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ABSTRACT

The optical music recognition (OMR) field studies how
to automate the process of reading the musical notation
present in a given image. Among its many uses, an in-
teresting scenario is that in which a score captured with
a camera is to be automatically reproduced. Recent ap-
proaches to OMR have shown that the use of deep neural
networks allows important advances in the field. However,
these approaches have been evaluated on images with ideal
conditions, which do not correspond to the previous sce-
nario. In this work, we evaluate the performance of an
end-to-end approach that uses a deep convolutional recur-
rent neural network (CRNN) over non-ideal image condi-
tions of music scores. Consequently, our contribution also
consists of Camera-PrIMuS, a corpus of printed mono-
phonic scores of real music synthetically modified to re-
semble camera-based realistic scenarios, involving distor-
tions such as irregular lighting, rotations, or blurring. Our
results confirm that the CRNN is able to successfully solve
the task under these conditions, obtaining an error around
2% at music-symbol level, thereby representing a ground-
breaking piece of research towards useful OMR systems.

1. INTRODUCTION

The optical music recognition (OMR) discipline was born
several decades ago [28], and nowadays there are still too
many open problems to consider it a solved task. This ap-
plies not only for handwritten notation but also for the case
of printed scores [4]. Unfortunately, unlike other auto-
matic content transcription domains, such as speech recog-
nition [23] or optical character recognition [24], the latest
advances in pattern recognition and machine learning—
namely deep learning—have not definitively broken the
long-term glass ceiling.

Actually, other computer music domains are taking ad-
vantage of these advances, but quite often, especially in
symbolic music research, the lack of big enough datasets
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block their improvement. If OMR technologies were able
to convert the massive printed scores libraries ! into struc-
tured, symbolic scores, all those fields would obtain inter-
esting corpora to work on.

Furthermore, out of the scientific community, the avail-
ability of tools that transcribe sheet music without errors
into symbolically-encoded music would help professional
and amateur musicians to take advantage of the plenty of
computer music tools at hand that cannot work directly
with digital images.

Following the steps of other aforementioned disciplines,
we claim that the problem can be appropriately addressed
with holistic approaches, i.e., end-to-end, where systems
learn with just pairs of inputs and their corresponding tran-
scripts. Here, these pairs consists of sheet music and their
symbolic encoding.

In this work, we extend previous proposals that applied
neural network models over monodic digitally-rendered
music scores [8]. However, we evaluate here their per-
formance with a set of scores that are rendered simulat-
ing camera-based conditions. Our objective is to study
whether the approach is feasible for non-ideal image con-
ditions. Although we do not experiment with fully-fledged
scores yet, we believe that this avenue is promising for
reaching the final objective of dealing with any kind of
input score. Thus, in this work we introduce the so-
called Camera-Printed Images of Music Staves (Camera-
PrIMuS) dataset of monodic single-staff printed scores,
that have been distorted to resemble photographed scores
and encoded in such a way a neural network recognizer can
manage.

Our experiments demonstrate that the considered neural
models are able to learn even in difficult situations where
none of the current commercial OMR systems might be
successful. The results reflect that an error rate below 2%,
at symbol level, can be attained.

The paper is organized as follows: first, a brief back-
ground about OMR is given in Sect. 2; then, the construc-
tion of Camera-PrIMuS dataset is detailed in Sect. 3; the
neural end-to-end framework is described and formalized
in Sect. 4; the experimental results that demonstrate the
suitability of the approach are reported in Sect. 5; and fi-
nally, the conclusions are discussed in Sect. 6.

! Libraries such as http://imslp.org
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2. BACKGROUND

Most of the existing OMR approaches work in a multi-
stage fashion [38]. These systems typically perform an ini-
tial processing of the image that consists of several steps of
document analysis, not always strictly related to the musi-
cal domain. Examples of this stage comprise the binariza-
tion of the image [10], the detection of the staves [11], the
delimitation of the staves in terms of bars [45], or the sep-
aration among the different sources of information [5].

