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ABSTRACT

Methods for interpreting machine learning models can
help one understand their global and/or local behaviours,
and thereby improve them. In this work, we apply a global
analysis method to a machine listening model, which es-
sentially inverts the features generated in a model back into
an interpretable form like a sonogram. We demonstrate
this method for a state-of-the-art singing voice detection
model. We train up-convolutional neural networks to in-
vert the feature generated at each layer of the model. The
results suggest that the deepest fully connected layer of
the model does not preserve temporal and harmonic struc-
tures, but that the inverted features from the deepest con-
volutional layer do. Moreover, a qualitative analysis of a
large number of inputs suggests that the deepest layer in
the model learns a decision function as the information it
preserves depends on the class label associated with an in-
put.

1. INTRODUCTION

Deep neural networks (DNNs) are state-of-the-art in nu-
merous machine learning applications. This success is due
to their high expressive power and strong generalisation
capability [10]. DNNs acquire these capabilities automati-
cally through training over large amounts of data and tun-
ing of millions of parameters. Despite their success, DNNs
remain “black-boxes” as we know very little about the pro-
cess by which they form their predictions.

Recent research has highlighted problems associated
with DNNs. For example, researchers have demonstrated
that attacking these models with carefully generated in-
puts, called “adversarial examples”, changes their predic-
tions [11, 15, 44]. Such behaviour may be dangerous to a
system (e.g., autonomous vehicle) if its decision making
depends on DNN predictions [32]. Moreover, like shallow
machine learning models, a DNN may exploit confounders
in a dataset and behave correctly for the wrong reasons.
Such behaviour limits the performance of a model in the
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real world where such confounders are absent. Thus, there
is an urgent need to bring interpretability to these black-
box models, i.e. to understand the behaviour of a DNN [4].

Researchers have attempted to analytically [33, 48] and
empirically explain the behaviour of DNNs. In this work,
we focus on understanding these models empirically using
post-hoc visualisation methods [27, 31]. We can broadly
classify such methods into two categories: (1) methods that
explain model predictions (local analysis); and (2) meth-
ods that explain a model (global analysis). Local anal-
ysis uses variants of sensitivity analysis (e.g., gradient-
based sensitivity analysis) to generate attribution maps that
highlight the input dimensions [39,40,43] or input regions
(groups of contiguous dimensions) [35,47] in favour of (or
against) a prediction. Such analysis is useful but may result
in inconsistent [16] and uninterpretable (noisy) explana-
tions [41]. Although some local explanation methods can
generate cleaner visualisations, they depend on the type of
non-linearity [42] or network architecture [38,47] and thus
are not generalisable.

In another direction, the global analysis of DNNs aims
for an insight that generalises across input instances. For
example, irrespective of the class label associated with an
input image, the shallow layers of image content recogni-
tion models show sensitivity to low-level structures, e.g.,
edges and gradients [47]. There exist several methods
for global analysis. For example, activation maximisation
aims to synthesise examples in the input space (e.g., pix-
els) that maximally activate a specific neuron [9,29,40,46]
or layer [28] in a model. Similarly, feature inversion aims
to highlight the input content (features) preserved by any
layer in a DNN model by inverting the corresponding fea-
ture [6, 23].

In this work, we apply feature inversion to a machine
listening model that classifies an input audio frame (or ex-
cerpt) into predefined classes. Previous work in the anal-
ysis of deep machine listening models has focused both
on local and global analysis. The methods to generate
local explanations for model predictions use bin-level [1]
or region-level [26] attribution maps. On the other hand,
Dieleman et al. [3] globally analyse a music autotagging
model by visualising filters in the first convolutional layer.
Similarly, in [36] the authors globally analyse a scaled-
down version of their deep onset detector by visualising
the most activated feature maps and their corresponding
filter kernels. Our method differs from these global analy-
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Figure 1: Functional block diagram of our feature inver-
sion method. The method inverts a feature ΦL(xi) from a
layer L by training a feature inverter GL that jointly min-
imises the input space loss Ψinput and feature space loss
Ψfeature . ΦL and Θ are the representation functions of a
discriminator D and comparator C, respectively.

sis methods as it neither limits the analysis only to shallow
layers nor puts any restriction on the depth of a model.

