
Practical Methods for Exploiting Bounds on Change in the Margin

Andrew Guillory
Department of Computer Science and Engineering

University of Washington
guillory@cs.washington.edu

Jeff Bilmes
Department of Electrical Engineering

University of Washington
bilmes@ee.washington.edu

Abstract

We present methods for speeding up the training and eval-
uation of linear and kernel classifiers by exploiting bounds
on change in the margin for data points. Assuming the clas-
sifier’s decision boundary changes slowly, we show we can
avoid recalculating the margin for many data points. We dis-
cuss several extensions and applications of this simple tech-
nique and show results applying it to gradient descent and
stochastic subgradient descent.

1 Introduction
In this paper primarily we study binary classifiers of the
form

y = sign(wT x)
where y is a binary class, x is a data vector, and w a weight
vector. We discuss extensions to nonlinear classifiers via the
kernel trick in a later section. Given a set of training data
xi and yi for i = 1...N , a common way to train a linear
classifier is by minimizing the objective function

N∑

i=1

l(yiw
T xi) +

λ

2
wT w (1)

where l is a loss function and λ is a regularization param-
eter. l is a function of a point’s margin yiw

T xi which is
positive for correctly classified points and negative for in-
correctly classified points. The magnitude of the margin is
the distance from xi to the decision boundary. Typically, l
is chosen to be a convex upper-bound on the zero-one loss
(l(z) = 1 if z > 0, 0 otherwise). A popular choice for l is
the hinge loss function (l(z) = max(0, 1− z)). In this case,
the solution to (1) is a soft margin Support Vector Machine
(SVM) with a linear kernel function.

Many methods exist to optimize the objec-
tive function, perhaps best summarized by visiting
www.kernel-machines.org, but also see the recent
summary in (Shalev-Shwartz, Singer, & Srebro 2007).
These include quadratic programing methods in either
the primal or the dual space, and also subgradient based
methods, which degenerate to gradient descent when the
loss function upper-bound is everywhere differentiable. In
this paper, we exploit the fact that whenever we are in a

Copyright c© 2007, authors listed above. All rights reserved.

context where w changes slowly, it is possible to achieve
significant speedups on evaluating the loss function over a
data set. We consider and evaluate this in a training context
under (sub)gradient descent based optimization, but see
Section 5 for a list of other potential applications.

2 Bounds on change in the margin
In training and evaluating linear classifiers we often need to
calculate a loss function or its gradient (or a subgradient)
for a series of different w values. If w changes slowly, it’s
possible to speed up these computations by using ||w−w′||
and yiw

′T xi where w′ is some previous weight vector to get
upper and lower bounds on the margin for xi. A lower bound
is derived as

yiw
T xi = yiw

T xi − yiw
′T xi + yiw

′T xi

= yiw
′T xi + yi((w − w′)T xi)

>= yiw
′T xi − ||w − w′||2 max

i
||xi||2

using the Cauchy-Schwarz inequality. An upper bound is
similarly derived with the inequality reversed and a sign
change giving

yiw
′T xi − ||w − w′||2 max

i
||xi||2 <= yiw

T xi

<= yiw
′T xi + ||w − w′||2 max

i
||xi||2 (2)

Assuming we have precomputed yiw
′T xi for each xi, and

that we only need to know if the margin for xi is above or
below a threshold, we can use these bounds to potentially
avoid computing yiw

T xi.
A geometric interpretation of (2) is that it is the maximum

and minimum of the dot product between w − w′ and data
vectors contained within an origin centered sphere with ra-
dius maxi ||xi||2. Figure 1 shows this interpretation.

If we also sort the data by yiw
′T xi, we get monotonically

increasing lower bounds and monotonically decreasing up-
per bounds with which we can quickly identify sub portions
of the list with margins above or below a threshold. For cer-
tain loss functions we can then exactly calculate the loss and
its gradient for the data set using stored summations.

Algorithms 1 and 2 illustrate this method for calculating
hinge loss. Algorithm 2 computes the loss and subgradient
for the data set and periodically calls Algorithm 1 to resort

Figure 1: Geometric interpretation of the bound on change
in the margin (2). The blue shaded region shows the range of
data which needs to be reexamined for calculating the zero-
one loss for w after sorting by the margin of w′.

