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Abstract

We introduce a simple empirical order-based greedy
heuristic for learning discriminative Bayesian network
structures. We propose two metrics for establishing the
ordering ofN features. They are based on the condi-
tional mutual information. Given an ordering, we can
find the discriminative classifier structure withO (Nq)
score evaluations (where constantq is the maximum
number of parents per node). We present classifica-
tion results on the UCI repository (Merz, Murphy, &
Aha 1997), for a phonetic classification task using the
TIMIT database (Lamel, Kassel, & Seneff 1986), and
for the MNIST handwritten digit recognition task (Le-
Cun et al. 1998). The discriminative structure found
by our new procedures significantly outperforms gen-
eratively produced structures, and achieves a classifica-
tion accuracy on par with the best discriminative (naive
greedy) Bayesian network learning approach, but does
so with a factor of∼10 speedup. We also show that
the advantages of generative discriminatively structured
Bayesian network classifiers still hold in the case of
missing features.

1 Introduction
Learning the structure of a Bayesian networks is typi-
cally hard. There have been a number of negative re-
sults over the past years, showing that learning various
forms of optimal constrained Bayesian network in a maxi-
mum likelihood (ML) sense is NP-complete (including paths
(Meek 1995), polytrees (Dasgupta 1997),k-trees (Arnborg,
Corneil, & Proskurowski 1987), and general Bayesian net-
works (Geiger & Heckerman 1996)). Learning the best “dis-
criminative structure” is no less difficult, largely because the
cost functions that are needed to be optimized do not in gen-
eral decompose1. As of yet, however, there has not been any
hardness results in the discriminative case.

There have been a number of recentheuristicapproaches
proposed for learning discriminative models. For exam-
ple, standard logistic regression is extended to more gen-
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1By using the term “discriminative structure learning”, we

mean simply that the goal of discrete optimization is to minimize a
cost function that is suitable for reducing classification errors, such
as conditional likelihood (CL) or classification rate (CR).

eral Bayesian networks in (Greineret al. 2005) – they op-
timize parameters with respect to the conditional likelihood
(CL) using a conjugate gradient method. Similarly, in (Roos
et al. 2005) conditions are provided for general Bayesian
networks under which correspondence to logistic regression
holds. In (Grossman & Domingos 2004) the CL function
is used to learn a discriminative structure. The parameters
are set using ML learning. They use a greedy hill climbing
search with the CL function as a scoring measure, where at
each iteration one edge is added to the structure which con-
forms with the restrictions of the network topology (e.g., tree
augmented naive Bayes (TAN)) and the acyclicity property
of Bayesian networks. In a similar algorithm, the classifica-
tion rate (CR) has also been used for discriminative struc-
ture learning (Keogh & Pazzani 1999). This approach is
computationally expensive, as a complete re-evaluation of
the training set is needed for each considered edge. The CR
(equivalently, empirical risk) is the discriminative criterion
with the fewest approximations, so it is expected to perform
well with sufficient training data. Bilmes (Bilmes 2000;
1999) introduced theexplaining away residual(EAR) for
discriminative structure learning of dynamic Bayesian net-
works for speech recognition applications. The EAR mea-
sure is in fact an approximation to the expected log class
posterior distribution. Many generative structure learning
algorithms have been proposed. An excellent overview is
provided in (Murphy 2002).

An empirical and theoretical comparison of discrimina-
tive and generative classifiers (logistic regression and naive
Bayes (NB)) is given in (Ng & Jordan 2002). It is shown
that for small sample sizes the generative NB classifier can
outperform a discriminatively trained model. An exper-
imental comparison of discriminative and generative pa-
rameter training on both discriminatively and generatively
structured Bayesian network classifiers has been performed
in (Pernkopf & Bilmes 2005).

In this work, we introduce order-based greedy algorithms
for learning a discriminative network structure. The classi-
fiers are restricted to NB, TAN (i.e. 1-tree) and 2-tree struc-
tures. We look first for an ordering of theN features accord-
ing to a classification based information measures. Given the
ordering, we can find the discriminative network structure
with O (Nq) score evaluations (constantq limits the num-
ber of parents per node). We learn a e.g., TAN classifier,



which can be discriminatively optimized inO
(

N2
)

using
the CR. Our order-based structure learning is based on the
observations in (Buntine 1991) and the framework is simi-
lar to the K2 algorithm proposed in (Cooper & Herskovits
1992), however, we use a discriminative scoring metric and
suggest approaches for establishing the variable ordering
based on conditional mutual information (CMI) (Cover &
Thomas 1991). We provide results showing that the order-
based heuristic provides comparable results to the best pro-
cedure - the naive greedy heuristic using the CR score, but
it requires only one tenth of the time. Furthermore, we em-
pirically show that the chosen approaches for ordering the
variables improve the classification performance compared
to simple random orderings. Additionally, we experimen-
tally compare both discriminative and generative parameter
training onboth discriminativeand generatively structured
Bayesian network classifiers. Finally, classification results
are shown when missing features are present.

