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ABSTRACT

Generating expressive body movements of a pianist for
a given symbolic sequence of key depressions is important
for music interaction, but most existing methods cannot in-
corporate musical context information and generate move-
ments of body joints that are further away from the fingers
such as head and shoulders. This paper addresses such lim-
itations by directly training a deep neural network system
to map a MIDI note stream and additional metric structures
to a skeleton sequence of a pianist playing a keyboard in-
strument in an online fashion. Experiments show that (a)
incorporation of metric information yields in 4% smaller
error, (b) the model is capable of learning the motion be-
havior of a specific player, and (c) no significant difference
between the generated and real human movements is ob-
served by human subjects in 75% of the pieces.

1. INTRODUCTION

Music performance is a multimodal art form. Visual ex-
pression is critical for conveying musical expression and
ideas to the audience [4,5]. Furthermore, visual expression
is critical for communicating musical ideas among musi-
cians in a music ensemble, such as predicting the leader-
follower relationship in an ensemble [15].

Despite the importance of body motion in music perfor-
mance, much work in automatic music performance gen-
eration has focused on synthesizing expressive audio data
from a corresponding symbolic representation of the music
performance (e.g., a MIDI file). We believe that, however,
body motion generation is a critical component that opens
door to multiple applications. For educational purposes,
for example, replicating the visual performance character-
istics of well-known musicians can serve as demonstra-
tions for instrument beginners to learn from. Musicol-
ogists can apply this framework to analyze the role of
gesture and motion in music performance and perception.
For entertainment purposes, rendering visual performances
along with music audio enables a more immersive music
enjoyment experience as in live concerts. For automatic
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Figure 1. Outline of the proposed system. It generates
expressive body movements as skeleton sequences like hu-
man playing on a keyboard instrument, given the input of
MIDI note stream and metric structure information.

accompaniment systems, appropriate body movements of
machine musicians provide visual cues for human musi-
cians to coordinate with, leading to more effective human-
computer interaction in music performance settings.

For generating visual music performance, i.e., body po-
sition and motion data of a musician, it is important to
create an expressive and natural movement of the whole
body in an online fashion. To consider both expressiveness
and naturalness, the challenge is to maintain some com-
mon principles in music performance constrained by the
musical context being played. Most previous work for-
mulates it as an inverse kinematics problem with physi-
cal constraints, where the generated visual performance is
limited to hand shapes and finger positions. Unfortunately,
this kind of formulation fails to address the two challenges;
specifically, (1) it fails to generate the whole body move-
ments that are relevant to music expression, such as the
head and body tilt, and (2) it fails to take into account the
musical context constraints for generation, which do not
contribute to ergonomics.

Therefore, we propose a body movement generation
system as outlined in Figure 1. The input is a real-time
MIDI note stream and a metric structure, without any addi-
tional indication of phrase structures or expression marks.
The MIDI note stream provides the music characteristics
and the artistic interpretations, such as note occurrence,
speed, and dynamics. The metric structure indicates bar-
lines and beat positions as auxiliary information. Given
these the system can automatically generate expressive and
natural body movements from any performance data in the
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MIDI format. We design two Convolutional Neural Net-
works (CNN) to parse the two inputs and then feed the ex-
tracted feature representations to a Long Short-Term Mem-
ory (LSTM) network to generate proper body movements.
The generated body movements are represented as a se-
quence of positions of the upper body joints ' . The two
complementary inputs serve to maintain a correct hand po-
sition on the keyboard while conveying musical ideas in
the upper body movements. To learn a natural movement,
we employ a two-stage training strategy, where the model
is trained to learn the joint positions first, then later trained
to also learn the body limb lengths.

2. RELATED WORK

There has been work on cross-modal generation, mostly
for speech signals tracing back to the 1990s [1], where a
person’s lips shown in video frames are warped to match
the given phoneme sequence. Given the speech audio, sim-
ilar work focuses on synthesizing photo-realistic lip move-
ments [14], or landmarks of the whole face [6]. Some other
work focuses on the generation of dancers’ body move-
ments [9, 12] and behaviors of animated actors [11].