We demonstrate our method for a state-of-the-art
singing voice detection (SVD) model that classifies an in-
put mel spectrogram excerpt into two classes: ‘vocal’ and
‘non-vocal’ [37]. We first train up-convolutional neural
networks [7], one per layer of the SVD model, to invert the
features generated by it. We then quantify the performance
of the inversion models (we call them “feature inverters”)
by calculating the normalised reconstruction error (NRE)
that [23] defines as the normalised Euclidean distance be-
tween an input and its inverted representation. The results
demonstrate that NRE is largest for a feature inverter that
inverts the deepest layer (the last fully connected layer)
in the SVD model and decreases for feature inverters that
invert features from shallow layers. Finally, we qualita-
tively analyse the inverted features for both classes (vocal
and non-vocal) to understand the preserved input content
at each layer of the SVD model. Similarly, we analyse the
inverted features for inputs selected from different datasets
to test whether the conclusions from one dataset generalise
to the other. The experimental code and results are avail-
able online. 1

2. FEATURE INVERSION

Feature inversion aims to map the feature generated at any
layer of a DNN back to a plausible input. Each layer in
a DNN maps an input feature to an output feature and in
the process ignores the input content that does not seem
relevant to the classification task. Thus, the inversion of a
feature from any layer of a DNN will highlight the input
content preserved by that layer.

2.1 Prior Work

Mahendran et al. [23] and Dosovitskiy et al. [6] apply fea-
ture inversion to analyse the global behaviour of convolu-
tional neural networks (CNNs). Mahendran et al. [23, 24]

1 https://github.com/saum25/ISMIR-2018

invert the features from AlexNet [18] (a CNN for image
recognition). Their work demonstrates that the inverted
features from the deepest convolutional layer in AlexNet
are visually similar (preserve the spatial layout and colour)
to the input image. They also demonstrate that although
the reconstructions from fully connected layers are visually
poor, they still depict the presence of high-level features
(e.g., the facial features of an animal). Their work also
highlights the invariances captured by the AlexNet layers.
For example, the inverted representations from the deep-
est layer in the model (a fully connected layer) depict an
object at different locations, orientations and scales.

The method introduced by Mahendran et al. [23] gener-
ates an inverted representation x∗iL ∈ Rn from an Lth layer
feature by iteratively minimising the feature space loss be-
tween an input image xi ∈ Rn and an intermediate repre-
sentation x′iL ∈ Rn. The method starts with a randomly
sampled x′iL and in each iteration updates it by calculating
the gradient of the loss function at x′iL. Formally, given
a CNN with representation function ΦL : Rn → Rd that
maps an n-dimensional input to a d-dimensional feature
ΦL(xi) at a layer L, the method inverts ΦL(xi) by solving

x∗iL = arg min
x′
iL

‖ΦL(x′iL)− ΦL(xi)‖
2

+ αf(x′iL) (1)

where f : Rn → R is a regularisation function (a natu-
ral image prior) that limits the search to realistic images
and α is a scaling constant. Regularisation is needed since
an unrestricted search may output fooling examples [30]
that cause high activations to a neuron (or a layer), but do
not possess features found in natural images. The method
by Mahendran et al. [23, 24] has two major limitations:
(1) hand-crafting a prior is challenging as for some inputs
(e.g., images, audio) defining the constituents of a real in-
put is difficult; and (2) the method needs to solve Eq. 1 for
every new feature it needs to invert.

The feature inversion method proposed by Dosovitskiy
et al. [6] tackles both the above issues and demonstrates
visually improved reconstructions even for the fully con-
nected layers of AlexNet. The method trains another neu-
ral network, an up-convolutional neural network (feature
inverter) [7], to invert the features of a DNN. The method
trains a feature inverter by minimising the input space loss
Ψinput , defined as the squared Euclidean distance between
an input image and its inverted representation. Although
this method learns a natural image prior implicitly during
training and is expensive only at the training time, the in-
verted representations are blurry for all the layers. The
reason behind this is the way a feature inverter inverts a
feature. A forward pass through AlexNet (or any DNN)
maps several inputs to the same feature. Thus, to invert a
feature, a feature inverter generates an input that is an aver-
age of all the inputs that AlexNet maps to the given feature.
This averaging effect results in blurry reconstructions.