The paper is organized as follows: In Section 2, we briefly
review Bayesian networks. In Section 3, a practical case is
made for why discriminative structure can be desirable. Sec-
tion 4 introduces our order-based greedy heuristic. Experi-
ments are shown in Section 5. Section 6 concludes.

2 Bayesian network classifiers
A Bayesian network (Pearl 1988)B = 〈G,Θ〉 is a directed
acyclic graphG = (Z,E) consisting of a set of nodesZ
and a set of directed edgesE connecting the nodes. This
graph represents factorization properties of the distribution
of a set of random variablesZ = {Z1, . . . , ZN+1}, where
each variable inZ has values denoted by lower case let-
ters {z1, z2, . . . , zN+1}. We use boldface capital letters,
e.g.,Z, to denote a set of random variables and correspond-
ingly lower case boldface letters denote a set of instanti-
ations (values). Without loss of generality, in Bayesian
network classifiers the random variableZ1 represents the
class variableC ∈ {1, . . . , |C|}, |C| is the cardinality of
C, X1:N = {X1, . . . ,XN} = {Z2, . . . , ZN+1} denote
the N attributes of the classifier. Each node represents a
random variable, while missing edges encodes conditional
independence properties (Pearl 1988). These relationships
reduce both number of parameters and required computa-
tion. The set of parameters which quantify the network are
represented byΘ. Each nodeZj is represented as a local
conditional probability distribution given its parentsZΠj

.
The joint probability distribution is given as a function of
the local conditional probability distributions according to
PΘ (Z) =

∏N+1
j=1 PΘ

(

Zj |ZΠj

)

.

3 Why discriminative structures
Finding a discriminative structure really means several
things. First, a commitment has been made to use a genera-
tive model for classification purposes; the alternative being a
“discriminative” classifier such as logistic regression orsup-
port vector machines (SVMs) (Schölkopf & Smola 2001).
There are a number of reasons why one might, in certain
contexts, prefer a generative to a discriminative model in-
cluding: parameter tying and domain knowledge-based hier-

archical decomposition is facilitated, it is easy to work with
structured data, there is less sensitivity to training dataclass
skew, generative models can still be trained and structured
discriminatively, and it is easy to work with missing features
by marginalizing over the unknown variables.

Secondly, there is a “discriminative” cost function that
scores the quality of each structure. The ideal cost func-
tion is empirical risk (what we call CR), which can be
implicitly regularized by constraining optimization to be
over only a given model family (e.g.,k-trees), assum-
ing sufficient training data. We are given training dataS
consisting ofM samplesS = {(cm,xm

1:N )}
M

m=1. Also,
the expressionδ (BS (xm

1:N ) , cm) = 1 if the classifier
BS (xm

1:N ) assigns the correct class labelcm to the at-
tribute valuesxm

1:N and 0 otherwise. CR is defined as
CR = 1

M

∑M

m=1 δ (BS (xm
1:N ) , cm), (a multi-class gener-

alization of 0/1-loss) which is hard to optimize. Alternative
continuous, (often) differentiable, and (sometimes) convex,
cost functions exist which may upper-bound CR are thus
used and include conditional (log) likelihoodCLL (B|S) =

log
∏M

m=1 PΘ (C = cm|X1:N = x
m
1:N ). These are typi-

cally augmented by a weighted regularization term (to bias
against complex models).

It is well known (Friedman, Geiger, & Goldszmidt
1997) that optimizing the log likelihoodLL (B|S) =

log
∏M

m=1 PΘ (C = cm,X1:N = x
m
1:N ) does not necessar-

ily optimize either of the above two, although LL is widely
used. The bad news is that neither CL nor CR is decompos-
able as is LL.

This paper deals with the last two aforementioned as-
pects of generative models. In particular, we show that not
only the right discriminative structure learning procedure
can improve classification performance and render genera-
tive training less important (Section 5), but also that the loss
of a “generative meaning” of a generative model (when it
is structured discriminatively) does not impair the genera-
tive model’s ability to easily deal with missing features (Fig-
ure 3).