Similar problem settings for music performances have
been rarely studied. When the visual modality is available,
the system proposed in [8] explores the correlation be-
tween the MIDI score and visual actions, and is able to tar-
get the specific player in an ensemble for any given track.
Purely from the audio modality, Chen et al. [3] propose to
generate images of different instrumentalists in response to
different timbres using cross-modal Generative Adversar-
ial Networks (GAN). Regarding the generation of videos,
related work generates hand and finger movements of a
keyboard player from an MIDI input [17] through inverse
kinematics with appropriate constraints. All of the above-
mentioned works, however, do not model musicians’ cre-
ative body behavior in expressive music performances.

Given the original MIDI score, Widmer et al. [16]
propose to predict three expressive dimensions (timing,
dynamics, and articulations) on each note event using a
Bayesian model trained on a corpus of human interpreta-
tions of piano performances. It further gives a comprehen-
sive analysis of computer’s creative ability in generating
expressive music performances, and proves that certain as-
pects of personal styles are identifiable and even learnable
from MIDI performances. Regarding to the expressive per-
formance generation in visual modality, Shlizerman et al.
[13] propose to generate expressive body skeleton move-
ments and adapt them into textured characters for pianists
and violinists. Different from our proposed work, they
take the input of audio waveforms rather than MIDI perfor-
mances. We argue that MIDI data is a more scalable for-
mat to carry context information, regardless of recording
conditions and piano acoustic characteristics. And most of
piano pieces have the sheet music in MIDI format, which
can be aligned with a waveform recording.

' We do not generate lower body movements as they are often paid less
attention by the audience.
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Figure 2. The proposed network structure.

3. METHOD

The goal of our method is to generate a time sequence of
body joint coordinates, given a live data stream of note
events from the performer’s actions on the keyboard (MIDI
note stream), and synchronized metric information. We
seek to create the motion at 30 frames-per-second (FPS),
a reasonable frame-rate to ensure a perceptually smooth
motion. In this section, we introduce the technical details
of the proposed method, including the network design and
training conditions. We first use two CNN structures to
parse the raw input of the MIDI note stream and the metric
structure, and feed the extracted feature representations to
an LSTM network to generate the body movements, as a
sequence of upper-body joint coordinates forming a skele-
ton. The network structure is shown in Figure 2.

3.1 Feature Extraction by CNN

In contrast to traditional methods, our goal is to model ex-
pressive body movements that are associated with the key-
board performance. In this sense, the system should be
aware of the general phrases and the metric structure in
addition to each individual note event. Instead of design-
ing hand-crafted features, we use CNNs to extract features
from the raw input of the MIDI note stream and the metric
structure, respectively.

3.1.1 MIDI Note Stream

We convert the MIDI note stream into a series of two-
dimensional representations known as the piano-roll ma-
trix, and for each of them extract a feature vector ¢,, as the
piano-roll feature.

To prepare the piano roll, the MIDI note stream input is
sampled at 30 frames-per-second (FPS) to match the target
frame rate. This quantizes the time resolution into the unit
of 33 ms, as a video frame. Then for each time frame ¢
we define a binary piano-roll matrix X € R!28%27 where
element (m,n) is 1 if there is a key depression action at
pitch m (in MIDI note number) and frame ¢t — 7 +n — 1,
and 0 otherwise. We set 7 = 30. The key depression tim-
ing is quantized to the closest unit boundary. Note that the
sliding window covers both past 7 frames and future 7 — 1
frames, and the note onset interval in X captures enough
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Figure 3. The CNN structures and parameters for feature
extraction from the (a) MIDI note stream and (b) metric
structure information.

information for motion generation to “schedule” its tim-
ing. Looking into the future is necessary for the generation
of proper body movements, which is also true for human
musicians: to express natural and expressive body move-
ments, a human musician should either look ahead on the
sheet music, or be acquainted with it beforehand. Later in
Section 3.2 we will introduce in which cases we can avoid
the potential delays in real-time applications.