Algorithm 1 SortByMargin(w)
1: w′ ⇐ w
2: Calculate and store yiw

′T xi for all i
3: Sort the data so that yiw

′T xi <= yi+1w
′T xi+1 for i =

1...N − 1
4: Boundary⇐ smallest i such that yiw

′T xi >= 1
5: Sumi ⇐

∑
j<i yjxj

the data by the margin. The algorithm traverses the data set
forwards and backwards from the point at which the data
set crossed the 1 margin boundary for w′. In the forward
traversal, if the lower bound on the margin becomes greater
than or equal to 1 (Line 7), the remainder of the list has zero
loss and the remaining points do not need to be examined.
In the backward traversal, if the upper bound on the margin
becomes less than 1 (Line 15), then the remainder of the list
has non-zero loss and this loss can be calculated exactly us-
ing the summation stored by Algorithm 1. Lines 7 and 15 of
Algorithm 1 use the values for yiw

′T xi stored by Algorithm
2 and Line 5 uses a stored value for maxi ||xi||2.

The performance benefit of the algorithm depends on a
number of factors but primarily the expected magnitude of
||w − w′||2. Assuming the number of points for which
yiw

′T xi = 1 (i.e. the number of points exactly on the 1
boundary of the margin) is constant, the number of points
which need to be examined at each step will be constant for
sufficiently small ||w − w′||2. Here we consider a point ex-
amined if we need to explicitly calculate the margin for that
point (Lines 9 and 19). For larger ||w − w′||2, the perfor-
mance benefit depends on how the data is distributed with
respect to the margin. Intuitively, for a fixed ||w − w′||2,
performance is better if more points were further from the 1
margin boundary when we last sorted.

The parameter SortPeriod controls how frequently
the algorithm resorts the data. By setting this parameter pro-
portional to log(N) we can ensure the algorithm is still in

Algorithm 2 EvaluateHingeLoss(w)
1: if Iteration mod SortPeriod = 0 then
2: SortByMargin(w)
3: end if
4: Iteration+ +
5: mδ ⇐ ||w − w′||2 maxi ||xi||2
6: for i = Boundary to N do
7: if yiw

′T xi −mδ >= 1 then
8: Break
9: else if yiw

T xi < 1 then
10: ∇w+= −yixi

11: HingeLoss += 1− yiw
T xi

12: end if
13: end for
14: for i = Boundary to 1 do
15: if yiw

′T xi + mδ < 1 then
16: ∇w+= −Sumi

17: HingeLoss += i− (wTSumi)
18: Break
19: else if yiw

T xi < 1 then
20: ∇w+= −yixi

21: HingeLoss += 1− yiw
T xi

22: end if
23: end for

the worst case O(N). More specifically, we should set

SortPeriod = c
SortTime

EvalTime
(3)

where SortTime and EvalTime are respectively esti-
mates of the time needed to sort the data by the margin and
evaluate the objective function respectively. c is a parameter
which controls the worst case overhead. With c = 10 we
expect that in the worst case we will spend 1

11 th of the time
sorting. In our experiments we use a rough estimate of (3)
that ignores constant factors

SortPeriod = c
sdN + N log(N) + d

sdN + d
(4)

where d is the dimensionality of the data set and s is the per-
centage of nonzero values in the data set. A more advanced
implementation could estimate constant factors or compute
empirical timing estimates for each data set.