The staff-line removal stage requires a special mention.
Although staff lines represent a very important element in
music notation, their presence hinders the automatic seg-
mentation of musical symbols. Therefore, much effort has
been devoted to successfully solving this stage [14,15,18].
Recently, results have reached values closer to the opti-
mum over standard benchmarks [7,17].

In the next step, remaining symbols are classified into
music-notation categories. A number of works can be
found in the literature that deal with this task [30, 37], in-
cluding deep learning classification as well [6, 32].

Recently, it has been demonstrated that the traditional
pipeline up to symbol classification can be replaced by
deep region-based neural networks [31], which both local-
ize and classify music-notation primitives from the input
image. Either way, once graphical symbol are identified,
they must be assembled to eventually obtain actual music
notation. Previous attempts to this stage proposed the use
of heuristic strategies based on graphical and syntactical
rules [13,36,40,43].

Full approaches are more common when recognizing
mensural notation, where the OMR challenge is more re-
stricted than that of modern Western notation because of
the absence of simultaneous written voices in the same
staff and a lower number of symbols to be recognized [9,
33,44].

3. THE CAMERA-PRIMUS DATASET

The training of a machine learning based system requires
a good quality training dataset with enough size to statis-
tically include a representative sample of the problem to
be solved. The Camera-based Printed Images of Music
Staves (Camera-PrIMuS) dataset has been devised to ful-
fil both requirements > . Thus, the objective pursued when
creating this ground-truth data is not to represent the most
complex musical notation corpus, but to collect the high-
est possible number of scores readily available to be repre-
sented in formats suitable for heterogeneous OMR experi-
mentation and evaluation.

Camera-PrIMusS is an extension of a previously pub-
lished PrIMuS dataset [8]. It contains 87 678 real-music
incipits, 3 each one represented by six files: the Plaine and
Easie Code (PAEC) source [3], an image with the rendered
score, the same image distorted resembling a camera-based
scenario, the music symbolic representation of the incipit

2 The dataset is freely available at https://grfia.dlsi.ua.
es/primus/.

3 An incipit is a short sequence of notes from the beginning of a
melody or musical work usually used for identifying it
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Order | Filter

Ranges of used parameters

1| -implode (0,0.07]

2 | —chop [1,5], [1,6], [1,300], [1, 50]
3| -swirl [—3,3]

4 | —spread -2

5 | -shear [-5,5], [-1.5,1.5]

6 | —shade [0, 120] (80, 110]

7 | ~wave [0,0.5], [0,0.4]

8 | —-rotate [0,0.3]

9 | -noise [0,1.2]

10 | —-wave [0,0.5], [0,0.4]

11 | -motion-blur | [-7,5],[-7,7], [-7,6]
12 | -median [0,1.1]

Table 1. GraphicsMagick filter sequence

both in Music Encoding Initiative format (MEI) [39] and
in an on-purpose simplified encoding (semantic encoding),
and a sequence containing the graphical symbols shown in
the score with their position in the staff, without any musi-
cal meaning (agnostic encoding). These two agnostic and
semantic representations, that will be described below, are
especially designed to be considered in our framework.

Pursuing the objective of considering real music, and
being restricted to use short single-staff scores, an export
in PAEC format of the RISM dataset [29] has been used
as source. The PAEC is then formatted to be fed into the
musical engraver Verovio [34], that outputs both the musi-
cal score in SVG format—that is posteriorly converted into
PNG format (Fig. 1(a))—and the MEI encoding containing
the symbolic semantic representation of the score in XML
format. Verovio is able to render scores using three differ-
ent fonts, namely: Leipzig, Bravura, and Gootville. This
capability has been used by randomly choosing one of the
those fonts in the rendering of the different incipits, lead-
ing to a higher variability in the dataset. The on-purpose
semantic and agnostic representations (Figs. 1(c) and 1(d))
have been obtained as a conversion from the MEI files. Fi-
nally, the PNG image file is distorted, as described below,
in order to simulate imperfections introduced by taking a
picture of the sheet music from a (bad) camera (Fig. 1(b)).