2.2 Our Method

Fig. 1 provides an overview of our method. We use the
approach of Dosovitskiy et al. [6], but modify its loss
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Figure 2: The architecture of the singing voice detection
model proposed by Schlüter et al. [37]. Nfm denotes the
number of feature maps in the output of a convolutional
layer. Nn denotes the number of neurons in a fully con-
nected layer. Conv: convolutional layer, MP: max-pooling
layer, FC: fully connected layer, Out: output layer.

function to reduce the effect of input averaging. Recent
works [5, 14] demonstrate that minimising loss in the per-
ceptual space helps to reduce the over-smoothness problem
for image generation models. We extend this idea to ma-
chine listening. Thus, in addition to the input space loss
Ψinput , our method also calculates the feature space loss
Ψfeature . We define total loss Ψ as:

Ψ = λinputΨinput + λfeatureΨfeature (2)

where λinput and λfeature weight the losses of the input
space and feature space. Thus, our method trains a feature
inverter GL to invert a feature ΦL(xi) by jointly minimis-
ing the input space and feature space losses. To evaluate
Ψfeature , we use the approach from [5] where the authors
use a comparator C to map an input xi and its inverted
representation x̂iL to the feature space. A comparator is
a pre-trained discriminative model that may or may not be
of the same depth as the discriminatorD (the model whose
features we are inverting). We can even use D as a com-
parator by extracting feature vectors at a layer of D (e.g.,
Dosovitskiy et al. [5] use the deepest convolutional layer
of AlexNet as a comparator for inverting AlexNet).

Formally, given an input excerpt xi ∈ Rn and a rep-
resentation function ΦL : Rn → Rd that maps xi to a
d-dimensional feature ΦL(xi) at a layer L of a discrimina-
tor D, our method trains a feature inverter GL that maps
ΦL(xi) to an inverted representation x̂iL ∈ Rn. In or-
der to do that, the method calculates Ψinput and Ψfeature .
Given a comparator C with a representation function Θ :
Rn → Rd′

, we define Ψfeature as the squared Euclidean
distance between Θ(xi) and Θ(x̂iL), where x̂iL is an in-
verted representation for an input xi at layer L and d′ is
the dimensionality of the feature space for C. Similarly,
we define Ψinput as the squared Euclidean distance be-
tween xi and x̂iL. The method trains an up-convolutional
neural network GL(ΦL(xi);w) with parameters w by the
optimisation

w∗ = arg min
w

∑
i

(‖xi −GL{ΦL(xi);w}‖2

+ ‖Θ(xi)−Θ(GL{ΦL(xi);w})‖2) + β‖w‖2
(3)

where β > 0 is the regularisation constant. Once we train
GL, we can invert any feature ΦL(xi) by a forward pass
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Figure 3: Feature inverter architecture for the Conv4 layer
of the SVD model. The highlighted components represent
the ‘Conv2’ convolutional layer and its input and output
feature maps. Uconv: up-convolutional layer, Conv: con-
volutional layer.

through GL:

x̂iL = GL(ΦL(xi);w
∗) (4)

3. INVERTING THE FEATURES OF A DEEP
SINGING VOICE DETECTOR

We now demonstrate our feature inversion method from
Section 2 for a state-of-the-art SVD model [37]. We first
introduce the SVD model and then explain the architec-
tures and training details of our feature inverters. Finally,
we evaluate the performance of the feature inverters on two
SVD datasets.

3.1 The Deep Singing Voice Detection Model

Singing voice detection is an audio segmentation problem
where the task is to classify an input audio frame (ex-
cerpt) into one of the two categories: singing voice with or
without instrumental music (‘vocal’) or instrumental mu-
sic without singing voice (‘non-vocal’). There exist sev-
eral methods for singing voice detection. Some use hand-
crafted features to train shallow classifiers [20, 22, 34],
while others jointly optimise the feature extraction and
classification steps using deep learning [19, 21, 37].

Schlüter et al. [37] train an SVD model using a CNN
and seven data augmentation techniques. Their model
achieves state-of-the-art performance on public benchmark
datasets. 2 Fig. 2 depicts the architecture of their 8-layered
SVD model. Each convolutional layer performs convo-
lution using 3 × 3 filters with 1 × 1 stride and no zero
padding. The two max-pooling layers perform pooling
with 3 × 3 stride and no zero padding. The input to the
model is a mel spectrogram of about 1.6sec (115 frames).
The model was trained on the Jamendo dataset [34]. Ja-
mendo is a dataset of pop music songs and it consists of
non-overlapping training, validation and test subsets with
61, 16 and 16 audio files, respectively. The model uses the
auxiliary data (57 frames on each sides of the centre frame)
as context to classify the centre frame in an input.

