plicit confidence that the future state of the environment,
and therefore the action costs, can be described by clearly
defined—if complex—probability distribution. This paper
acknowledges that it is not known well enough how to pre-
dict the state and therefore cost of future actions in trans-
portation networks that operate near their capacity (Nagel
& Rasmussen 1994). In principle, such model of the future
can be built in the process of solving the SMDP with meth-
ods such as Adaptive RTDP (Bradtke 1994) or any of the
above methods but convergence would almost certainly be
slow. A contribution of this paper is the use of an under-
lying flow-dynamic model in a decision context. Use of a
dynamic model should allow the routing algorithm to pro-
duce usable routes out-of-the-box, without lengthy learning
periods, thus perhaps opening the door to subsequent (rein-
forcement) learning steps that refine it.

We develop a new Monte Carlo method that generates a
small sample of traffic state trajectories1

and uses an A∗-like algorithm to obtain the optimal route
for each trajectory. The routes found are then compared via
a second round of Monte Carlo evaluation and the best route
is used to approximate the optimal routing decision. The

1To avoid confusion early on, by state-trajectory we mean time-
indexed sequences of environment states, as opposed to a sequence
of locations to move through in the physical space. We use the term
“route” for the latter.



advantage of the method is that it lets us evaluate the longer-
term effects of routing decisions, not just its first few steps as
is typically done in greedy look-ahead methods (Bertsekas
1995).

To obtain initial insight into the performance of our al-
gorithms, we test them on the routing problem in a traffic
network with 144 (unidirectional) road segments and 61 in-
tersections. We show that our new Monte Carlo method
outperforms other route planning methods on problems in
which information about the current traffic state is provided
either one-time at the beginning of or continuously during
the plan execution.

2 The model
The vehicle routing problem can be formulated as a spe-
cial semi-Markov decision process (MDP) (Howard 1963;
Jewell 1963; Puterman 1994). The state of the process is
represented by the traffic state component S and the vehicle
location component X . A traffic state, s ∈ S, is defined
as s = {r1, v1, · · · ri, vi · · · , rN , vN} where (ri, vi) values
represent the traffic speed and the traffic volume on the i-th
road segment. The traffic volume vi is the number of ve-
hicles traveling segment i. The location component x rep-
resents the current location of the vehicle. We assume the
domain of X consists only of endpoints of road segments.

Actions of the semi-MDP correspond to possible route
choices the vehicle can take at road intersections. The inter-
sections are uniquely defined by the location component of
the state. For every location x there is a finite set of route
actions A(x) that is independent of time.

2.1 Model of network dynamics
The dynamics of the system represents the behavior of the
traffic system in time. It is fully described by the conditional
density:

p(s′, x′, ∆t|s, x, a) (1)

where s and s′ represent the current and the next traffic state,
x and x′ are the current and the next locations of the vehicle,
a is the routing action taken at x, and ∆t is the time of the
transition, that is, the time it takes to get from x to x′ under
the traffic condition s.

Traffic state model. To define our model we assume that
actions of our driver are negligible for the overall evolution
of traffic. This lets us model traffic state evolution indepen-
dent of routing decisions. In particular, we define a traffic
component of the stochastic process using the state transi-
tion distribution p(s∗|s). We assume all transitions occur
at fixed time intervals of length δt. Our model of p(s∗|s)
is inspired by continuum flow laws, a common basis for
macroscopic traffic flow models such as METANET (Kot-
sialos et al. 2002). First the conditional probability decom-
poses along individual road segments:

p(s∗|s) =
N∏

i=1

p(r∗i , v∗i |s)

where r∗i and v∗i are speeds and volumes for the segment
i in the next step (after time δt). Next, the volume-speed

relation decomposes as p(r∗i |v∗i )p(v∗i |s). This reflects our
view of volumes as the primary state component for traf-
fic interactions among segments. Speeds are thought of as
a “dependent variable”, through the volume-speed relation-
ship p(r∗i |v∗i ) described below. The p(v∗i |s) is modeled as a
Gaussian distribution v∗i ∼ N(v̄∗i , σ2

i ) whose mean is de-
termined by flows in the neighboring segments. Let Pre(i)
and Succ(i) denote the predecessors and successors of i,
that is the road segments that feed into and leave the i-th
segment, respectively. We define the mean of the distribu-
tion to be:

v̄∗i = vi +vi0+


 ∑

j∈Pre(i)