To simulate distortions, the GraphicsMagick image pro-
cessing tool* has been used. Among the huge amount of
filters this tool contains, a number of them have been used
and tweaked empirically. Table 1 contains the filters used
and the ranges considered for each parameter, from which
random values are selected at each instance. Filters have
been applied using the order shown in the table.

3.1 Semantic and agnostic representations

The suitable encoding of input data for the neural network
determines the scope of its performance. Most of the avail-
able symbolic representations [41], being devised for other
purposes such as music analysis (e.g. *+kern), or music

4 http://www.graphicsmagick.org
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(b) Distorted image.

clef-G2, keySignature-GM, timeSignature-2/4, note-G4_sixteenth., note-B4_thirty_second, barline, note-D5_eighth, rest-sixteenth,
note-B4_sixteenth, note-D5_eighth., note-C5_thirty_second, note-A4_thirty._second, barline, note-F#4_quarter, rest-eighth,
note-Ad_sixteenth., note-C5_thirty._second, barline, note-E5_eighth, rest-sixteenth, note-C#5.sixteenth, note-E5_eighth.,
note-D5_thirty_second, note-B4_thirty_second, barline, note-G4_eighth, rest-eighth

(c) Semantic encoding.

clef.G-L2, accidental.sharp-L5, digit.2-L4, digit.4-L2, note.beamedRight2-L2, dot-S2, note.beamedLeft3-L3, barline-L1,

note.eighth-L4, rest.sixteenth-L3, note.sixteenth-L3, note.beamedRightl-L4, dot-S4, note.beamedBoth3-S3, note.beamedLeft3-S2, barline-L1,
note.pbeamedLeft3-S3, barline-L1,

note.quarter-S1, rest.eighth-L3, note.beamedRight2-S2, dot-S2,

note.eighth-S4, rest.sixteenth-L3, accidental.sharp-S3, note.sixteenth-S3, note.beamedRightl-S4, dot-S54,
note.beamedBoth3-L4, note.beamedLeft3-L3, barline-Ll, note.eighth-L2, rest.eighth-L3

(d) Agnostic encoding.

Figure 1. Example of a short item in the corpus: Incipit RISM ID no. 000100367, Incipit 28.1.1 30 Canons, Luigi
Cherubini. MEI and Plaine and Easie Code files are also included in the corpus but omitted here.

notation (such as MEI [39] or MusicXML [20])—for nam-
ing just a few—do not encode a self-contained chunk of in-
formation for each musical element. This is why two repre-
sentations devised on-purpose compliant with this require-
ment were introduced in [8], namely the semantic and the
agnostic ones. For practical issues, none of the representa-
tions is musically exhaustive, but representative enough to
serve as a starting point from which to build more complex
systems.

The semantic representation contains symbols with mu-
sical meaning, e.g., a G Major key signature (see Fig. 1(c));
the agnostic encoding (see Fig. 1(d)) consists of musical
symbols without musical meaning that should be eventu-
ally interpreted in a final parsing stage [16], e.g. a D Major
key signature is represented as a sequence of two sharp
symbols. This way, the alphabet used for the agnostic
representation is much smaller, which allows to study the
impact of the alphabet size and the number of examples
shown to the network for its training. Note that in the ag-
nostic representation, a sharp symbol in the key signature
is the same pictogram as a sharp accidental altering the
pitch of a note. A complete description of the grammars
describing these encodings can be found in [8].

More specifically, the agnostic representation contains a
list of graphical symbols in the score, each of them tagged
given a catalogue of pictograms without a predefined mu-
sical meaning, and located in a position in the staff (e.g.,
third line, first space). The Cartesian plane position of
symbols has been encoded relatively, following a left-to-
right, top-down ordering (see encoding of fractional me-
ter in Fig. 1(d)). In order to represent beaming of notes,
they have been vertically sliced generating non-musical
pictograms (see elements with prefix note.beamed in
Fig. 1(d)).