We then use a CNN to extract features from the binary
piano-roll matrix X, as CNNs are capable of capturing lo-
cal context information. The design of our CNN struc-
ture is illustrated in Figure 3.a. The input is the piano-
roll matrix X and the output is a 50-d feature vector ¢, as
the piano-roll feature. There are two convolutional layers
followed by max-pooling layers, and we use leaky recti-
fied linear units (ReL.U) for activations. The kernel spans
5 semitones and 5 time steps, assuming that the whole
body movement is not sensitive to detailed note occur-
rence. Overall, it is thought that in addition to generating
expressive body movements, the MIDI note stream con-
strains the hand positions on the keyboard.

3.1.2 Metric Structure

Since the body movements are likely to correlate with the
musical beats, we also input the metric structure to the pro-
posed system to obtain another feature vector. This metric
structure indexes beats within each measure, which is not
encoded in the MIDI note stream. The metric structure can
be obtained by aligning the live MIDI note stream with
the corresponding symbolic music score with explicitly-
annotated beat indices and downbeat positions.

Similar to the MIDI note stream feature, we sample
them with the same FPS and window length, and, at each
frame ¢, define the metric information as a binary metric
matrix C € RM*27 with M = 3. Here, element (m,n)
is a one-hot encoding of the metric information at frame
t — 7 + n — 1, where the three rows correspond to down-
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Figure 4. The LSTM network structure for body move-
ment generation.

beats, pick-up beats, and other positions, respectively. We
then build another CNN to parse the metric matrix C and
obtain a 10-d output vector ¢. as the metric feature, as il-
lustrated in Figure 3.b.

3.2 Skeleton Movement Generation by LSTM

To generate the skeleton sequence, we apply the LSTM
network, which is capable of preserving the temporal co-
herence of the output skeleton sequence while learning
the pose characteristics associated with the MIDI input.
The input to the LSTM is a concatenation of the piano-
roll feature ¢, and the metric feature ¢., and the out-
put is the normalized coordinates of the body joints y.
Since musical expression of a human pianist is mainly re-
flected through upper body movements, we model the z-
and y- visual coordinates of K joints in the upper body as
y = (Y1,%2, - , Y2k ), where K is 8 in this work, corre-
sponding to nose, neck, both shoulders, both elbows, and
both wrists. The first K indices denote the x-coordinates
and the remaining denote the y-coordinates. Note that
all the coordinate data in y, for each piece, are shifted
such that the average centroid is at the origin, and scaled
isotropically such that the average variance along z- and
y-axis sums to 1. The network structure is illustrated in
Figure 4. It has two LSTM layers, and the output layer
is fully-connected to get the 16-d vector approximating y
for the current frame. The output skeleton coordinates are
temporally smoothed using a 5-frame moving window. We
denote the predicted body joint coordinates, given X, C
and network parameters 6, as § (X, C|6).

Since the LSTM is unidirectional, the system is capable
of generating motion data in an online manner, with a la-
tency of 30 frames (i.e., 1 second). However, feeding the
pre-existing reference music score (after aligned to the live
MIDI note stream online) to the system enables an antic-
ipation mechanism like human musicians, which makes it
applicable in real-time scenarios without the delay.

3.3 Training Condition

To train the model, we minimize, over 6, the sum of a loss
function J(y,C, X, #) evaluated over the entire training
dataset. The loss function expresses a measure of discrep-
ancy between the predicted body joint coordinates ¥ and
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Figure 5. The two constraints applied during training.

the ground-truth coordinates y.

