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ABSTRACT

In this work, we present an approach for the task of opti-
cal music recognition (OMR) using deep neural networks.
Our intention is to simultaneously detect and categorize
musical symbols in handwritten scores, written in mensu-
ral notation. We propose the use of region-based convo-
lutional neural networks, which are trained in an end-to-
end fashion for that purpose. Additionally, we make use
of a convolutional neural network that predicts the rela-
tive position of a detected symbol within the staff, so that
we cover the entire image-processing part of the OMR
pipeline. This strategy is evaluated over a set of 60 ancient
scores in mensural notation, with more than 15000 anno-
tated symbols belonging to 32 different classes. The results
reflect the feasibility and capability of this approach, with a
weighted mean average precision of around 76% for sym-
bol detection, and over 98% accuracy for predicting the
position.

1. INTRODUCTION

The preservation of the musical heritage over the cen-
turies makes it possible to study a certain artistic or cul-
tural paradigm. Most of this heritage exists in written form
and is stored in cathedrals or music libraries [10]. In addi-
tion to the possible issues related to the ownership of the
sources, this storage protects the physical preservation of
the sources over time, but also limits their accessibility.
That is why efforts are being made to improve this situa-
tion through initiatives to digitize musical archives [17,21].
These digital copies can easily be distributed and studied
without compromising their integrity.

Nevertheless, this digitalization, which indeed repre-
sents a progress with respect to the aforementioned situ-
ation, is not enough to exploit the actual potential of this
heritage. To make the most out of it, the musical content
itself must be transcribed into a structured format that can
be processed by a computer [6]. In addition to indexing
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the content and thereby enabling tasks such as content-
based search, this could also facilitate large-scale data-
driven musicological analysis in general [39].

Given that the transcription of sources is extremely
time-consuming, it is desirable to resort to automatic sys-
tems. Optical music recognition (OMR) is a field of re-
search that investigates how to build systems that decode
music notation from images. Regardless of the approach
used to achieve such objective, OMR systems vary signif-
icantly due to the differences amongst musical notations,
document layouts, or printing mechanisms.

The work presented here deals with manuscripts writ-
ten in mensural notation, specifically with sources from
the 17th century, attributed to the Pan-Hispanic framework.
Although this type of mensural notation is generally con-
sidered as an extension of the European mensural notation,
the Pan-Hispanic situation of that time underwent a par-
ticular development that fostered the massive use of hand-
written copies. Due to this circumstance, the need for de-
veloping successful OMR systems for handwritten nota-
tion becomes evident.

Figure 1. A sample page of ancient music, written in men-
sural notation.

We address the optical music recognition of scores writ-
ten in mensural notation (see Figure 1) as an object detec-
tion and classification task. In this notation, the symbols
are atomic units, 1 which can be detected and categorized
independently. Although there are polyphonic composi-

1 Except for beamed notes, in which the beam can be considered an
atomic symbol itself.
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tions from that era, each voice was placed on its own page,
so we can consider the notation as monophonic on the
graphical level. Assuming the aforementioned simplifica-
tions allows us to formulate OMR as an object detection
task in music score images, followed by a classification
stage that determines the vertical position of each detected
object within a staff. If the clef and other alterations are
known, the vertical position of a note encodes its pitch.

We propose using region-based convolutional neural
networks, which represent the state of the art in computer
vision for object detection, and demonstrate their capabili-
ties of detecting and categorizing the musical symbols that
appear in the image of a music score with a high precision.
We believe that this work provides a solid foundation for
the automatic encoding of scores into a machine-readable
music format like Music Encoding Initiative (MEI) [38]
or MusicXML [15]. At present, there are thousands of
manuscripts of this type that remain to be digitized and
transcribed. Although each manuscript may have its own
particularities (such as the handwriting style or the lay-
out organization), the approach developed in this work
presents a common and extensible formulation to all of
them.

2. RELATED WORK

Most of the proposed solutions to OMR have focused on
a multi-stage approach [34]. This traditional workflow in-
volves steps that have been addressed isolatedly, such as
image binarization [4,47], staff and text segmentation [44],
staff-line detection and removal [5, 11, 46], and symbol
classification [3, 30, 33]. In other works, a full pipeline is
proposed for a particular type of music score [31, 32, 43].

Recent works have shown that the image-processing
pipeline can largely be replaced with machine-learning ap-
proaches, making use of deep learning techniques such
as convolutional neural networks (CNNs) [1, 16, 29, 45].
CNNs denote a breakthrough in machine learning, espe-
cially when dealing with images. They have been applied
with great success to many computer vision tasks, often
reaching or even surpassing human performance [18, 22].
These neural networks are composed of a series of filters
that operate locally (i.e. convolutions, pooling) and com-
pute various representations of the input image. These fil-
ters form a hierarchy of layers, each of which represents
a different level of abstraction [20]. The key is that these
filters are not fixed but learnt from the raw data through a
gradient descent optimization process [23], meaning that
the network can learn to extract data-specific, high-level
features.