θji

r∗j δt

Lj
vj


− viδt

Li

∑

j∈Succ(i)

θijr
∗
j

(2)
where the term v0i captures the expected inflow/outflow
through the unmeasured on- and off-ramps on the i-th seg-
ment and Li is the length of the road segment. Each θji

represents the proportion of flow on j that reaches i. 2 Equa-
tion 2 essentially expresses the flow continuity law, with first
summation term being the inflow to link i while the second
term represents the corresponding outflow. Note how the
outflow speed is determined by the speeds at the downstream
links. Through this mechanism congestions propagate up-
stream.

The second term of the traffic model, p(r∗i |v∗i ), de-
rives from the so-called fundamental traffic diagram (Kerner
2003) that relates traffic volumes and speeds (Figure 1a). We
approximate the conditional density p(r∗i |v∗i ) by dividing
the volume range to subintervals and by using a piecewise-
linear approximation that maps the volumes to their corre-
sponding mean speeds for each subinterval. The natural
variation around the mean in each subinterval is modeled
by a Gaussian noise rectified to positive numbers. Figure
1a shows an example of the volume speed diagram imple-
mented in the model.

Traffic-location model. The state of the traffic defines
only one component of our semi-Markov model. We need
to add a traffic-location model that ties the location and the
state s. It is based on the following decomposition:

p(s′, x′, ∆t|s, x, a) = p(s′, ∆t|s, x, a, x′)p(x′|s, x, a).

To implement individual terms of the decomposition we
make the following assumptions. First, the next location
x′ is a deterministic function of the current location x and
the road segment a chosen and is independent of the traffic
state. This assumption reflects the fact that once we take a
road a in location x we eventually reach the segment’s end at
x′. To model p(s′,∆t|s, x, a, x′) we make use of the above
traffic state model with time step δt. We assume that ∆t is
larger than δt. The travel time ∆t for the road segment i is a
function of speeds ri of the stochastic traffic model and the
segment length Li.

2In this work we assume that the flow distribution parameters
θij and σ2

i for road segments are known. For real networks they
can be estimated through regression methods (Hastie, Tibshirani,
& Friedman 2001).
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Figure 1: a) A fundamental diagram modeling the interaction between the volume and speed. Average and one-standard
deviation contours are shown. b) The spatial and temporal dependencies: empirical mean of p(r∗i |ri, rj) with i ∈ Pre(j)
obtained by sampling the dynamic model with δt = 5 min.

Let (r(0)
i , r

(1)
i , r

(2)
i , . . .) be a sequence of speeds on seg-

ment i. Then the segment travel time ∆t = Aδt, such
that A = argmin

K

[
δt

∑K
u=1 r

(u−1)
i ≥ Li

]
, where Li is the

length of the segment i. In other words, the travel time is
determined by the time our vehicle can cover the length of
the segment with varied segment speeds. The next state s′
is the traffic state corresponding to index A. The travel time
also defines the cost component of our semi-Markov model.

2.2 Decision problem
Our goal is to navigate through the traffic so that the best
expected travel time between the start and target location
is achieved. The travel time corresponding to a route
〈x0, x1, x2, · · ·x`〉 is obtained by summing up the travel
times between the consecutive locations visited by the route.
At every decision point the current traffic condition may be
observed and taken into account when selecting the next
route choice.

The optimal solution to the decision problem is described
by the Bellman equation (Bellman & Dreyfus 1962):

V (s, x) = min
a∈A(x)

E[∆t|s, x, a]+
∫

S′
p(s′|s, x, a)V (s′, xa)ds′

(3)
where V (s, x) is the optimal expected time for the route
starting in location x at traffic condition s and xa denotes
the intersection reached from x by taking the road segment
a. Briefly, the optimal expected time for the current traffic
condition s and location x is obtained by optimizing the sum
of the expected time for the first section of the road corre-
sponding to the action choice a, and the optimal expected
time for the remainder of the route. In our simplified model,
the relationship between s, x and ∆t is functional and the
expectation in the first term is unnecessary.