3.2 Feature Inverter Architectures

We train up-convolutional neural networks to invert the
features generated by the above SVD model. We design

2 https://github.com/f0k/ismir2015
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Layer Input Shape Units Output Shape
FC1 256× 1 256 256× 1

Reshape 256× 1 - 16× 4× 4
Uconv2 16× 4× 4 64 64× 8× 8
Conv3 64× 8× 8 64 64× 8× 8
Uconv4 64× 8× 8 32 32× 16× 16
Conv5 32× 16× 16 32 32× 16× 16
Uconv6 32× 16× 16 16 16× 32× 32
Conv7 16× 32× 32 16 16× 32× 32
Uconv8 16× 32× 32 8 8× 64× 64
Conv9 8× 64× 64 8 8× 64× 64

Uconv10 8× 64× 64 1 1× 128× 128

Table 1: Feature inverter architecture to invert the FC7
layer of the SVD model. Input and output shape dimen-
sions are ordered as the number of channels × time × fre-
quency. Uconv: up-convolutional layer, Conv: convolu-
tional layer, FC: fully connected layer. Units refer to the
number of neurons in a fully connected layer or the number
of filters in a convolutional layer.

Inv-idx Inv-inp Inv-depth Inv-nconv
FC8 64× 1 11 4
FC7 256× 1 10 4
MP6 64× 11× 7 5 1

Conv5 64× 33× 21 5 3
Conv4 128× 35× 23 5 3
MP3 32× 37× 25 6 4

Conv2 32× 111× 76 4 4
Conv1 64× 113× 78 2 2

Table 2: Architectural overview of the feature inverters
for all the layers in the SVD model. Inv-idx: SVD layer
a feature inverter inverts, Inv-inp: input to a feature in-
verter (number of channels × time × frequency), Inv-
depth: number of layers in a feature inverter, Inv-nconv:
number of convolutional layers in a feature inverter. Conv:
convolutional layer, FC: fully connected layer and MP:
max-pooling layer.

two categories of architectures, one to invert the fully con-
nected (FC) layers and the other to invert the convolutional
(Conv) and max-pooling (MP) layers of the SVD model. 3

The architecture of inversion models in [6] inspires the de-
sign of our feature inverters, but we adapt the architectures
to suit the SVD model. A majority of feature inverters need
to perform the upsampling (unpooling) operation that is an
approximate inverse of the max-pooling operation done in
the SVD model. In order to perform unpooling and con-
volution in a single step, we use up-convolutional layers
(Uconv) with 4 × 4 filters and 2 × 2 stride. This configu-
ration of Uconv layers upsamples an input feature map by
2 [7] . The number of such layers depends on the dimen-
sionality of the layer we are inverting. For example, the

3 “inverting a layer” is another way to refer to the inversion of the
features generated by a layer.

feature inverter to invert the 256-dimensional FC7 layer
uses 5 Uconv layers (Table 1), while the feature inverter
to invert the Conv4 layer uses two Uconv layers (Fig. 3).
The feature inverters for the Conv1 and Conv2 layers in the
SVD model do not use Uconv layers as for them the model
generates features without using the max-pooling layer.

We increase the capacity of the feature inverters
by adding convolutional layers; either after every up-
convolutional layer (for inverting an FC layer) or before
the first up-convolutional layer (for inverting a Conv or MP
layer). We empirically decide the number of convolutional
layers for each feature inverter. The convolutional layers
perform convolution using 3×3 filters with 1×1 stride and
improve the visual appearance of the reconstructions [8].
Table 2 provides details about the depth and the number
of Conv layers in each feature inverter. All the layers
use exponential linear unit (ELU) non-linearity given by
y(x) = x if x > 0, otherwise ex−1 [2]. The network uses
batch normalisation layers [13] to make sure the input to
each layer follows a standard normal distribution. Except
for the Conv1 and Conv2 layers, each feature inverter gen-
erates an inverted representation with a larger spatial size
and later trims it to match the input excerpt size (115×80).
The feature inverters for the Conv1 and Conv2 layers gen-
erate an inverted representation of the same shape as input
by symmetrically padding the missing dimensions.

3.3 Training of the Feature Inverters

We train one feature inverter per layer of the SVD model.
We train a feature inverter using mel spectrogram excerpts
of about 1.6 sec that we extract from the Jamendo training
dataset. We show one such sample in Fig. 4. We generate
excerpts with a hop size of 10 frames (140 ms). Thus, we
train each feature inverter using a data set of about 100k
features. We do not use any data augmentation techniques.
In order to prevent overfitting, we run the optimisation to
a fixed number of weight updates (30 epochs) and select
a feature inverter giving the lowest loss on the validation
subset. We use the Conv5 layer of the SVD model as
the comparator, i.e., we encode the mel spectrogram and
the inverted representation using Conv 5. We initialise the
feature inverter weights using the He normal initialisation
method [12]. In each iteration, for a mini-batch of 32 ran-
domly selected excerpts, the training objective jointly min-
imises the feature and input space losses and updates the
change in parameters using ADAM [17]. We set the scal-
ing factors λinput and λfeature = 1 (Eq. 2). We start train-
ing with an initial learning rate of 0.001 and decay it by
0.5 when the training loss does not change for 2 consec-
utive epochs. The training procedure performs regularisa-
tion using L2 weight decay and sets β = 1e− 4 (Eq. 3).