Here, we formulate OMR for mensural notation as an
object detection task in music score images. Object detec-
tion in images is one of the fundamental problems in com-
puter vision, for which deep learning can provide excel-
lent solutions. Traditionally, the task has been addressed
by means of heuristic strategies based on the extraction of
low-level, general-purpose features such as SIFT [28] or
HOG [7]. Szegedy and colleagues [8, 42] redefined the
use of CNNs for object detection for the first time. Instead

of classifying the image, the neural network predicted the
bounding box of the object within the image. Around
the same time, the ground-breaking work of Girshick et
al. [14] definitely changed the traditional paradigm. In
their work, a CNN was in charge of predicting whether
each object of the vocabulary appeared in selected bottom-
up regions of the image. This scheme has been referred
to as region-based convolutional neural network (R-CNN).
Afterwards, several extensions and variations have been
proposed with the aim of improving both the quality of the
detection and the efficiency of the process. Well-known
examples include Fast R-CNN [13], Faster R-CNN [37],
R-FCN [24], SSD [27] or YOLO [35, 36].

In this work, we use these region-based convolutional
neural networks for OMR, which are trained for the direct
detection and categorization of music symbols in a given
music document. Thereby allowing for an elegant formula-
tion of the task, since the training process only needs score
images along with their corresponding set of symbols and
the regions (bounding boxes) in which they appear.

3. AN OMR-PIPELINE FOR MENSURAL SCORES

Music scores written in mensural notation share many
properties with scores written in modern notation: the se-
quence of tones and pauses is captured as notes and rests
within a reference frame of five parallel lines, temporally
ordered along the x-axis with the y-axis representing the
pitch of notes. But unlike modern notation, mensural
scores are notated monophonically with a smaller vocabu-
lary of only around 30 different glyphs, reducing the over-
all complexity significantly and thus allowing for a simpli-
fied pipeline that consists of only three stages. A represen-
tative subset of the symbols that appear in the considered
notation is depicted in Table 1.

Group Symbol

Note
Semibrevis Minima Col. Minima Semiminima

Rest
Longa Brevis Semibrevis Semiminima

Clef
C Clef G Clef F Clef (I) F Clef (II)

Time
Major Minor Common Cut

Others
Flat Sharp Dot Custos

Table 1. Subset of classes from mensural notation. The
symbols are depicted without considering their pitch or
vertical position on the staff.

3.1 Music Object Detection

The first stage takes as input an entire high-quality image
that contains music symbols. The entire image is fed into
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a deep convolutional neural network for object detection
and yields the bounding boxes of all detected objects along
with their most likely class (e.g., g-clef, minima, flat).

3.2 Position classification

After detecting the symbols and classifying them, the sec-
ond stage performs position classification of each detected
object to obtain the relative position with respect to the
reference frame (staff) which is required to recover a notes
pitch. For this process, we extract a local patch from the
full image with the object of interest in the center and feed
the image into another CNN, which outputs the vertical
position, encoded as shown in Figure 2.

L1
L2

L0

L4
L5

L3

L6

S1
S2

S0

S4
S5

S3

S6

Figure 2. Encoding of the vertical staff line position into
discrete categories. The five continuous lines in the middle
form the regular staff and the dashed lines represent ledger
lines, that are inserted locally as needed. A note between
the second and third line from the bottom would be classi-
fied as S2 (orange).

3.3 Semantics Reconstruction and Encoding

Given the detected objects and their relative position to the
staff line, the final step is to reconstruct the musical se-
mantics and encode the output into the desired format (e.g.,
into modern notation [48]). This step has to translate the
detected objects into an ordered sequence for further pro-
cessing. Depending on the application and desired output,
semantic rules need to be taken care of, such as grouping
beams with their associated notes to infer the right duration
or altering the pitch of notes when accidentals are encoun-
tered.

4. EXPERIMENTS

To evaluate the proposed approach, we conducted exper-
iments 2 for the first two steps of the pipeline. While a
full system would also require the third step, we refrain
from implementing it, to not restrict this approach to a par-
ticular applications. It is also noteworthy, that translating
mensural notation into modern notation can be seen as its
own field of research that requires a deep understanding of

2 Source code is available at https://github.com/apacha/
Mensural-Detector

both notational languages, which exceeds the scope of this
work.