As mentioned above, this new way of encoding com-
plex information in a simple sequence allows us to feed
the network in a relatively easy way. Note that the agnostic
representation is different from a primitive-based segmen-
tation of the image, which is the usual internal representa-
tion of traditional OMR systems [12,25].

The agnostic representation has an additional advan-
tage: in other less known music notations, such as the
early neumatic and mensural notations, or in the case of
non-Western notations, it might be easier to transcribe
the manuscript through two stages: one stage performed
by any non-musical expert that only needs to identify
pictograms (agnostic representation), and a second stage
where a musicologist, maybe aided by a computer, inter-
prets them to yield a semantic encoding.

4. NEURAL END-TO-END APPROACH FOR
OPTICAL MUSIC RECOGNITION

As introduced above, some previous work have proved that
it is possible to successfully accomplish the recognition of
monodic staves in an end-to-end approach by using neural
networks [8]. This section contains a brief description of
such framework.

A single-voice monophonic staff is assumed to be the
basic unit; that is, a single monodic staff will be processed
at each instance. Formally, let S = {(z1, y1), (2, y2), ...}
be our end-to-end application domain, where x; represents
a single staff image and y; is its corresponding sequence of
music symbols, each of which belongs to a fixed alphabet
set 2.

Given an input staff image, the OMR problem can be
solved by retrieving its most likely sequence of music sym-
bols §:

§ = arg max P(ylz) (1

A graphical scheme of the considered framework is
given in Figure 2. The input image depicting a monodic
staff is fed into a Convolutional Recurrent Neural Network
(CRNN), which consists of two sequential parts: a con-
volutional block and a recurrent block. The convolutional
block is in charge of learning how to deal with the input
image [47]. In this way, the user is prevented from per-
forming a pre-processing of the image because this block is
able to learn adequate features from the training set. These
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Figure 2. Graphical scheme of the end-to-end neural approach considered.

extracted features are provided to the recurrent block [21],
producing the sequence of musical symbols that approxi-
mates Eq. 1.

Since both convolutional and recurrent blocks are con-
figured as feed-forward models, the training stage can be
carried out jointly. This scheme can be easily implemented
by connecting the output of the last layer of the convolu-
tional block with the input of the first layer of the recurrent
block, concatenating all the output channels of the convo-
lutional part into a single image. Then, columns of the
resulting image are treated as individual frames for the re-
current block.

The traditional training mechanisms for a CRNN need a
framewise expected output, where a frame is a fixed-width
vertical slice of the image. However, as the goal is to not
recognize frames but complete symbols, either semantic or
agnostic, and Camera-PriMuS does not contain sequences
of labelled frames, a Connectionist Temporal Classifica-
tion (CTC) loss function [22] has been used to solve this
mismatch.

Basically, CTC drives the CRNN to optimize its pa-
rameters so that it is likely to give the correct sequence
y given an input z. As optimizing this likelihood exhaus-
tively is computationally expensive, CTC performs a lo-
cal optimization using an Expectation-Maximization al-
gorithm similar to that used for training Hidden Markov
Models [35]. Note that CTC is only used for training,
while at the decoding stage the framewise CRNN output
can be straightforwardly decoded into a sequence of music
symbols (details are given below).

4.1 Implementation details

The specific organization of the neural model is given
in Table 2. As observed, variable-width single-channel
(grayscale) input image are rescaled at a fixed height of
128 pixels, without modifying their aspect ratio. This in-
put is processed through a convolutional block inspired
by a VGG network, a typical model in computer vision
tasks [42]: four convolutional layers with an incremental
number of filters and kernel sizes of 3 x 3, followed by
a 2 x 2 max-pool operator. In all cases, Batch Normal-
ization [27] and Rectified Linear Unit activations [19] are
considered.