3.4 Quantitative Evaluation of the Feature Inverters

We train eight feature inverters using the Jamendo training
dataset and the architectures and training methodology dis-
cussed above. We evaluate the performance of each feature
inverter on an evaluation set of 128 mel spectrogram ex-
cerpts. We build the evaluation set by randomly selecting
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Figure 5: Performance evaluation of the feature inverters.
The plot depicts the change in average normalised recon-
struction error (NRE) as a feature inverter inverts different
layers in the SVD model.

8 excerpts from each of the 16 audio files in the Jamendo
test dataset. We quantify the performance of feature in-
verters by calculating the average normalised reconstruc-
tion error (NRE) for each feature inverter on the evaluation
dataset. [23] defines NRE as:

NRE = ‖xi − x̂iL‖/Nc (5)

where Nc is a normalising constant computed from the av-
erage pairwise Euclidean distance between excerpts in the
evaluation set.

We also evaluate the feature inverters on the RWC
dataset [25] to understand whether the results of the quan-
titative evaluation on Jamendo extend to the RWC dataset.
The RWC dataset for singing voice detection is a public
benchmark dataset that contains a collection of 100 pop
music songs, but unlike Jamendo, there is no partitioning
into separate subsets. Thus, to evaluate our models we first
build an RWC test dataset by randomly selecting 20 audio
files from a set of 100 and use them to build an evaluation
dataset of 160 randomly selected excerpts (8 excerpts per
audio files). Moreover, in order to evaluate the feature in-
verters on a larger evaluation dataset, we randomly sample
10 different evaluation sets, calculate the average NRE for
each and later take an average. Thus, effectively we eval-
uate our feature inverters on an evaluation dataset of size
1280 (Jamendo) and 1600 (RWC) excerpts.

Fig. 5 shows the results of the evaluation. For both
datasets, the reconstruction error is largest for the deep-
est layer in the SVD model (FC8) and decreases for rep-
resentations inverted from shallower layers. This is pre-
dictable as the dimensionality of the features in shallow

layers is larger than in deep layers, making it easier to in-
vert them. For instance, the dimensionality reduction of
features from MP6 to FC7 is about 19 times, compressing
a 4928-dimensional feature to 256 dimensions. Similarly,
we see a large increase in the average NRE between the
feature inverters for the Conv2 and MP3 layers. This likely
occurs due to max-pooling operation that compresses fea-
ture dimensionality by 9 times between the two layers.

The results also depict that the feature inverters have
larger reconstruction error on the RWC dataset at all but
two layers. This is expected since both the discrimina-
tor (the SVD model) and the feature inverters are trained
on the Jamendo dataset. One possible explanation for the
comparable average NRE of the Conv1 and Conv2 layers
is that these shallow layers of the model are learning gen-
eralisable features [47]. This becomes less so at deeper
layers, where features are likely tuned to specific traits of
the training data.

We also compare the performance of the feature inver-
sion method we use in this work (we call it ‘Mjoint’) with
a baseline method (we call it ‘Minput’) that trains feature
inverters using image loss only. We train and test the fea-
ture inverters of Minput on the Jamendo dataset. We find
that across all the layers of the SVD model, the average
NRE of the feature inverters using Minput is either similar
or slightly lower than for those using Mjoint. Such a be-
haviour is predictable asMinput aims to only minimise the
input reconstruction loss, while Mjoint aims to jointly op-
timise both the loss functions, which may or may not result
in lower NRE [5]. The benefit of usingMjoint comes from
the generation of inverted representations that are percep-
tually closer to an input, a property that is challenging for
Minput to achieve.