The space of traffic conditions is continuous. Conse-
quently, the optimal value function and the optimal policy
may not have finite support. Compact parameterizations of

corresponding value functions are likely to exist only un-
der certain restrictions placed on the form of the transition
model and model cost (Boyan & Littman 2001). To allevi-
ate the problem, and to allow for information influx during
the execution of the route plan, we focus on the “on-line”
version of the routing algorithms that always identifies the
best immediate routing choice for the current traffic condi-
tion. The route followed and executed is then formed by the
sequence of such choices.

3 Fixed-route planning
Assume first a simplified version of the routing in which the
initial traffic situation s0 is known, but no further informa-
tion is provided after the plan is being executed. Hence all
routing decision are made before the execution and the plan
does not allow for future changes in traffic patterns.

3.1 Snapshot approximation
The most natural approximate solution to this problem is
to take s0 and assume it does not change in time. If the
time scale of changes in the dynamics of the system is
much larger than actual travel times, then this approximation
should give close-to-optimal results. The main advantage of
the approach is that it can be solved efficiently using Dijk-
stra’s shortest path algorithm or A∗, its heuristic extension,
with costs corresponding to travel times.

3.2 Building time-dependent plans
One problem of the snapshot approximation is that it ignores
temporal dependencies among traffic state variables. As a
result, optimal routes for fixed traffic variable values (and
hence fixed travel times) may lead to suboptimal routing
solutions. To incorporate the temporal aspect of the rout-
ing problem and the fact that traffic state may evolve over
time on, we extend the Dijkstra shortest path (Dijkstra 1959)
method to handle time dependent travel times.



Time-dependent shortest path Assume we know the tra-
jectory of traffic states s, beginning in state s0. We can eas-
ily extend Dijkstra’s algorithm to this case by making the
cost (travel time) for the new road segment dependent on
the “total elapsed time” (see Algorithm 1). The locations
reached and their best total time is then kept and can be used
for pruning new search tree states. Search tree pruning is
based on the following monotonicity property of transporta-
tion networks:

t1+time∗(x, y, t1) < t2+time∗(x, y, t2) whenever t1 < t2.

In other words, arriving at a midpoint earlier will never cause
later arrival to target location on an optimal path from x to
y.

Mean trajectory method One way we can exploit the
time dependent shortest path algorithm is to use the mean
trajectory method. The method generates a set of k traffic-
state trajectories of duration T starting in the initial traffic
state s0. All traffic trajectories are generated with a fixed
sampling step δt. The values of traffic variables are aver-
aged over trajectories to yield the mean volume and speed
trajectories. These quantities define the travel times to be
used by the time-dependent shortest path algorithm.

Best-of-k plans method The limitation of the mean tra-
jectory method is that the plan is generated by averaging
the traffic quantities for many possible traffic state evolu-
tions. As a result, spatial and temporal interactions that oc-
cur in individual trajectories may be blurred and never prop-
erly accounted for. To alleviate the problem we propose the
BEST-OF-k plans method. Similarly to the mean trajectory
method, the method first generates a set of k traffic-state
trajectories of duration T starting in the initial traffic state
s0. However, instead of combining the trajectories via aver-
aging, a separate plan is built for each trajectory using the
time-dependent variant of the shortest path algorithm. This
yields a set of k paths for each possible traffic state evolu-
tion. To compare and select the best of these k paths M
additional state-time trajectories are sampled from the dy-
namic model and the average (over the M samples) travel
time for each path is determined. 3 The path evaluating with
the least average travel time is selected.

The advantage is that unlike the mean trajectory method,
BEST-OF-k considers entire state trajectories, allowing for
capture of dependent behavior of network components.
Most important of such correlated behaviors is the propa-
gation of congestion upstream which leads to nonlinear joint
cost structures (travel time is a non-linear function of speed).
The limitation is the computational effort spent on individual
plan optimizations and their comparison through the second
round of Monte Carlo evaluation.