We use different loss functions during the course of
training. In the first 30 epochs, we simply minimize the
Manhattan distance between the estimated and the ground-
truth body joint coordinates with weight decay:

J(y,C,X,0)=>

k

k(X Cl0) —yie| + Bl6I1°, (1)

where  is the index for the body joints and 3 = 1078 is a
weight parameter. We call this kind of loss the body joint
constraint (see Figure 5.a). After 30 training epochs, we
add another loss to ensures that not only the coordinates are
correct but also consistent with the expected limb lengths:

J(y7 Cvxve) = Z |gk(X7 C‘Q) - yk:|
k

0 13X, ClO) - 2l + B0, @

(i,j)eE

where z;; = (y; —v;)+ (Y +i —Yr+;) is the displacement
between two joints ¢ and j on a limb (e.g., elbow-wrist),
E = {(4,7)} is the set of possible limb connections (i, j)
of a human body. We call the added term the body limb
constraint (see Figure 5.b). This is similar to the geometric
constraint as described in [10]. There are 7 limb connec-
tions in total, given the 8 upper body joints. We then train
another 120 epochs using the limb constraint. We use the
Adam [7] optimizer, which is a stochastic gradient descent
method, to minimize the loss function.

Here we propose to combine the two kinds of con-
straints in our training epochs. The body limb constraints
are important because the loss of joint positions are min-
imized independently of each other in the body joint con-
straint. Figure 6 demonstrates several generated skeleton
samples on the normalized plane, where the limb con-
straint is not applied in the following 120 epochs. Limb
constraint adds dependencies between the loss among dif-
ferent joints, encouraging the model to learn a natural
movement that considers the consistency of limb lengths.
We only use this constraint at later epochs, however, be-
cause the body joint constraint is an easier optimization
problem; if we optimize with body limb constraints from
the very beginning, the training sometimes fails and re-
mains a state of what seems a local optima, perhaps be-
cause the loss function wants to minimize the body joint
errors but the gradient must pass through regions where the
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Figure 6. Several generated unnatural skeleton samples
without the limb constraint.

limb constraint increases. In this case, the arrangements of
the body joints tend to be arbitrary and not ergonomically
reasonable.

4. EXPERIMENTS

We perform objective evaluations to measure the accuracy
of the generated movements, and subjective evaluations to
rate their expressiveness and naturalness.

4.1 Dataset

As there is no existing dataset for the proposed task, we
recorded a new audio-visual piano performance dataset
with synchronized MIDI stream information on a MIDI
keyboard. The dataset contains a total of 74 performance
recordings (3 hours and 8 minutes) of 16 different tracks
(8 piano duets) played by two pianists, one male and one
female. The two players were respectively assigned the
primo and the secondo parts of 8 piano duets. Each player
then played the 8 tracks multiple times (1-7 times) to ren-
der different expressive styles, e.g., normal, exaggerated,
etc. At each time the primo and secondo are recorded to-
gether to ensure enough visual expressiveness on the play-
ers for interactions. The key depression information (pitch
, timing, and velocity) is automatically encoded into the
MIDI format by the MIDI keyboard. For each record-
ing, the quantized beat number and the downbeat positions
were annotated by semi-automatically aligning the MIDI
stream and the corresponding MIDI score data. The cam-
era was placed on the left-front side of the player and the
perspective was fixed throughout all of the performances.
The video frame rate was 30 FPS. The 2D skeleton coordi-
nates were extracted from the video using a method based
on OpenPose [2]. The video stream and the MIDI stream
of each recording were manually time-shifted to align with
the key depression actions. Note that we extract the 2D
body skeleton data purely from computer vision techniques
instead of capturing 3D data using motion sensors, which
makes it possible to use the massive online video record-
ings of great pianists (e.g., Lang Lang) to train the system.