In the following, we present a simple synthetic example
(similar to (Narasimhan & Bilmes 2005)) and results which
indicate when a discriminative structure would be necessary
for good classification performance in a generative model,
regardless of the parameter learning method. The model
consists of 3 binary valued attributesX1,X2,X3 and a bi-
nary uniformly distributed class variableC. X̄1 denotes the
negation ofX1. We have the following probabilities for both
classes:

X1 :=



0 with probability0.5
1 with probability0.5

(1)

X2 :=

8

<

:

X1 with probability0.5
0 with probability0.25
1 with probability0.25

(2)

For class 1,X3 is determined according to the following:

X3 :=

8

>

<

>

:

X1 with probability0.3
X2 with probability0.5
0 with probability0.1
1 with probability0.1

. (3)



For class 2,X3 is given by:

X3 :=

8

>

<

>

:

X̄1 with probability0.3
X2 with probability0.5
0 with probability0.1
1 with probability0.1

. (4)

For both classes, the dependence betweenX1 − X2 is
strong. The dependenceX2−X3 is stronger thanX1−X3,
but only from a generative perspective (i.e.,I (X2;X3) >
I (X1;X3) andI (X2;X3|C) > I (X1;X3|C)). Hence, if
we were to use the strength of mutual information, or con-
ditional mutual information, to choose the edge, we would
chooseX2−X3. However, it is theX1−X3 dependency that
enables discrimination between the classes. Sampling from
this distribution, we first learn structures using generative
and discriminative methods, and then we perform parameter
training on these structures using either ML or CL (Greiner
et al. 2005). For learning a generative TAN structure, we
use the algorithm proposed by (Friedman, Geiger, & Gold-
szmidt 1997) which is based on optimizing the CMI between
attributes given the class variable. For learning a discrimi-
native structure, we apply our order-based algorithm pro-
posed in Section 4 (we note that optimizing the EAR mea-
sure (Pernkopf & Bilmes 2005) leads to similar results in
this case).

0 100 200 300 400 500 600 700 800 900 1000

46

48

50

52

54

56

58

60

62

64

66

Sample size

R
ec

og
ni

tio
n 

ra
te

 

 

NB−ML
NB−CL
TAN−Generative Structure−ML
TAN−Generative Structure−CL
TAN−Discriminative Structure−ML
TAN−Discriminative Structure−CL
SVM

Figure 1: Generative and discriminative learning of
Bayesian network classifiers on synthetic data.

Figure 1 compares the classification performance of these
various cases, and in addition we show results for a NB
classifier, which resorts only to random guessing. Addi-
tionally, we provide the classification performance achieved
with SVM using a radial basis function (RBF) kernel2. On
the x-axis, the training setsample sizevaries according to
{20, 50, 100, 200, 500, 1000} and the test data set contains
1000 samples. Plots are averaged over 100 independent sim-
ulations. The solid line is the performance of the classifier
with ML parameter learning, whereas, the dashed line cor-
responds to CL parameter training.

2The SVM uses two parametersC∗ and σ, whereC∗ is the
penalty parameter for the errors of the non-separable case andσ
is the parameter for the RBF kernel. We set the values for these
parameters toC∗ = 3 andσ = 1.

Figure 2: (a) Generatively learned 1-tree, (b) Discrimina-
tively learned 1-tree.

Figure 2 shows (a) the generative (b) the discriminative 1-
tree over the attributes of the resulting TAN network (the
class variable which is the parent of each feature is not
shown in this figure). A generative model prefers edges be-
tweenX1−X2 andX2−X3 which do not help discrimina-
tion. The dependency betweenX1 andX3 enables discrimi-
nation to occur. Note that discriminative parameter learning
is irrelevant and for the generative model, only a discrim-
inative structure enables correct classification. The perfor-
mance of the SVM is similar to our discriminatively struc-
tured Bayesian network classifier. However, the SVM is not
generative. Therefore, when a generative model is desirable
(see the reasons why this might be the case above), there
is clearly a need for good discriminative structure learning
procedures.

4 Order-based greedy algorithms
It was first noticed in (Buntine 1991; Cooper & Herskovits
1992) that the best network consistent with a given variable
ordering can be found withO (Nq) score evaluations where
q is the upper bound of parents per node. These facts were
recently exploited in (Teyssier & Koller 2005) where gener-
ative structures were learned. Here, we are inspired by these
ideas but applied to the case of learning of discriminative
structures. Also, unlike (Teyssier & Koller 2005), we estab-
lish only one ordering, and since our scoring cost is discrimi-
native, it does not decompose and the learned discriminative
structure is not necessarily optimal. However, experiments
show good results at lower computational costs.

Our procedure first looks for a total ordering≺ of the vari-
ablesX1:N according to the CMI. If the graph is consistent
with the orderingXi ≺ Xj then the parentXΠj

∈ XΠj
is

one of the variables which appears beforeXj in the ordering,
whereXΠj

is the set of possible parents forXj . This con-
straint ensures that the network stays acyclic. In the second
step of the algorithm, we selectXΠj

for Xj under constant
k maximizing either CL or CR.