Input(128 x W x 1)

Convolutional block
Conv(32,3 x 3), MaxPooling(2 x 2)
Conv(64, 3 x 3), MaxPooling(2 x 2)

(
(

Conv(128,3 x 3), MaxPooling(2 x 1)
Conv(256,3 x 3), MaxPooling(2 x 1)

Recurrent block
BLSTM(256)
BLSTM(256)

Dense(|X] + 1)
Softmax/()

Table 2. Instantiation of the CRNN used in this work,
consisting of 4 convolutional layers and 2 recurrent lay-
ers. Notation: Input(h X w X ¢) means an input image of
height h, width w and ¢ channels; Conv(n, h x w) denotes
a convolution operator of n filters and kernel size of h x w;
MaxPooling(h x w) represents a down-sampling operation
of the dominating value within a window of size (h X w);
BLSTM(n) means a bi-directional Long Short-Term Mem-
ory unit of n neurons; Dense(n) denotes a dense layer of n
neurons; and Softmax() represents the softmax activation
function. X denotes the alphabet of musical symbols con-
sidered.

At the output of this block, two bidirectional recurrent
layers of 256 neurons, implemented as Long Short-Term
Memory (LSTM) units [26], try to convert the resulting
filtered image into a discrete sequence of musical sym-
bols that takes into account both the input sequence and
the modelling of the musical representation. Note that
each frame performs an independent classification, mod-
elled with a fully-connected layer with as many neurons as
the size of the alphabet plus 1 (a blank symbol necessary
for the CTC function). The activation of these neurons is
given by a softmax function, which allows interpreting the
output as a posterior probability over the alphabet of music
symbols [2].

The learning process is carried out by means of stochas-
tic gradient descent (SGD) [1], which modifies the CNN
parameters through back-propagation to minimize the
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CTC loss function. In this regard, the mini-batch size is
established to 16 samples per iteration. The learning rate
of the SGD is updated adaptively following the Adadelta
algorithm [46].

Once the network is trained, it is able to provide a pre-
diction in each frame of the input image. These predictions
must be post-processed to emit the actual sequence of pre-
dicted musical symbols. Thanks to training with the CTC
loss function, the final decoding can be performed greed-
ily [22]: when the symbol predicted by the network in a
frame is the same as the previous one, it is assumed that
they represent frames of the same symbol, and only one
symbol is concatenated to the final sequence. There are
two ways to indicate that a new symbol is predicted: either
the predicted symbol in a frame is different from the pre-
vious one, or the predicted symbol of a frame is the blank
symbol, which indicates that no symbol is actually found.

Thus, given an input image, a discrete musical symbol
sequence is obtained. Note that the only limitation is that
the output cannot contain more musical symbols than the
number of frames of the input image, which in our case is
highly unlikely to happen.

5. EXPERIMENTS
5.1 Experimental setup

Once introduced the Camera-PrIMuS dataset, and a model
able to learn the OMR task from it, some experiments have
been performed whose results may serve as a baseline to
which other works can be compared. >

Currently, there is an open debate on which evaluation
metrics should be used in OMR [4]. This is especially
arguable because of the different points of view that the
use of its output has: it is not the same whether the inten-
tion of the OMR is to automatically play the content or to
archive it in a digital library. Here we are only interested in
the computational aspect itself. Hence, we shall consider
metrics focused on the symbol and sequence recognition,
avoiding any music-specific consideration, such as:

e Sequence Error Rate (ER) (%): ratio of incorrectly
predicted sequences (at least one error).

e Symbol Error Rate (SER) (%): the average number
of elementary editing operations (insertions, dele-
tions, or substitutions) needed to produce the refer-
ence sequence from the one predicted by the model,
normalized by its length.