4.2 Objective Evaluations

We conduct two experiments to assess our method. Since
there is no similar previous work to model the players’
whole body pose from MIDI input, we set different experi-
mental conditions for the proposed model as baselines and
compare them. First, we investigate the effect of incor-
porating the metric structure information, which is likely
to be relevant for expressive motion generation but does
not directly affect the players’ key depression actions on
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the keyboard. Second, we compare the performance of the
network when training on a specific player versus training
on multiple players. To numerically evaluate the quality of
the system output, we use the mean absolute error (MAE)
between the generated and the ground-truth skeleton coor-
dinates at each frame.

4.2.1 Effectiveness of the Metric Structure

The system takes as the inputs the MIDI note stream and
the metric information. Here we investigate if the latter
one can help in the motion generation process, by setting a
baseline system that takes the MIDI note stream as the in-
put, ignoring the metric structure by fixing ¢. to 0. We
evaluate the MAE of the two models, using piece-wise
leave-one-out testing over all the 16 tracks.

Results show that adding the metric structure informa-
tion into the network can decrease the MAE from 0.180
to 0.173. The unit is in the scale of the normalized plane,
where the length of an arm-wrist limb is around 1.2 (see
Figure 6). The result is significant because it not only
demonstrates that our proposed method can effectively
model the metric structure, but also that features that are
not indirectly related to physical placement of the hand
does have an effect on expressive body movements. Al-
though our dataset for evaluation is small, we argue that
overfit should not exist since the pieces are quite different.

On the other hand, we also observe that even without the
metric structure information, the system output is still rea-
sonable by learning the music context from the MIDI note
stream. This setting broadens the use scenarios of the pro-
posed system, such as when the MIDI note stream is from
an improvised performance without corresponding metric
structure information. Nevertheless, including a reference
music score is beneficial for the system not only because
it improves the MAE measure, but it also enables an antic-
ipation mechanism to favor real-time generation without
potential delays.

4.2.2 Training on A Specific Player

In this experiment, we evaluate the model’s performance
when fixing the same player for training and testing. Now
the experiments are carried out on the two players sepa-
rately. We first divide the dataset into two subsets, each
obtaining the 8 different tracks performed by the two play-
ers respectively. On each subset we use the leave-one-out
testing for the 8 tracks and calculate the MAE between the
generated and ground-truth coordinates of body skeletons.
The average of the MAE from the two subsets is 0.170.
Comparing the MAE of 0.173 in Section 4.2.1 and the
MAE of 0.170 in this experiment, we see that training on
a generic model only on a target player is slightly better
than training over different players. This slight improve-
ment may not be statistically significant. The marginal dif-
ference also suggests that even when trained on multiple
players as in Section 4.2.1, the system is capable of re-
membering the motion characteristic of each player.

Figure 7. One sample frame of the assembled video for
subjective evaluation.

4.3 Subjective Evaluation

Although the objective evaluation using MAE reflects
the system’s capability of reproducing the players’ body
movements on a new MIDI performance stream, this mea-
sure is still limited. There can be multiple creative ways
on body motions to expressively interpret the same music,
and the ground-truth body motion is just one possibility.
In addition, from MAE we cannot infer the naturalness of
the generated body movements, which is even more impor-
tant than simply learning to reproduce the motion. In this
section, we conduct subjective tests to evaluate the qual-
ity of the generated body movements, addressing both ex-
pressiveness and naturalness. The strategy is to mix the
ground-truth body movements with the generated ones and
let the testers to tell if each sample is real (ground-truth
from human) or fake (generated).

4.3.1 Arrangements

In the subjective evaluation, we mix the two players to-
gether and cross-validate on the 16 tracks, as in Sec-
tion 4.2.1. Here we do not add the metric structure input
because positive feedbacks on the generation results purely
from the keyboard actions will promise broader use cases
of the system, i.e., improvised performance without a ref-
erence music score.