4.1 Step 1: Establishing an order≺
We propose and evaluate two separate procedures for estab-
lishing the ordering≺ of the nodes. In particular, we use
CMI. In the experiments, both metrics are compared against
various random orderings(RO) of the attributes (see Sec-
tion 5) to show that they are doing better than chance. The
two procedures are defined next.

1: CMI The mutual informationI (C;X1:N ) measures
the degree of dependence between the featuresX1:N and



the class, and we have thatI (C;X1:N ) = H (C) −
H (C|X1:N ) where the negative entropy−H (C|X1:N ) =
EP (C,X1:N ) log P (C|X1:N ) is related to what ideally
should be optimized.

Our greedy approach to finding an order first chooses a
feature that is most informative aboutC. The next node
in the order is the node that is most informative about
C conditioned on the first node. More specifically, our
algorithm forms an ordered sequence of nodesX

1:N
≺ =

{

X1
≺,X2

≺, . . . ,XN
≺

}

according to

X
j
≺ ← arg max

X∈X1:N\X1:j−1

≺

[

I
(

C;X|X1:j−1
≺

)]

, (5)

wherej ∈ {1, . . . , N}. We note that any conditional mutual
information query can be computed efficiently making use
of the sparsity of the joint probability distribution (i.e.by
essentially making one pass over the training data). There-

fore, we splitI
(

C;X|X1:j−1
≺

)

into joint entropy terms as

I (C;A|B) = H (C,B)−H (B)−H (C,A,B)+H (A,B).
Utilizing the sparsity of the joint distribution, the nonzero
elements are represented by one discrete random variableY
which is further used to determine the joint entropy accord-
ing to H (Y ) = −

∑|Y |
y=1 P (Y = y) log P (Y = y) where

|Y | denotes the cardinality ofY which is determined by the
number of different patterns in the data. Of course, as the
number of variables inX1:j−1

≺ increases the estimates of the
joint probability suffer and the ordering becomes less reli-
able. In practice, the number of variables inX

1:j−1
≺ should

be restricted (e.g., as in the following).
2: CMISP: For a 1-tree each variableXj

≺ has one single
parent (SP)XΠj

which is selected from the variablesX
1:j−1
≺

appearing beforeXj
≺ in the ordering. This leads to a simple

variant of CMI where we condition the CMI only on a single
variable out ofX1:j−1

≺ . In particular, an ordered sequence of
nodesX1:N

≺ is determined by

X
j
≺ ← arg max

X∈X1:N\X1:j−1

≺

[

max
X≺∈X

1:j−1

≺

[I (C;X|X≺)]

]

.

(6)

4.2 Step 2: Selecting parents w.r.t. a given order
to form a k-tree

Once we have the orderingX1:N
≺ , we selectXΠj

∈ XΠj
=

X
1:j−1
≺ for eachX

j
≺ (j ∈ {3, . . . , N}). When the size of

XΠj
(i.e. N ) and ofk are small we can even use a com-

putational costly scoring function to findXΠj
. In case of a

largeN , we can restrict the size of the parent setXΠj
sim-

ilar to thesparse candidate algorithm(Friedman, Nachman,
& Peer 1999). Basically, either the CL or the CR can be
used as cost function to select the parents for learning a dis-
criminative structure. We restrict our experiments to CR for
parent selection (empirical results show it performed better).
The parameters are trained using ML learning. We connect
a parent toXj

≺ only when CR is improved, and otherwise
leaveX

j
≺ parentless (exceptC). This might result in a par-

tial 1-tree (forest) over the attributes. Our algorithm canbe

easily extended to learnk-trees (k > 1) by choosing more
than one parent, usingO

(

N1+k
)

score evaluations (corre-
sponds toO (Nq)).

5 Experiments
We present classification results on 25 data sets from the
UCI repository (Merz, Murphy, & Aha 1997), for frame-
and segment-based phonetic classification using the TIMIT
database (Lamel, Kassel, & Seneff 1986), and for handwrit-
ten digit recognition (LeCunet al. 1998). We use NB, TAN,
and 2-tree network structures. All different combinations
of the following parameter/structure learning approachesare
used to learn the classifiers:

• Generative (ML) (Pearl 1988) and discriminative
(CL) (Greineret al. 2005) parameter learning.

• CMI: Generative structure learning using CMI as pro-
posed in (Friedman, Geiger, & Goldszmidt 1997).