Note that the length of the agnostic and semantic se-
quences are usually different because they are encoding
different aspects of the same source. Therefore, the com-
parison in terms of Symbol Error Rate, in spite of being
normalized, may not be totally fair. On the other hand,
the Sequence Error Rate allows a more reliable compar-
ison because it only takes into account the perfectly pre-

3 For the sake of reproducible research, source code and trained
models are available at https://github.com/calvozaragoza/
tf-deep-omr.

dicted sequences (in which case, the outputs in different
representations are equivalent).

5.2 Performance

We show in this section the results obtained in our experi-
ments. We consider three different data partitions: 80% of
the data is used as training set, to optimize the network ac-
cording to the CTC loss function; 10% of the data is used
as validation set, which is used to decide when to stop the
optimization to prevent over-fitting; the evaluation results
are computed with the remaining 10%, which constitutes
the test partition.

In order to study the ability of the system to learn in
different situations, four scenarios have been evaluated de-
pending upon which set of images are used for training and
testing, either the clean original files or the synthetically
distorted ones. We report in Table 3 the whole evaluation.

The results show that the system, trained with the ap-
propriate set, is able to correctly recognize in almost all
scenarios, with error rates at symbol level below 2%. In
an ideal scenario, where only clean images are given, the
semantic encoding outperforms the agnostic one. The be-
haviour is different when distorted images are used, for
which the agnostic representations behave much better.
What seems most interesting from these results is the abil-
ity of the system to learn from distorted images and cor-
rectly classify both distorted and clean versions. This leads
us to conclude that the networks are being able to abstract
the content from the image condition. As a qualitative ex-
ample of the performance attained, the sample of Figure 1
was correctly classified using both encodings.

In an informal analysis, we observed that the most re-
peated error, both in agnostic and semantic encodings, is
the incorrect classification of the ending bar line. In ad-
dition to it, no other repeating mistake has been found.
Also, we checked that most of the wrongly recognized
samples only failed at 1 symbol. Another interesting fea-
ture to emphasize is that we observed an independence of
the mistakes with respect to the length of the ground-truth
sequence, i.e., errors are not accumulated and, therefore,
the number of mistakes do not necessarily increase with
longer sequences. Figures 3 and 4 depict two examples of
wrongly recognized sequences.

6. CONCLUSIONS

The suitability of a neural network approach to solve the
OMR task in an end-to-end fashion has been evaluated
on realistic single-staff printed monodic scores from a
real world dataset. To this end, the new Camera-PrIMuS
dataset has been introduced, containing 87 678 images syn-
thetically distorted to resemble a camera-based scenario.

The neural network model considered consists of a
CRNN, in which convolutions process the input image
and recurrent blocks deal with the sequential nature of the
problem. In order to train this model directly using symbol
sequences, instead of fine-grained annotated images, the
so-called CTC loss function has been utilized.
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Evaluation
Clean Distortions
Agnostic  Semantic Agnostic  Semantic
Training Clean 1.1/21.7 0.8/125 443/94.1 59.7/97.9
Distortions 1.4/24.9 3.3/44.6 1.6/247 3.4/383

Table 3. Average SER (%) / ER (%) reported in all possible combinations of training and evaluation conditions.
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(a) Distorted image file of Incipit RISM ID no. 000104754, Incipit 1.1.1 Achille in Sciro. Excerpts. Niccold

Jommelli.
clef-G2, keySignature-DM, timeSignature-C, note-D5-half, tie, note-D5.quarter., note-F#4_eighth, barline, note-G4.half,
note-F#4_quarter, rest-quarter, barline, note-B4_eighth, rest-eighth, note-A4_eighth, rest-eighth, note-B4_half, [rest-—-eighth-L3]

note-E5_eighth., note-C#5_sixteenth, barline, note-F#5.half, tie, note-F#5_quarter., note-F#4_eighth,
barline, note-G4.half, note-F#4_quarter, rest-quarter, barline

(b) Semantic encoding network output. The symbol in italics should be classified as note-B4_eighth, and the bold symbol between brackets has
been omitted by the network.