4 Route planning with information feedback
The route optimizations discussed so far pick a single route
before its execution and they do not account for traffic con-

3Alternatively, the evaluation could just as well be done with
the K − 1 remaining trajectories.

tingencies that may arise during the execution. As a result,
the commitment to a single route may lead to a suboptimal
behavior. In this section we focus on online algorithms that
consider new information about traffic flow state during the
execution of the plan. For simplicity, we will assume that
the information arrives at decision points. Clearly, flexible
planning algorithms have more up-to-date information and
should dominate the fixed strategies.

k-step look-ahead greedy This online approach relies on
a heuristic estimate of the value function V̂ in each unfold-
ing of the Bellman equation:

V (s, x) = min
a


 1

n

n∑

j=1

[∆t(j)(s, x, a) + V̂ (s(j)′, xa)]


 ,

where ∆t(j)(s, x, a) is the travel time from x to the next
state determined by the choice of driving action a, at traf-
fic flow state s. The expectation in Bellman equation is re-
placed here by taking n samples ∆t(j)(s, x, a), j = 1, . . . , n
of the action cost. The k-greedy approach unfolds the Bell-
man equation up to depth k and then relies on the heuristic.
The computation of V̂ involves a solution of a relaxed search
problem. We look at two of the previous approximate search
methods used as heuristics, SNAPSHOT and MEANSPEED.
Note that when a relaxed search problem is used as a heuris-
tic, the online method also avoids getting stuck in states from
which the goal is unreachable. We define such states x to
have a negative-infinity value V (v, r, x) for all v, r. Thus
any state from which the goal is reachable (although perhaps
not at the estimated cost) will be visited first.

K-beam-greedy strategy One disadvantage of the greedy
strategy is its short-sightedness. Depending on the quality
of the heuristic approximation V̂ , the agent is more or less
likely to wind up in an unfavorable region of the state space.
We propose endowing the greedy strategy with the advan-
tage of far-sightedness of the BEST-OF-k method. At a de-
cision point, we obtain a new state update snew and proceed
to generate K state-trajectory samples beginning in snew.
Then, if and only if the paths propose different first steps we
proceed to evaluate them on M samples as in BEST-OF-K.
We call the combined method K-BEAM-GREEDY.

The structure of the algorithm also makes it more
amenable to give it the desirable “anytime” property. The
main computational hurdle is the prediction of the future
traffic state using the dynamic state model p(s′|s). In-
crementally sampling trajectories from the dynamic model
helps to optimally utilize the time between decision points.

5 Experiments and discussion
In this section, we describe the particulars of the simulation
model parameterization and report the obtained results.

Network The simulated traffic network with 61 nodes and
144 links is shown in Table 1. The flow–distribution param-
eters θij were chosen so that the volume distributes evenly



TIME-DEPENDENT-SHORTEST-PATH
Input: states orig, dest, trajectory t
Output: path from orig to dest
root := make− node(orig);
push(q, root);
while ¬empty(q) ∧ ¬found do

active := top(q);
children :=TIME-DEPENDENT-
EXPAND(active, t);
push(q, children);

end

TIME-DEPENDENT-EXPAND
Input: node n, trajectory t
Output: set of children nodes
x := state(n);
foreach c in Succ(x) do

nc := make− node(c);
g(nc) := g(n) + time(x, c, t(n));

end

Algorithm 1: Time-dependent shortest path. The algorithm steps are reminiscent of a standard shortest-path method. The
difference is that the node expansion of the search-tree nodes calculates the travel-time for the new segment from the given
traffic state trajectory.
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Figure 2: b) The greedy method expands the decision dia-
gram for one or more levels and relies on the heuristic V̂ at
a preset depth. b) The k-BEAM-GREEDY search pre-selects
the k state trajectories. The method plans with each tra-
jectory separately. Therefore each chance node has only a
single child and the stochastic search is reduced to a small
number of simple graph search instances.

into successor links: θij = 1/|Succ(i)|. The network state
was initialized in a randomly generated state and allowed
to burn-in for a significant time before sampling. We chose
sampling time δt = 0.01 for the traffic state model. The
volume-speed relationship is modeled by fundamental dia-
grams similar to the one shown in Figure 1a. The model
is suggested in Chapter 3 of the Highway Capacity Man-
ual (Transportation Research Board 2000), the authoritative
compendium of traffic management methods.

Evaluation The start and end states are fixed throughout
the evaluation. The experiment consists of 20 independent
rounds, each with a different initial traffic state. For each
initial traffic state a set of test traffic-state trajectories is gen-
erated according to the model. These trajectories are used
to evaluate the performance of each routing algorithm under
the conditions defined by the testing state trajectory. The
results of our experiments are are tabulated in Table 1.