• CR: Discriminative structure learning with naive greedy
heuristic using CR as scoring function (Keogh & Pazzani
1999).

• RO-CR: Discriminative structure learning using random
ordering (RO) in step 1 and CR for parent selection in
step 2 of the order-based heuristic.

• OMI-CR: Discriminative structure learning using CMI for
ordering the variables (step 1) and CR for parent selection
in step 2 of the order-based heuristic.

• OMISP-CR: Discriminative structure learning using CMI
conditioned on a single variable for ordering the variables
(step1) and CR for parent selection in step 2 of the order-
based heuristic.

Any continuous features were discretized using the pro-
cedure from (Fayyad & Irani 1993) where the codebook is
produced using only the training data. Throughout our ex-
periments, we use exactly the same data partitioning for each
training procedure. We performed simple smoothing, where
zero probabilities in the conditional probability tables are re-
placed with small values (ε = 0.00001). For discriminative
parameter learning, the parameters are initialized to the val-
ues obtained by the ML approach (Greineret al. 2005). The
gradient descent parameter optimization is currently termi-
nated after a specified number of iterations (specifically 20).

5.1 Data characteristics
UCI Data: We use 25 data sets from the UCI reposi-
tory (Merz, Murphy, & Aha 1997) and from (Kohavi &
John 1997). The same data sets, 5-fold cross-validation, and
train/test learning schemes as in (Friedman, Geiger, & Gold-
szmidt 1997) are employed.
TIMIT-4/6 Data: This data set is extracted from the TIMIT
speech corpus using the dialect speaking region 4 which
consists of 320 utterances from 16 male and 16 female
speakers. Speech frames are classified into either four or
six classes using 110134 and 121629 samples, respectively.
Each sample is represented by 20 features. We perform clas-
sification experiments on data of male speakers (Ma), female
speakers (Fe), and both genders (Ma+Fe). The data have
been split into 2 mutually exclusive subsets of where 70% is
used for training and 30% for testing. More details can be



found in (Pernkopf & Bilmes 2007).
TIMIT-39 Data: The difference to TIMIT-4/6 is as fol-
lows: The phonetic transcription boundaries specify a set
of frames belonging to a particular phoneme. From this set
of frames - the phonetic segment - a single feature vector
is derived. In accordance with (Halberstadt & Glass 1997)
we combine the 61 phonetic labels into 39 classes, ignoring
glottal stops. For training, 462 speakers from the standard
NIST training set have been used. For testing the remain-
ing 168 speakers from the overall 630 speakers were em-
ployed. We derive from each phonetic segment 66 features,
i.e. MFCC’s, Derivatives, and log duration. All together we
have 140173 training samples and 50735 testing samples.
More information on the data set is given in (Pernkopf &
Bilmes 2007).
MNIST Data: We evaluate our classifiers on the MNIST
dataset of handwritten digits (LeCunet al. 1998) which con-
tains 60000 samples for training and 10000 digits for testing.
The digits are centered in a28×28 gray-level image. We re-
sample these images at a resolution of14× 14 pixels which
results in 196 features.

5.2 Results
Table 1 presents the averaged classification rates over the
25 UCI and 6 TIMIT-4/6 data sets. Additionally, we report
the CR on TIMIT-39 and MNIST. The classification perfor-
mance on individual data sets can be found in (Pernkopf &
Bilmes 2007). For RO-CR we summarize the performance
over 1000 random orderings using the mean (Mean), min-
imum (Min), and maximum (Max) CR (we use only 100
random orders for TIMIT-4/6 though). For Max (Min), we
take the structure which achieves the maximum (minimum)
CR over the 1000 random orderings (resp. 100 orders for
TIMIT-4/6) on the training set and report the performance
on the test set. For TAN-RO-CR on the UCI and TIMIT-
4/6 data, the structure with maximum performance on the
training set sometimes performs poorly on the test set. The
average over the data sets shows that the worst structures
on the training sets perform better on the test sets than the
best structures on the training sets, presumably due to over-
fitting. These results do show, however, that choosing from
a collection of arbitrary orders and judging based on training
set performance is not likely to perform well on the test set.
Our heuristics do improve over these orders.

The discriminative 2-tree performs best, i.e. for TIMIT-
4/6 the difference is significant. The structure of Bayesian
networks is implicitly regularized when the optimization is
fixed over a given model family (e.g.,1-trees) assuming suf-
ficient training data. For 2-trees we noticed that the data are
overfitted without regularization. Therefore, we introduce 5-
fold cross validation on thetrainingdata to find the optimal
classifier structure.