clef.G-L2, accidental.sharp-L5, accidental.sharp-S3, metersign.C-L3, note.half-L4, slur.start-L4, slur.end-L4,
note.quarter-L4, dot-S4, note.eighth-S1, barline-L1, note.half-L2, note.quarter-S1, rest.quarter-L3, barline-L1,
note.eighth-L3, rest.eighth-L3, note.eighth-S2, rest.eighth-L3, fermata.above-S6, note.quarter—-L3, note.beamedRightl-54,
dot-S4, note.beamedLeft2-S3, barline-L1, note.half-L5, slur.start-L5, slur.end-L5, note.quarter-L5, dot-S5, note.eighth-S1,
barline-L1, note.half-L2, note.quarter-S1, rest.quarter-L3, barline-L1

(c) Agnostic encoding network output. Wrong symbols have been highlighted in italic face symbols. They should be note.eighth-L3 and
rest.eighth-L3, respectively.

Figure 3. This incipit contains distortions that are very hard to recognize, such as the scratch at the beginning of the staff
and some overlapped ink. Despite these difficulties, just two symbols in each encoding have been wrongly recognized.

(a) Distorted image file of Incipit RISM ID no. 000100170, Incipit 1.1.1 Trios. Joseph Haydn.

clef-G2, keySignature-FM, timeSignature-C, note-F4_quarter, rest-quarter, rest-eighth, note-A4_sixteenth, note-Bb4.sixteenth, note-C5_eighth,
note-C5_eighth, barline, note-C5_eighth, note-F5_eighth, note-A4_eighth, note-A4_eighth, note-A4_eighth, note-C5_eighth, note-F4_eighth,
note-F4_eighth, barline, note-E4_eighth, note-D4_eighth, note-D4_quarter, tie, note-D4_eighth, note-C5_sixteenth, note-Bb4_sixteenth,
note-Ad4_sixteenth, note-G4_sixteenth, note-F4_sixteenth, note-D4_thirty.second, barline

(b) Semantic encoding network output. The italic font face symbol should be classified as a sixteenth note.

clef.G-L2, accidental.flat-L3, metersign.C-L3, note.quarter-Sl1, rest.quarter-L3, rest.eighth-L3, note.beamedRight2-S2, note.beamedLeft2-L3,
note.beamedRight1-S3, note.beamedLeftl-S3, barline-L1l, note.beamedRight1l-S3, note.beamedBothl-L5, note.beamedBothl-S2, note.beamedLeftl-S2,
note.beamedRight1-S2, note.beamedBothl-S3, note.beamedBothl-S1, note.beamedLeftl-S1, barline-L1, note.beamedRightl-L1l, note.beamedLeftl-S0,
note.quarter-50, slur.start-S0, slur.end-S0, note.beamedRightl-S0, note.beamedBoth2-S3, note.beamedLeft2-L3, note.beamedRight2-S2,
note.beamedBoth2-1L2, note.beamedBoth2-S1, note.beamedLeft2-S0, barline-L1

(c) Agnostic encoding network output. All symbols are correctly detected.

Figure 4. Incipit correctly recognized using the agnostic representation but with one mistake using the semantic encoding.

Our experiments have reflected the correct construction
and the usefulness of the corpus. The end-to-end neural
optical recognition model has demonstrated its ability to
learn from adverse conditions and to correctly classify both
perfectly clean images and imperfect pictures. In regard to
the output encoding, the agnostic representation has been
shown to be more robust against the image distortions,
while semantic encoding maintains a fair performance.

Given these promising results, from the musical point of
view, the next steps seem obvious: first, we would like to
complete the catalogue of symbols, thus including chords
and multiple-voice polyphonic staves. In the long-term, the
intention is to consider fully-fledged real piano or orches-
tral scores. Concerning the most technical aspect, it would
be interesting to study a multi-prediction model that uses

all the different representations at the same time. Given the
complementarity of the agnostic and semantic representa-
tions, it is feasible to think of establishing a synergy that
ends up with better results in all senses.
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