3 Variations and Extensions
We found that a slightly more complicated rule for de-
termining when to resort the data is useful. We resort
the data if SortPeriod iterations have past since we
last sorted the data and one of two conditions hold:
either a) on the previous iteration we pruned less than
half of the data, or b) (examples pruned since last sort) −
(iterations since last sort)(examples pruned last iteration) >
SortCost. Here we call an example pruned if we did
not have to compute the margin for it directly. The first
condition is straightforward and is meant to bootstrap the
method. The second condition is intended to throttle the
method when w is changing slowly. The quantity on the left

Figure 2: To decide when to resort the data by the margin,
we compare the area of the shaded region to an estimate of
the cost of resorting the data.

of the inequality of b) is the cumulative performance benefit
of the last sort above the currently observed performance
benefit. Figure 2 visualizes this quantity. SortCost is the
relative cost of resorting the data, which can be estimated as

SortCost =
SortTime

LossTime
where LossTime is an estimate of the time for computing
loss for a point with sd non zero entries. We can again ignore
constant factors for a simple, rough estimate as in (4), and
we use this approach in our experiments. This rule has the
effect of resorting the data less frequently when the number
of pruned examples per iteration is high. In other words,
when the distance between successive w vectors decreases,
the sorting frequency also decreases.

It is not difficult to incorporate an offset term b so that
y = wT x + b. One easy way to add an offset term is to
add an additional feature to every data point xi which is
always set to 1. The entry in w corresponding to this fea-
ture is then effectively an offset term, and our method can
be used without modification. A drawback to this approach
is that it increases both ||w − w′||2 (when b changes) and
maxi ||xi||2 (from the addition of a new feature) and there-
fore increases mδ . Alternatively, we can separately store and
sort the positive and negative examples by yi(w′T xi + b′)
and traverse each of these lists. In these traversals we re-
place the check in line 7 of Algorithm 2 with yi(w′T xi +
b′) − mδ + yi(b − b′) > 1 and the check in line 15 with
yi(w′T xi + b′) + mδ + yi(b− b′) < 1 where b is the current
offset and b′ was the offset when we last sorted. By seper-
ately storing the positive and negative examples we can di-
rectly compute the change in margin due to the change in
b.

The algorithm as written applies directly to high dimen-
sional sparse data. However, for high dimensional sparse
data storing the (dense) Sumi for every i can be expensive.
In this case we can instead only store SumBoundary and
recursively compute Sumi for other i as we move backwards
through the sorted data. This change could affect numerical
accuracy, but we have not found it to be a practical problem
with our double precision implementation.

A technique for speeding up loss and loss gradient calcu-
lations is to estimate these values from a random sub set of

Algorithm 3 EstimateHingeLossFromSample(w)
1: if Iteration mod SortPeriod = 0 then
2: SortByMargin(w)
3: end if
4: Iteration+ +
5: wδ ⇐ ||w − w′||2
6: for i = 1 to NumSamples do
7: sample x and y from the data set
8: if yw′T x− wδ||x||2 > 1 then
9: Continue

10: else if yw′T x + wδ||x||2 < 1 then
11: ∇w+= −yixi

12: HingeLoss += 1− yiw
T xi

13: else if yiw
T xi < 1 then

14: ∇w+= −yixi

15: HingeLoss += 1− yiw
T xi

16: end if
17: end for

Figure 3: Left: test synthetic data with a hyperplane w.
Right: points which need to be examined to calculate zero-
one loss on the data set in Figure 3 after adding Gaussian
noise (Σ = .01I) to w.

the data set (Shalev-Shwartz, Singer, & Srebro 2007). For
random samples it may not make sense to sort the data, but
we can still use the upper and lower bounds (2) to avoid cal-
culating the margin for some points. Algorithm 3 shows this
method.

When called from this algorithm, the sorting step in Algo-
rithm 1 is skipped. Lines 8 and 10 again can use stored val-
ues for yw′T x stored by Algorithm 1 and also stored values
for ||x||2 for each x. Here we use separate norms for each
data point in place of the maxi ||xi||2 used in (2). Since we
are not sorting the data it is no longer important for points
to share bounds. Algorithm 3 is only useful for sample sizes
great enough that the benefit outweighs the overhead of cal-
culating ||w − w′||2. The potential performance benefit is
also in general less than that of Algorithm 2: the method can
potentially avoid computing many dot products, but in the
best case the algorithm is still O(NumSamples).