From the generated skeleton coordinates, we recover
them to the original pixel positions on real video frames us-
ing the same scaling factor when normalizing the ground-
truth skeleton before training. Then we generate an anima-
tion showing body joints as circles and limb connections as
straight lines on the background environment image taken
by the camera from the same perspective. In the same
generated video, we also render a dynamic piano-roll that
covers a rolling 5-second segment around the current time
frame together with the synthesized audio. For a fair com-
parison, instead of using the original video recordings of
real human performances, we generate human body skele-
tons by repeating the same process using the ground-truth
skeletal data. Figure 7 shows one sample frame of the as-
sembled video as a visualization.

We arrange 16 pairs of the generated and ground-truth
skeleton motions on all the 16 tracks, and randomly crop
a 10-second excerpt from each one (excluding several
chunks containing long silence parts or page turning mo-
tions). This results in 32 video excerpts. We shuffle the 32
excerpts before showing them to subjects for evaluation.

We recruit 18 subjects from Yamaha employees, who
are in their 20’s to 50’s, all with rich experience in musical
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Figure 8. Subjective evaluation on expressiveness and nat-
uralness of the generated and human skeleton performance
videos. The tracks with significant different ratings are
marked with “*”.

acoustics or music audio signal processing. 17 subjects
have instrument performance experiences (15 on keyboard
instruments). This guarantees that most of them have a
general knowledge of how a human pianist performance
may look like based on a given MIDI stream, considering
different factors such as hand positions on the keyboard
according to pitch height, dominant motions for leading
onsets, etc. Based on expressiveness and naturalness they
rated the videos on a 5-point scale: absolutely generated
(1), probably generated (2), unsure (3), probably human
(4), and absolutely human (5).

4.3.2 Results

Figure 8 shows the average subjective ratings as bar plots
and their standard deviations as whiskers. A Wilcoxon
signed rank test on each piece shows that no significant
difference is found in 12 out of the 16 pairs (p = 0.05).
This suggests that for 3/4 of the observation videos, the
generated body movements achieve the same level of ex-
pressiveness and naturalness as the real human videos.

In Figure 8, the pieces with significant differences in
the subjective ratings between generated and real human
videos are marked with “*”. On the 1st piece, we observe
an especially significant difference. Further investigation
reveals that this piece is in a fast tempo (130 BPM), where
the eighth notes are alternatively played by the right and
left hand with an agile motion, as shown in Figure 9.a.
The generated performance lacks this kind of dexterity. In
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(a) The agile fashion in left-right hand alternative playing is not learned.

Real Human Generated

(b) The exaggerated head nodding on the leading bass note (in red mark)
is not learned.

Figure 9. The two typical failure cases.

addition, the physical body motions from the human play-
ers are distinct and exaggerated around the phrase bound-
aries, but the generated ones tend to create more conser-
vative motions. Figure 9.b gives an example, where in the
real human’s performance the head moves forward exten-
sively on the leading bass note (marked in red), whereas
the generated one does not. Another observed drawback
is the improper wrist positioning of a resting hand; a ran-
dom position is often predicted in these cases. This is be-
cause the left/right hand information is not encoded in the
MIDI file, and when only one hand is used, the system
does not know which hand to use and how to position the
other hand. Generally speaking, the generated movements
that are rated significantly lower than real human move-
ments tend to be somewhat dull, which might provide the
subjects a cue to discriminate between human and gener-
ated movements. We present all of the generated videos
online? .

5. CONCLUSION

In this paper, we proposed a system for generating a
skeleton sequence that corresponds to an input MIDI note
stream. Thanks to data-driven learning between the MIDI
note stream and the skeleton, the system is capable of gen-
erating natural playing motions like a human player with
no explicit constraints on the physique or fingering, reflect-
ing musical expressions, and attuning the generated motion
to a particular performer.

For future work, we will apply more music contextual
features to generate richer skeleton movements, and ex-
tend our method to the generation of 3D joint coordinates.
Generating textured characters based on these skeletons is
another future direction.

2http://www.ece.rochester.edu/projects/air/
projects/skeletonpianist.html
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