For TAN structures, the CR objective function produces
the best performing networks. The evaluation of the CR
measure is computationally very expensive, since a com-
plete re-evaluation of the training set is needed for each con-
sidered edge. However, due to the ordering of the variables
in the order-based heuristics, we can reduce the number of
CR evaluations fromO

(

N3
)

to O
(

N2
)

. The order-based

Table 1: Averaged classification results for 25 UCI and 6
TIMIT-4/6 data sets and classification results for TIMIT-39
and MNIST with standard deviation. Best results use bold
font.

Data set UCI TIMIT-4/6 TIMIT-39 MNIST
Classifier

NB-ML 83.82 85.04 61.70± 0.22 83.73± 0.37
NB-CL 84.10 85.13 61.73± 0.22 83.77± 0.37

TAN-CMI-ML 85.00 86.47 65.40± 0.2 91.28± 0.28
TAN-CMI-CL 85.09 86.48 65.41± 0.2 91.28± 0.28

TAN-RO-CR-ML Mean 85.59 87.62 - -
TAN-RO-CR-ML Min 85.51 87.77 - -
TAN-RO-CR-ML Max 85.42 87.60 - -

TAN-OMI-CR-ML 85.72 87.72 66.61± 0.21 92.01± 0.27
TAN-OMI-CR-CL 85.74 87.73 66.62± 0.21 92.01± 0.27

TAN-OMISP-CR-ML 85.56 87.42 66.77± 0.21 92.10± 0.27
TAN-OMISP-CR-CL 85.61 87.42 66.77± 0.21 92.10± 0.27

TAN-CR-ML 85.79 87.78 66.78± 0.21 92.58± 0.26
TAN-CR-CL 85.78 87.78 66.78± 0.21 92.58± 0.26

2-tree-RO-CR-ML Mean - 88.05 - -
2-tree-RO-CR-ML Min - 88.04 - -
2-tree-RO-CR-ML Max - 88.07 - -

2-tree-OMI-CR-ML 85.74 88.21 66.94± 0.21 92.69± 0.26
2-tree-OMI-CR-CL 85.83 88.21 66.94± 0.21 92.69± 0.26

heuristics, i.e. RO-CR, OMI-CR, OMISP-CR, achieve a
similar performance at a much lower computational cost.

Discriminative parameter learning (CL) produces (most
often) a slightly but not significantly better classification
performance than ML parameter learning. We use gener-
ative parameter training during establishing the discrimi-
native structures of the order-based heuristics or TAN-CR.
Once the structure is determined, we use discriminative pa-
rameter optimization. It is computationally expensive to per-
form discriminative parameter learning while optimizing the
structure of the network discriminatively.

The TIMIT-39 and MNIST experiments show that we can
perform discriminative structure learning for relativelylarge
classification problems (∼140000 samples, 66 features, 39
classes and∼60000 samples, 196 features, 10 classes). For
these data sets, OMI-CR and OMISP-CR significantly out-
perform NB and TAN-CMI.

On MNIST we achieve a classification performance of∼
92.58% with the discriminative TAN classifier. A number
of state-of-the-art algorithms (LeCunet al. 1998), i.e. con-
volutional net and virtual SVM, achieve an error rate below
1%. For this reason, we extended our OMI-CR algorithm to
learn a discriminative 2-tree with parameter smoothing sim-
ilar as in (Friedman, Geiger, & Goldszmidt 1997) for reg-
ularization. This improves the classification performanceto
93.74%. Due to resampling we use only 196 features in con-
trast to the 784 features of the original data set which might
explain the loss in classification rate.

Table 2 and Table 3 present a summary of the classifi-
cation results over all experiments of the UCI and TIMIT-
4/6 data sets. We compare all pairs of classifiers using the
one-sided paired t-test. The t-test determines whether the
classifiers differ significantly under the assumption that the
classification differences over the data set are independent
and identically normally distributed. In these tables, each
entry gives the significance of the difference in classifica-
tion rate of two classification approaches. The arrow points
to the superior learning algorithm and a double arrow indi-
cates whether the difference is significant at a level of 0.05.



Table 2: Comparison of different classifiers using the one-sided paired t-test for the 25 UCI data sets: Each entry of the table
gives the significance of the difference of the classification rate of two classifiers over the data sets. The arrow points to the
superior learning algorithm. We use a double arrow if the difference is significant at the level of 0.05.