4 Experiments
4.1 Synthetic Data
To illustrate our method we generated 100000 points from
a mixture of two dimensional Gaussians, one Gaussian for
the negative class centered at (−1,−1) and one for the posi-
tive class centered at (1, 1). Both Gaussians have covariance

Data Set Training Size Test Size Dimensionality Percent Non-Zero λ
Covtype 522911 58101 54 22 1E-7
MNIST 60000 10000 780 19 1E-3

RCV1 20242 677399 47236 .16 1E-7
USPS 266079 75383 675 15 1E-5

Table 1: Data sets used in our experiments

matrices Σ = I . We set the initial hyperplane w to the plane
best separating the Gaussians, (1, 1), calculated yiw

T xi for
each point, and sorted the data by the margin. The left of
Figure 3 shows the data set and w. We then added ran-
dom Gaussian noise to w with zero mean and covariance
Σ = σ2I and calculated zero-one loss with a variation of
Algorithm 2, recording the number of points which need to
be examined. Here we consider a point examined if we need
to explicitly calculate the margin for that point. The right of
Figure 3 shows the points which need to be examined after
adding noise with covariance Σ = .01I (σ = .1) to w.

4.2 Gradient Descent
We tested our method on real world data by training lin-
ear classifiers to minimize a smooth approximation of hinge
loss, Huber loss (Chapelle 2007).

l(z) =





1− z, for z <= 1− h;
(1+h−z)2

4h for 1− h < z < 1 + h;
0 for z >= 1 + h;

(5)

Huber loss is the same as hinge loss for margin values
greater than 1 + h and less than 1 − h but adds a quadratic
segment within this region, making the loss function every-
where differentiable. As the parameter h goes to zero, the
loss equals hinge loss.

We trained classifiers on 4 data sets with gradient de-
scent on (1), using a variation of Algorithm 2 modified to
use Huber loss and an offset term (b). Table 1 describes the
data sets. We use the version of the Covtype data set used
in (Shalev-Shwartz, Singer, & Srebro 2007) and (Joachims
2006). The USPS digit recognition data set is from (Tsang,
Kwok, & Cheung 2005). Finally, we use the binary version
of the RCV1 text classification and the MNIST digit recog-
nition data set available from http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/. For
the multi class MNIST we train on class 8. For each data
set we use the λ value that gave the lowest error on a hold-
out validation set trying all powers of ten between 102 and
10−10. Where there is a tie, we use the largest λ value with
the lowest error (on some data sets we found all λ below a
threshold gave identical, optimal validation error).

We adapt Algorithm 2 for Huber loss by simply increas-
ing mδ by h and directly computing loss for points in the
quadratic region of the loss function. In our experiments
we use h = .01. We also experimented with h = .1 and
h = .001 and found these values gave mostly comparable
results, although for h larger than .01 the larger quadratic
segment slows down our method.

We use a simple rule for adapting the gradient descent
step size. We initialize the step size to a large value (we used
100) and monitor the objective function (1) value. If at any
iteration the objective function increases we halve the step
size. We found that with this method the objective function
quickly decreases to a value (usually around .1) at which the
optimization makes slow steady convergence. We stop the
algorithm when the relative change in the objective function
is less than ε.

We use the adaptive rule for determining when to resort
described in Section 3 with c = 10. We also switch to stan-
dard gradient calculations if at any time our method fails to
eliminate any points. We then switch back to our method
the next time the data is resorted. This helps avoid wasted
overhead when w is changing quickly. We also use the mod-
ification for sparse data described in Section 3.

Table 2 shows our results with CPU times (in seconds)
for training with and without our sorting method. Reported
times are minimums over 10 runs (other values are the same
for every run as we use the same initialization, w = 0). Tim-
ing experiments were run on a machine with 2 GB of RAM
and dual 2.4 GHz Intel Xeon processors (our code is single
threaded). In all cases the sorting method helps, except for
on the Covtype data set for ε = 10−4 and ε = 10−5. For
ε = 10−4 on the Covtype data set, by chance the method
stopped early. The sorting method helps more for the longer
training runs (with smaller ε). We think this is an interesting
benefit of our method. The choice of stopping criteria is less
critical as our method makes the time per iteration propor-
tional in some way to the progress in the optimization.