4.1 Dataset

Our corpus consists of 60 fully-annotated pages in mensu-
ral notation from the 16th-18th century. The manuscript
represents sacred music, composed for vocal interpreta-
tion. 3 The compositions were written in music books by
copyists of that time. To ensure the integrity of the phys-
ical sources, the images were taken with a camera instead
of scanning the books in a flatbed scanner, leading to sub-
optimal conditions in some cases. An overview of the con-
sidered corpus is given in Table 2.

Pages 60

Total number of symbols 15258

Different classes 32

Different positions
within a staff

14

Average size of a
symbol (w × h)

44× 84 pixels

Number of symbols per
image

42–447 (∅ 250)

Image resolution
(w × h)

∼ 3000× 2000 pixels

Dots per inch (DPI) 300

Table 2. Statistics of the considered corpus.

The ground-truth data is collected using a framework, in
which an electronic pen is used to trace the music symbols,
similar to that of [2]. The bounding boxes of the symbols
are then obtained by computing the rectangular extent of
the users’ strokes.

4.2 Setup

Our experiments are based on previous research by [29],
where a sliding-window-approach is used to detect hand-
written music symbols in sub-regions of a music score. In
contrast to their work, we are able to detect hundreds of
tiny objects in the full page within a single pass. To train
a network in a reasonable amount of time within the con-
straints of modern hardware, it is currently necessary to
shrink the input image to be no longer than 1000px on the
longest edge, which corresponds to a downscaling opera-
tion by a factor of three on our dataset.

For detecting music objects, the Faster R-CNN ap-
proach [37] with the Inception-ResNet-v2 [41] feature ex-
tractor has been shown to yield very good results for de-
tecting handwritten symbols [29]. It works by having a
region-proposal stage for generating suggestions, where an

3 The dataset is subject to ongoing musicological research and can not
be made public at this point in time, so it is only available upon request.
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object might be, followed by a classification stage, which
confirms or discards these proposals. Both stages are im-
plemented as CNNs and trained jointly on the provided
dataset. The first stage scans the image linearly along a
regular grid with user-defined box proposals in each cell of
that grid.

To be able to generate meaningful proposals, the shape
of these boxes has to be similar to the actual shape of the
objects that should be found. Since the image contains a
large number of very tiny objects (sometimes only a few
pixels), a very fine grid is required. After a statistical anal-
ysis of the objects appearing in the given dataset, including
dimension clustering [35], several experiments were con-
ducted to study the effects of size, scale, and aspect ratios
of the above-mentioned boxes, concluding that sensibly
chosen priors for these boxes work similarly good as the
boxes obtained from the statistical analysis. For the down-
scaled image, boxes of 16x16 pixels, iterating with a stride
of 8 pixels and using the scales 0.25, 0.5, 1.0, and 2.0, with
aspect ratios of 0.5, 1.0, and 2.0 represent a meaningful
default configuration. Accounting for the high density of
objects, the maximum number of box proposals is set to
1200 with a maximum of 600 final detections per image.

For the second step of our proposed pipeline, another
CNN is trained to infer the relative position of an object
to its staff line upon which it is notated (see Figure 2).
Different off-the-shelf network architectures are evaluated
(VGG [40], ResNet [19], Inception-ResNet-v2 [41]) with
the more complex models slightly outperforming the sim-
pler ones. Using pre-trained weights instead of random
initialization accelerates the training, improves the over-
all result, and is therefore used throughout all experiments.
The input to the classification network is a 224×448 pixels
patch of the original image with the target object in the cen-
ter (see Figure 3). The exact dimensions of the patch are
not important, as long as the image contains enough verti-
cal and horizontal context to classify even symbols notated
above or below the staff. When objects appear too close to
the border, the image is padded with the reflection along
the extended edge to simulate the continuation of the page
as shown in Figures 3(d) and 3(e).

(a) (b) (c) (d) (e)

Figure 3. Sample inputs for the position classification net-
work depicting a g-clef (a), semiminima (b), brevis rest (c),
custos (d) and semibrevis (e), with vertical (d) and horizon-
tal (e) reflections of the image to enforce the target object
to be in the center, while preserving meaningful context.

It is important to notice that the vertical position de-
fines the semantical meaning only for some symbols (e.g.,

the pitch of a note or the upcoming pitch with a custos).
Classes for which the position is either undefined or not
of importance include barlines, fermatas, different time-
signatures, beams and in particular for mensural notation:
the augmentation dot. Symbols from these classes can be
excluded from the second step.