4. QUALITATIVE ANALYSIS OF THE INVERTED
FEATURES

Fig. 6 shows visualisations for each layer of the SVD
model. We generate these visualisations by selecting four
inputs, two from each dataset (Jamendo and RWC), in
which one belongs to each of the two classes (vocal and
non-vocal). We then use the feature inverters to invert the
features extracted by the SVD model from each input. The
results provide some insights into the model behaviour. For
example, reconstructions from the FC8 layer suggest that
FC8 does not retain the harmonic structures present in the
inputs. Moreover, it appears that this layer preserves ei-
ther the high frequency or the low-frequency content of an
input. Similarly, FC8 does not preserve any temporal infor-
mation (musical onset locations) present in the inputs. In-
terestingly, for a large number of cases (in addition to these
four inputs), we found a clear demarcation between the vo-
cal and the non-vocal class visualisations from this layer.
We find that for the vocal class, energy appears in higher
frequencies while for the non-vocal class energy appears
in lower frequencies. These visualisations suggest that the
SVD model learns a class-decision function in this layer.

Similarly, reconstructions from the FC7 layer suggest
that the layer preserves some harmonic content and ap-
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Figure 6: Feature inversion from successive layers of the SVD model. Each row corresponds to one input excerpt: (A), (B)
are respectively non-vocal and vocal excerpts from “03 - Say me Good Bye.mp3” in the Jamendo test dataset. Similarly,
(C) and (D) are respectively non-vocal and vocal excerpts from “RWC- MDB-P-2001-M04/5 Audio Track.aiff” in the RWC
test dataset. Columns contain mel spectrograms of (from left to right): the input signal then inverted representations from
successive SVD model layers (as labelled). The visualisations highlight how the model ignores the input content as it
forms higher-level representations. Inversions of shallow layers resemble the input, but the reconstruction quality reduces
for deeper layers. Conv: convolutional layer, MP: max-pooling layer, FC: fully connected layer.

proximate onset locations of the inputs. But, there are
some deviations from this behaviour. For instance, in Fig.
6 row B, the harmonic structures are less evident. Simi-
larly, for the input in row C, the feature inverter at FC7 is
unable to reconstruct all the harmonic and temporal con-
tent present in the input. This may be due to the fact that
we do not train the feature inverters on RWC, thus the re-
construction error is higher for this input, resulting in poor
reconstruction.

We find that reconstructions from the deepest convolu-
tional layer of the model contain more information than
those from the two fully connected layers. For both in-
puts from Jamendo (Fig 6A-B), the model preserves much
of the input content (e.g., the reconstructions capture the
harmonic structure and approximately align the temporal
boundaries with the input). This confirms the quantita-
tive results of model inversion for Conv5 and FC7 layers,
where we show that the average NRE is about 18% less
for Conv5. The visualisations for the RWC excerpts (Fig.
6C-D) report similar results. Finally, reconstructions from
all the other layers follow a similar pattern. Moving toward
shallower layers, they become visually similar to the input,
increasingly showing the presence of finer harmonics and
temporal structures. Moreover, the inversions from Conv1
and Conv2 are very close to the respective inputs. This sug-
gests that the filters of the first 2 convolutional layers act
as a bijective map, e.g., performing an invertible frequency
transform. Moreover, the visualisations from deeper lay-
ers in the model are more blurry than from shallow layers.
This suggests that deeper layers capture more invariances
from data than shallow layers.

5. CONCLUSION AND FUTURE WORK

In this work, we applied a model analysis method called
feature inversion to a state-of-the-art singing voice detec-
tion model. Feature inversion helped to understand the
global behaviour of the SVD model by visualising the in-
formation preserved by any layer in the model. We trained
up-convolutional neural networks to invert the features of
the model. We quantitatively analysed the feature inverters
for each layer in the model to understand the change in in-
put reconstruction error across different layers. We found
that the average NRE changes by about 15% for Jamendo
between the MP6 and FC7 layers due to high dimensional-
ity reduction. Moreover, we qualitatively visualised the in-
verted representations to understand the input content pre-
served by any layer in the model. We found that the deepest
fully connected layer does not retain any of the temporal or
harmonic structures present in an input. We also found that
for a large number of inputs this layer seems to learn a de-
cision function that depends on the class associated with
an input. Qualitative analysis of other layers revealed that
the FC7 layer preserves some harmonic and temporal in-
formation of an input while the reconstructions from the
Conv5 layer are visually similar to the input.

In our future work, we plan to improve the loss func-
tion by adding adversarial loss [5] that helps to generate
realistic inverted representations that are close to one of
the classes. This facilitates sonification of inverted repre-
sentations, giving more insights into the model behaviour.
Moreover, we plan to extend the analysis by applying fea-
ture inversion to different architectures of the SVD model
and also to different machine listening tasks.
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