Classifier TAN TAN TAN TAN TAN 2-tree
Struct.Learn. CMI RO-CR OMI-CR OMISP-CR CR OMI-CR
Param.Learn. ML ML ML ML ML ML

Max
NB-ML ↑0.0977 ⇑0.0300 ⇑0.0242 ⇑0.0371 ⇑0.0154 ⇑0.0316

TAN-CMI-ML ↑0.120 ⇑0.0154 ⇑0.0277 ⇑0.0140 ⇑0.0271

TAN-RO-CR-ML ↑0.144 ↑0.184 ⇑0.0446 ↑0.148

TAN-OMI-CR-ML ←0.153 ↑0.190 ↑0.197

TAN-OMISP-CR-ML ↑0.141 ↑0.167

TAN-CR-ML ←0.194

Table 3: Comparison of different classifiers using the one-sided paired t-test for the 12 TIMIT-4/6 data sets: Each entryof the
table gives the significance of the difference of the classification rate of two classifiers over the data sets. The arrow points to
the superior learning algorithm. We use a double arrow if thedifference is significant at the level of 0.05.

Classifier TAN 2-tree TAN TAN TAN 2-tree
Struct.Learn. CMI RO-CR OMI-CR OMISP-CR CR OMI-CR
Param.Learn. ML ML ML ML ML ML

Max
NB-ML ⇑0.00181 ⇑0.00000277 ⇑0.0000189 ⇑0.0000294 ⇑0.00000360 ⇑0.00000237

TAN-CMI-ML ⇑0.000324 ⇑0.00159 ⇑0.00562 ⇑0.00116 ⇑0.000185

2-tree-RO-CR-ML ⇐0.00240 ⇐0.000401 ⇐0.00113 ⇑0.00113

TAN-OMI-CR-ML ⇐0.00568 ↑0.140 ⇑0.000417

TAN-OMISP-CR-ML ⇑0.000487 ⇑0.000149

TAN-CR-ML ⇑0.000154

These tables show that TAN-OMI-CR, TAN-OMISP-CR,
and TAN-CR significantly outperform the generative struc-
ture learning approach. However, the naive greedy approach
TAN-CR does not significantly outperform our discrimina-
tive order-based heuristics, i.e TAN-OMI-CR.

As mentioned in Section 3, generative models can eas-
ily deal with missing features simply by marginalizing out
from the model the missing feature. We are particularly in-
terested in a testing context which has known, unanticipated
at training time, and arbitrary sets of missing features for
each classification sample. In such case, it is not possible to
re-train the model for each potential set of missing features
without also memorizing the training set. Due to the local-
normalization property of Bayesian networks and the struc-
ture of any model with a parentless class node, marginaliza-
tion is as easy as anO(rk+1) operation for ak-tree, wherer
is the domain size of each feature.

In Figure 3, we present the classification performance of
discriminative and generative structures assuming missing
features using the Ma+Fe data of TIMIT-4/6. The x-axis de-
notes the number of missing features. The curves are the
average over 100 classifications of the test data with uni-
formly at random selected missing features. Variance bars
are omitted to improve readability, but indicate that the re-
sulting differences are significant. We use exactly the same
missing features for each classifier. We observe that discrim-
inatively structured Bayesian network classifiers outperform
TAN-CMI-ML even in the case of missing features. This
demonstrates, at least empirically, that discriminative struc-
tured generative models do not lose their ability to impute
missing features.

The running time of the TAN-CMI, TAN-OMI-CR, and
TAN-CR structure learning algorithms for the data sets is
summarized in Table 4. The numbers represent the percent-
age of time that is needed for a particular algorithm com-
pared to TAN-CR. TAN-CMI is roughly 3-10 times faster
than TAN-OMI-CR and TAN-CR takes about 10-40 times

longer for establishing the structure than TAN-OMI-CR.

Table 4: Running time of structure learning algorithms rela-
tive to TAN-CR.

Data TAN-CMI TAN-OMI-CR TAN-CR

UCI 0.649% 3.155% 100.00%

TIMIT-4/6 3.56% 11.47% 100.00%

TIMIT-39 0.11% 2.08% 100.00%

MNIST 0.21% 2.23% 100.00%

6 Conclusion
We introduced a simple order-based heuristic for learning a
discriminative network structure. The metric for establish-
ing the ordering ofN features is based on either the condi-
tional mutual information or the classification rate. Given
an ordering, we can find the discriminative classifier struc-
ture usingO (Nq) score evaluations (where constantq is the
maximum number of parents per node).

We empirically compare the performance of our algo-
rithms to state-of-the-art discriminative and generativepa-
rameter and structure learning algorithms using real data
from the TIMIT speech corpus, the UCI repository, and from
a handwritten digit recognition task. The experiments show
that the discriminative structures found by our order-based
heuristics achieve on average a significantly better classi-
fication performance than the generative approach. Our
obtained classification performance is very similar to the
greedy search using CR. Our order-based heuristics how-
ever, are about 10 times faster. Additionally, we show that
discriminatively structured Bayesian network classifiersare
superior even in the case of missing features.