5.1 Fixed-plan methods
All fixed plan methods are compared against the
MAXSPEED method that does not take advantage of
the traffic information and uses the simple Dijkstra’s short-
est path algorithm to obtain the route. MAXSPEED fails
to take note of frequent congestion patterns occurring on
some roads and leads the agent onto congested roads. The
SNAPSHOT algorithm freezes the initial traffic situation to
build a plan. It is plagued by failures to account for change
in the traffic state and in our experiments performed even
slightly worse than the MAXSPEED method. MEANSPEED
method is better, but its performance, based on average
traffic flow behavior, is limited by the variance of actual
traffic costs. The BEST-OF-k method, emerges a winner
among the fixed strategies because it is able to predict
future possible contingencies better. It ran with k = 10
planning and M = 20 internal evaluation trajectories. The
OMNISCIENT method represents the unattainable lower
bound on path cost by planning with foreknowledge of the
actual testing situation.



Method Cost ± stdev Runtime
MAXSPEED 7.02± 0.635 0± 0
SNAPSHOT 7.09± 1.14 1.6± 4.92
MEANSPEED 6.85± 0.662 2.35± 5.74
BEST-OF-k 6.30± 0.646 30.6± 11.8
GREEDY + SNAPSHOT 6.47± 0.531 0± 0
GREEDY + MEANSPD 6.38± 0.443 0± 0
K-BEAM GREEDY 6.28± 0.693 9.7± 2.51
OMNISCIENT 6.00± 0.331 0.8± 3.58
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Table 1: Results on the simulated traffic road network, finding path from start to end. (opposing peripheral positions). The
cost (travel time) is in minutes. Running time is in milliseconds. For the fixed strategies, the time is that of the execution of
the algorithm; for the information feedback strategies, it is the average time to reach a decision at an intersection. Where time
measurements are 0, the method was too fast to measure time accurately on the millisecond scale.

In terms of runtime, the MAXSPEED algorithm was the
best, as expected. MAXSPEED has no need to access the
current state data. The SNAPSHOT method only needs to
retrieve a single vector of speeds, while MEANSPEED is
slowed down by trajectory sampling and the mean compu-
tations. BEST-OF-k spends over 10 times more computation
as it has to both plan 10 paths and evaluate them.

5.2 Search with feedback
Greedy 1-step look-ahead policies The greedy methods
are tested with a 1-step look-ahead. As expected, the per-
formance of the greedy look-ahead methods depends on
the heuristic V̂ . The online search equipped with the
MEANSPEED search heuristic had better estimates of the
true value than the search using the snapshot heuristic. This
parallels the standalone performance difference between the
two methods embedded into the greedy policy as heuristics.

Both variants achieved negligible average time to make a
decision. This is achieved by caching of heuristic evaluation
results – if a state is reached in heuristic evaluation that is
identical to a state seen in previous searches, the evaluation
is terminated and the previous result is returned.

K-beam greedy policy The performance of the K-
BEAM-GREEDY is similar to that of the related BEST-OF-k
method in cost. A slight improvement is observed due to the
availability of additional information during plan execution,
allowing for course corrections. However, the method ap-
pears to be driven heavily by the underlying cost estimator.
In terms of planning time, the method is faster than BEST-
OF-K, because it only evaluates the resulting paths if they
disagree on the first step.

6 Summary and future work
The general formulation of the shortest path problem in net-
works with stochastic time-dependent cost as a special semi-
Markov decision process is intractable due to large contin-
uous state spaces. We have examined how well several ap-
proximation strategies work and found that planning on a
limited set of state-trajectories sampled from a predictive
model is a viable method of planning in these environments.

Our study leaves some things to be desired, notably an
evaluation on real-world network data with tens of thou-
sands of components that is currently being prepared. We
could use a multi-modal characterization of link behavior
that more precisely captures traffic states - for instance, to
add an incident state representing the mode of traffic that
occurs when an obstacle in the flow appears. The models of
dynamics, while adequate for our purposes here, can be re-
fined ad infinitum. Our solution relies heavily on sampling
as the transition model does not readily lend itself to closed
form solution. Certainly, special cases that do permit such
solutions deserve to be investigated.

Interesting effects might arise if such route guidance sys-
tems are massively adopted and followed. Then a route sug-
gested to a large number of drivers may be overwhelming
and may change the traffic pattern. While the “negligible ef-
fect” assumption in terms of overall flows is still valid, the
fact that many vehicles “see” far-ahead along their potential
routes is likely to change the overall model of traffic dynam-
ics.
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