A potential criticism of these results is that the algorithm
took many iterations to converge and that for faster converg-
ing algorithms our sorting method may not be as beneficial.
However, we tried several different methods for adjusting
the step size (using zero-one loss to determine when to re-
duce the step size, using a validation set to determine when
to reduce the step size, and using a constant step size) and
weren’t able to achieve consistently faster convergence with
these methods. We found Newton’s method could give sig-
nificantly faster convergence on some of our data sets, but
this is not directly comparable as it requires inverting the
Hessian at each iteration. Other second order methods may
also give faster convergence, but we note that it is possible
to combine our method with a second order method. The
benefit will of course depend on how quickly w changes and
how many iterations the method takes to converge. We also
note that in the next section we give results with stochastic
gradient descent which has been shown to be competitive
with second order methods. We also found fixing b = 0
could sometimes speed things up, but this is not comparable

Data Set ε Iterations Time w/o Time w/ Speed Up Train Error Test Error
Covtype 1E-4 5 1.09 4.29 0.25 36.43 36.74
Covtype 1E-5 1390 111.99 115.98 0.97 23.32 23.41
Covtype 1E-6 7657 609.39 289.30 2.11 23.01 23.12
MNIST 1E-4 831 66.27 20.75 3.19 4.04 3.93
MNIST 1E-5 2119 166.12 34.58 4.80 3.94 3.73
MNIST 1E-6 4099 318.77 48.74 6.54 3.88 3.76

RCV1 1E-4 6031 243.01 100.80 2.41 1.64 3.73
RCV1 1E-5 7868 307.37 124.58 2.47 1.39 3.66
RCV1 1E-6 7868 313.71 131.39 2.39 1.39 3.66
USPS 1E-4 1164 273.69 103.15 2.65 2.95 3.50
USPS 1E-5 4200 960.44 181.38 5.30 2.81 3.39
USPS 1E-6 12311 2776 300 9.25 2.76 3.33

Table 2: Time with and without our method (in seconds) for training a Huber loss classifier with gradient descent for different
convergence thresholds.

as it changes the objective function. Finally, the error rates
reported here are not optimal and continued to decrease after
we stopped training.

4.3 Stochastic Subgradient Descent
We also performed experiments using Algorithm 3 with Pe-
gasos (Shalev-Shwartz, Singer, & Srebro 2007). We use
a modified version of the code provided by the authors
of (Shalev-Shwartz, Singer, & Srebro 2007). Pegasos is
stochastic subgradient descent with two distinctions: 1) the
learning rate for iteration t is set to 1/(λt), and 2) w is pro-
jected into a ball of radius 1/

√
λ after each step. These

changes give an improved theoretical convergence rate over
standard stochastic gradient descent. The method has also
been shown to be competitive with other state of the art
methods for training linear SVMs (Shalev-Shwartz, Singer,
& Srebro 2007).

We use the same data sets we used for gradient descent
and the same λ values, except for the Covtype data set where
we use λ = 10−6 as in (Shalev-Shwartz, Singer, & Srebro
2007) and the RCV1 data set where we use λ = 10−4 which
was used in (Shalev-Shwartz, Singer, & Srebro 2007) for a
different version of this data set. Pegasos’s parameters are k,
the number of examples to examine per iteration, and T , the
number of iterations. We ran experiments for k = 100 and
k = 1000 with T set to powers of ten up to 106 for k = 100
and up to 105 for k = 1000 (kT <= 108). We again use our
adaptive rule from Section 3 with c = 10 for determining
when to recompute the stored margins for the data set and
switch to the standard gradient calculations if our method
skips no examples.

We repeated each experiment 10 times with our method
and 10 times without. Timing measurements reported are
the minimum over the 10 trials. Table 3 shows our results.
Except for on USPS, we report results for each k for T set
to the smallest power of ten such that the absolute objective
function value (averaged over all 20 trials) decreased by less
than .01 compared to the previous power of ten. On USPS,
the average objective function value did not converge ac-
cording to this criteria before the maximum T we tried, so
we report results for the maximum T .