References
Arnborg, S.; Corneil, D.; and Proskurowski, A. 1987. Complexity
of finding embeddings in ak-tree.SIAM Journal of Algebraic and
Discrete Methods8(2):277–284.



Figure 3: Classification performance assuming missing features using Ma+Fe data of TIMIT-4/6. The x-axis denotes the
number of missing features.

Bilmes, J. 1999.Natural Statistical Models for Automatic Speech
Recognition. Ph.D. Dissertation, U.C. Berkeley.

Bilmes, J. 2000. Dynamic Bayesian multinets. In16th Inter.
Conf. of Uncertainty in Artificial Intelligence (UAI), 38–45.

Buntine, W. 1991. Theory refinement on Bayesian networks.
In Proceedings of the Seventh Conference on Uncertainty in AI
(UAI), 52–60.

Cooper, G., and Herskovits, E. 1992. A Bayesian method for the
induction of probabilistic networks from data.Machine Learning
9:309–347.

Cover, T., and Thomas, J. 1991.Elements of information theory.
John Wiley & Sons.

Dasgupta, S. 1997. The sample complexity of learning fixed-
structure Bayesian networks.Machine Learning29(2):165–180.

Fayyad, U., and Irani, K. 1993. Multi-interval discretizaton of
continuous-valued attributes for classification learning. InPro-
ceedings of the Thirteenth International Joint Conference on Ar-
tificial Intelligence, 1022–1027.

Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997. Bayesian
network classifiers.Machine Learning29:131–163.

Friedman, N.; Nachman, I.; and Peer, D. 1999. Learning
Bayesian network structure form massive datasets: The Sparse
Candidate Algorithm. InProceedings of the 15th Conference on
Uncertainty in AI (UAI), 196–205.

Geiger, D., and Heckerman, D. 1996. Knowledge representa-
tion and inference in similarity networks and Bayesian multinets.
Artificial Intelligence82:45–74.

Greiner, R.; Su, X.; Shen, S.; and Zhou, W. 2005. Structural ex-
tension to logistic regression: Discriminative parameter learning
of belief net classifiers.Machine Learning59:297–322.

Grossman, D., and Domingos, P. 2004. Learning bayesian net-
work classifiers by maximizing conditional likelihood. In21st
Inter. Conf. of Machine Lerning (ICML), 361–368.

Halberstadt, A., and Glass, J. 1997. Heterogeneous mea-
surements for phonetic classification. InProceedings of EU-
ROSPEECH, 401–404.

Keogh, E., and Pazzani, M. 1999. Learning augmented Bayesian
classifiers: A comparison of distribution-based and classification-
based approaches. InProceedings of 7th International Workshop
on Artificial Intelligence and Statistics, 225–230.

Kohavi, R., and John, G. 1997. Wrappers for feature subset se-
lection. Artificial Intelligence97:273–324.

Lamel, L.; Kassel, R.; and Seneff, S. 1986. Speech database de-
velopment: Design and analysis of the acoustic-phonetic corpus.
In Proceedings of the DARPA Speech Recognition Workshop, Re-
port No. SAIC-86/1546.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.Pro-
ceedings fo the IEEE86(11):2278–2324.
Meek, C. 1995. Causal inference and causal explanation with
background knowledge. In11th Inter. Conf. on Uncertainty in
Artificial Intelligence (UAI’95), 403–410.
Merz, C.; Murphy, P.; and Aha, D. 1997. UCI reposi-
tory of machine learning databases. Department of Information
and Computer Science, University of California, Irvine, URL:
www.ics.uci.edu/˜mlearn/MLRepository.html.
Murphy, K. 2002.Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD Thesis, University of California,
Berkeley.
Narasimhan, N., and Bilmes, J. 2005. A supermodular-
submodular procedure with applications to discriminative struc-
ture learning. In21st Inter. Conf. on Uncertainty in Artificial In-
telligence (UAI).
Ng, A., and Jordan, M. 2002. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes.
In Advances in Neural Information Processing Systems 14.
Pearl, J. 1988.Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann.
Pernkopf, F., and Bilmes, J. 2005. Discriminative versus genera-
tive parameter and structure learning of Bayesian network classi-
fiers. InInternational Conference on Machine Learning (ICML),
657 – 664.
Pernkopf, F., and Bilmes, J. 2007. Discriminative learning for
Bayesian network classifiers. Technical report, Graz University
of Technology, Department of EE.
Roos, T.; Wettig, H.; Gr̈unwald, P.; Myllym̈aki, P.; and Tirri, H.
2005. On discriminative Bayesian network classifiers and logistic
regression.Machine Learning59:267–296.
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