4.3 Evaluation metrics

Concerning the music object detection stage, the model
provides a set of bounding box proposals, as well as the
recognized class of the objects therein. The model also
yields a score of its confidence for each proposal. A bound-
ing box proposal Bp is considered positive if it overlaps
with the ground-truth bounding box Bg exceeding 60%,
according to the Intersection over Union (IoU) criterion: 4

area(Bp ∩Bg)

area(Bp ∪Bg)

If the recognized class matches the actual category of the
object, it is considered a true positive, being otherwise a
false positive. Additional detections of the same object
are computed as false positives as well. Those objects for
which the model makes no proposal are considered false
negatives. Given that the prediction is associated with a
score, different values of precision and recall can be ob-
tained for each possible threshold. To obtain a single met-
ric, Average Precision (AP) can be computed, which is de-
fined as the area under this precision-recall curve. An AP
value can be computed independently for each class, and
then we provide the mean AP (mAP) as the mean across all
classes. Since our problem is highly unbalanced with re-
spect to the number of objects of each class, we also com-
pute the weighted mAP (w-mAP), in which the mean value
is weighted according to the frequency of each class. For
the second part of the pipeline (position classification), we
evaluate the performance with the accuracy rate (ratio of
correctly classified samples).

5. RESULTS

Both experiments yielded very promising results while
leaving some room for improvement. The detection of
objects in the full image (see Figure 4) was evaluated by
training on 48 randomly selected images and testing on the
remaining 12 images with a 5-fold cross-validation. This
task can be performed very well and yielded 66% mAP
and 76% w-mAP. When considering practical applications,
the weighted mean average precision indicates the effort
needed to correct the detection results, because it reflects
the fact that symbols from classes that appear frequently
are generally detected better than rare symbols.

When reviewing the error cases, a few things can be
observed: Very tiny objects such as the dot, semibrevis
rest and minima rest pose a significant challenge to the
network, due to their small size and extremely similar ap-
pearance (see Figure 5). This problem might be mitigated,

4 as defined for the PASCAL VOC challenge [9]
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Figure 4. Detected objects in the full image with the detected class being encoded as the color of the box. This example
achieves a mAP of approximately 68% and a w-mAP of 85%.

(a) (b) (c)

Figure 5. The smallest objects from the dataset that are
hard to detect and often confused (from left to right): dot,
semibrevis rest, and minima rest.

by allowing the network to access the full resolution im-
age, which potentially has more discriminative information
than the downsized image. Unsurprisingly, classes that
are underrepresented such as dots, barlines, or all types
of rests are also frequently missed or incorrectly classified,
leading to average precision rates of only 10–40% for these
classes.

Another interesting observation can be made, that in
many cases, objects were detected but the IoU with the
underlying ground-truth was too low for considering them
a true positive detection (see Figure 6 with a red box being
very close to a white box).

For the second experiment, a total of 13246 sym-

bols were split randomly into a training (80%), valida-
tion (10%) and test set (10%). The pre-trained Inception-
ResNet-v2 model is then fine-tuned on this dataset and
achieves over 98% accuracy on the test set of 1318 sam-
ples. Analyzing the few remaining errors reveals that the
model makes virtually no errors and that the misclassified
samples are mostly human annotation errors or data incon-
sistencies.

For inference, both networks can be connected in series.
Running both detection and classification takes about 30
seconds per image when running on a GPU (GeForce 1080
Ti) and 210 seconds on a CPU.

6. CONCLUSION

In this work, we have shown that the optical music recogni-
tion of handwritten music scores in mensural notation, can
be performed accurately and extendible by formulating it
as an object detection problem, followed by a classification
stage to recover the position of the notes within the staff.
By using a machine learning approach with region-based
convolutional neural networks, this problem can be solved
by simply providing annotated data and training a suitable
model on that dataset. However, we are aware that our pro-
posal still has room for improvement. In future work we
would like to:
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(a) (b)

(c) (d)

Figure 6. Visualization of the performance of the object detection stage with selected patches of the music documents:
green boxes indicate true positive detections; white boxes are false negatives, that the network missed during detection; red
boxes are false positive detections, where the model reported an object, although there is no ground-truth; yellow boxes are
also false positives, where the bounding-box is valid, but the assigned class was incorrect.

• evaluate the use of different network architectures,
such as feature pyramid networks [25,26], that might
improve the detection of small objects, which we
have identified as the biggest source of error at the
moment. These networks allow the use of high-
resolution images directly, without the inherent in-
formation loss, that is caused by the downscaling
operation.

• merge the staff position classification with the object
detection network, by adding another output to the
neural network, so the model simultaneously pre-
dicts the staff position, the bounding box and the
class label.

• apply and evaluate the same techniques for other no-
tations, including modern notation

• study models or strategies that reduce (or remove)
the need for specific ground-truth data of each type
of manuscript. For example, unsupervised training

schemes such as the one proposed in [12], which al-
lows the network to adapt to a new domain by simply
providing new, unannotated images.

We believe that this research avenue represents a
ground-breaking work in the field of OMR, as the pre-
sented approach would potentially deal with any type of
music scores by just providing undemanding ground-truth
data to train the neural models.
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