Our method helps everywhere except for on the RCV 1

data set where overhead made our method slower. As with
the gradient descent results, our method was more beneficial
on the longer runs. Our method also has more of an effect for
the larger k, as here the overhead of computing |w−w′|2 at
each step is less significant. Unfortunately runs with larger
k sometimes seem to converge more slowly relative to kT ,
although this was not uniformly the case. We also note that
the data sets used here are all to some extent sparse and that
we expect this method to be more effective with dense data
sets.

We emphasize that the contribution of the paper is not a
new method for training SVMs but rather a general method
for speeding up loss function calculations that is potentially
useful in many applications. The results here are meant to
show the method is useful in reasonable applications.

5 Further Extensions and Applications
The general technique presented here has many potential ex-
tensions and applications. We close by outlining several of
them here. We note that we don’t claim our method will be
useful in every case and certainly some of these applications
may prove to be more useful than others.

Tighter Bounds The geometric interpretation of (2)
makes it clear how one can achieve potentially tighter
bounds on |(w − w′)T xi|. Perhaps the simplest extension
would be to use a sphere with a different center (for exam-
ple the average of the data). In this case the bound would
be (w − w′)T c + ||w − w′||2r where c is the center of the
sphere and r = maxi ||xi − c||2. Other approaches could
bound the data by a hypercube (or some other shape) in-
stead of a sphere, use separate bounds for different clusters
of the data, or even incorporate hierarchical representations
of the data such as a kd-tree or metric tree.

Kernel Classifiers As usual for linear classifiers, the
method can be extended to nonlinear classifiers by project-
ing the the training data xi into a high dimensional feature
space φ(xi). If we can efficiently compute dot products
in this feature space through a kernel function k(xi, xj) =
φ(xi)T φ(xj), we can avoid explicitly representing w in this
feature space and instead represent w as a weighted com-
bination of the training vectors w =

∑
i yiαiφ(xi). We

can calculate the distance between two hyperplanes w and

Data Set k T Time w/o Time w/ Speed Up
Covtype 100 105 12.45 11.62 1.07
Covtype 1000 105 141.49 116.52 1.21
MNIST 100 104 2.78 1.45 1.13
MNIST 1000 104 29.82 16.35 1.82

RCV1 100 104 3.44 14.80 0.23
RCV1 1000 103 3.70 4.32 0.86
USPS 100 106 228.69 183.55 1.25
USPS 1000 105 238.06 187.21 1.27

Table 3: Time with and without our method (in seconds) for training a Hinge loss classifier with Pegasos.

w′ =
∑

i yiα
′
iφ(xi) using

||w − w′||2 =
√∑

i,j

yiyjk(xi, xj)(αiαj + α′iα
′
j − 2αiα′j)

(6)
In the nonlinear case, we can no longer stop early during
the backwards traversal of the list in Algorithm 2, because∑

i l(yiw
T φ(xi)) 6= l(yiw

T φ(
∑

i xi)) (stated differently
we cannot efficiently store

∑
i φ(xi)). We can, however, still

stop early in the forward direction (where loss is zero), and
we can also stop early in either direction when calculating
zero-one loss (in general we can avoid examining examples
where the loss function is constant).

For kernel classifiers the performance characteristics of
the algorithm are different. Simply calculating ||w − w′||2
takes O(N2

sv) where Nsv is the number of data points with
nonzero α values, so the method only makes sense when
Nsv < N . One situation in which our method could be
particularly useful is when the entries in the kernel matrix
needed for calculating (6) are cached (precomputed), but
other kernel entries are not. It may also be possible to use a
cheap upper bound on ||w − w′||2.

Other Loss Functions It’s relatively straightforward to
apply this technique to loss functions that are piecewise con-
stant or piecewise linear with respect to the margin for cer-
tain ranges of the margin. It should also be possible to
apply it to quadratic portions of loss functions by storing∑

j<i xjx
T
j for each i, but this is costly for high dimensional

data. It may also be possible to apply it to calculating fast
upper bounds for general convex loss functions, by using a
(data dependent) linear upper bound (the existence of which
is guaranteed for convex losses).

Dual optimization Many standard SVM learning algo-
rithms (Platt 1999) (Fan, Chen, & Lin 2005) (Joachims
1999) take a decomposition based approach to solving the
dual of (1). These methods select small subsets of the train-
ing data over which to optimize at each training step–in the
case of Sequential Minimal Optimization (Platt 1999) (Fan,
Chen, & Lin 2005), minimal subsets of size two. A com-
mon heuristic for selecting these subsets is to take points
whose Lagrange multipliers have slack in the direction of
their partial derivatives. These partial derivatives are a sim-
ple function of the margin and our method could be used
to avoid recalculating these partials, assuming we only want
a few points with large partials. The standard approach to
this problem is to explicitly maintain the partials for each xi

or each xi in some subset of the data. For linear classifiers,
however, maintaining the partials takes about as long as sim-
ply recalculating them, while recomputing is comparatively
fast. Here our method may be more beneficial.

Many dual-based SVM solvers also use a heuristic called
shrinking: if for several iterations a training example does
not violate the optimality conditions it is removed from the
data set for the remainder of the optimization (shrinking the
data set). After optimizing over the shrunken data set, the
removed points are usually then rechecked for optimality to
ensure they still do not violate the optimality conditions. Our
method could be accurately described as an exact, dynamic
shrinking method and could be used to more aggressively
reduce the data set size.

Sparse greedy approximation and reduced complex-
ity classifiers A increasingly popular method for training
SVMs is to, instead of optimizing (1) over the entire data
set, optimize over a smaller subset of the data that is greedily
selected according to some rule (Tsang, Kwok, & Cheung
2005). Similarly, the method in (Joachims 2006) for linear
classifiers greedily adds constraints to a different but equiv-
alent objective function. The rules used for selecting points
to add to the reduced set are sometimes simple functions of
the margin. In (Tsang, Kwok, & Cheung 2005) the point
with the smallest margin is used, while the constraints in
(Joachims 2006) correspond to sums over all of the misclas-
sified points. Our method could be used to speed up finding
these points exactly. Often to avoid computing the margin
for every point these methods instead restrict the search for
the next point to a random sample from data (e.g. in (Tsang,
Kwok, & Cheung 2005) they use the point with the smallest
margin from a sample of size 59). Here it may be possible
to use Algorithm 3, although for small sample sizes it may
be difficult to achieve speed ups.

Adaptation to changing data When w has not changed
but instead the xi have changed, we can also use a similar
trick, assuming we have a bound on ||xi−x′i||2 where x′i are
the previous xi

yiw
T x′i − ||w||2 max

i
||xi − x′i||2 <= yiw

T xi

<= yiw
T x′i + ||w||2 max

i
||xi − x′i||2

If both w and xi have changed, we can combine the two
bounds. This bound could be used to maintain a set of la-
bels for a set of points as these points change, under the as-
sumption that the points do not move quickly. For example,

the xi could be changing sensor readings from a sensor net-
work. Assuming the sensor readings vary smoothly and that
the time resolution is high enough, we can avoid recalcu-
lating margins for points far away from the current decision
boundary.

References
Chapelle, O. 2007. Training a support vector machine in
the primal. Neural Computation 19(5):1155–1178.
Fan, R.-E.; Chen, P.-H.; and Lin, C.-J. 2005. Working
set selection using second order information for training
support vector machines. JMLR 6:1889–1918.
Joachims, T. 1999. Making large-scale support vector ma-
chine learning practical. Advances in kernel methods: sup-
port vector learning 169–184.
Joachims, T. 2006. Training linear SVMs in linear time. In
KDD06, 217–226. New York, NY, USA: ACM Press.
Platt, J. C. 1999. Using analytic QP and sparseness to speed
training of support vector machines. In NIPS98, 557–563.
Cambridge, MA, USA: MIT Press.
Shalev-Shwartz, S.; Singer, Y.; and Srebro, N. 2007. Pega-
sos: Primal Estimated sub-GrAdient SOlver for SVM. In
ICML07.
Tsang, I. W.; Kwok, J. T.; and Cheung, P.-M. 2005. Core
vector machines: Fast SVM training on very large data sets.
JMLR 6:363–392.

