
Cross-Layer Memory Management

for Managed Language Applications

Michael R. Jantz

University of Tennessee

mrjantz@utk.edu

Forrest J. Robinson

Prasad A. Kulkarni

University of Kansas

{fjrobinson,kulkarni}@ku.edu

Kshitij A. Doshi

Intel Corporation

kshitij.a.doshi@intel.com

Abstract

Performance and energy efficiency in memory have be-

come critically important for a wide range of computing

domains. However, it is difficult to control and optimize

memory power and performance because these effects de-

pend upon activity across multiple layers of the vertical exe-

cution stack. To address this challenge, we construct a novel

and collaborative framework that employs object placement,

cross-layer communication, and page-level management to

effectively distribute application objects in the DRAM hard-

ware to achieve desired power/performance goals.

In this work, we describe the design and implementa-

tion of our framework, which is the first to integrate auto-

matic object profiling and analysis at the application layer

with fine-grained management of memory hardware re-

sources in the operating system. We demonstrate the util-

ity of our framework by employing it to more effectively

control memory power consumption. We design a custom

memory-intensive workload to show the potential of our

approach. Next, we develop sampling and profiling-based

analyses and modify the code generator in the HotSpot VM

to understand object usage patterns and automatically deter-

mine and control the placement of hot and cold objects in a

partitioned VM heap. This information is communicated to

the operating system, which uses it to map the logical appli-

cation pages to the appropriate DRAM ranks according to

user-defined provisioning goals. We evaluate our framework

and find that it achieves our test goal of significant DRAM

energy savings across a variety of workloads, without any

source code modifications or recompilations.

Categories and Subject Descriptors D.3.4 [Programming

languages]: Processors—Memory Management, Optimiza-

tion; D.4.2 [Operating Systems]: Storage Management—

Allocation/deallocation strategies

General Terms Design, Experimentation, Performance

Keywords Cross-layer, Power, Efficiency, DRAM, HotSpot

1. Introduction

Performance and energy efficiency in the memory subsys-

tem is a critical factor for a wide range of computing ap-

plications. Trends such as the increasing demand for data

analytics (i.e. Big Data) and the desire to multiplex physical

resources to improve efficiency have driven the adoption of

memory systems with larger power, bandwidth, and capac-

ity requirements. While the importance of effective object

placement in memory to improve program performance is

well established [13, 27], recent research suggests that power

consumption in memory is also a dominant factor for many

data-center and enterprise server systems [15, 29–31].

Not surprisingly, it is very challenging to obtain precise

control over the distribution and usage of memory power or

bandwidth when virtualizing system memory. These effects

depend upon the assignment of virtual addresses to the ap-

plication’s data objects, the OS binding of virtual to physical

addresses, and the mapping of physical pages to hardware

DRAM devices. Furthermore, due to the use of virtual mem-

ory, most systems abstract away information during memory

management that could be used to bring about a more effi-

cient distribution of memory resources.

We contend that, to overcome these challenges, we need

a cross-layer framework, where

• the application-layer determines data object usage pat-

terns, assigns objects to appropriate locations/pages in

the virtual address space, and conveys corresponding

page-level memory usage information to the OS, and

• the OS-layer incorporates this guidance when decid-

ing which physical page to use to back a particular vir-



tual page, according to user-specified power/performance

goals.

Recently, OS-level system calls, such as madvise, mbind

and vadvise, and frameworks have been developed to facili-

tate communication across multiple layers of the vertical ex-

ecution stack during memory management [21, 26]. In par-

ticular, the framework proposed by Jantz et al. [21] allows

applications to communicate to the OS how they intend to

use portions of the virtual address space, and then uses this

information to guide low-level memory management deci-

sions.

However, all such frameworks require the application

to manually determine the set of memory usage guidance

to provide to the OS, which may be infeasible for many

complex applications and workloads, Furthermore, where

relevant, all memory usage guidance has to be manually

inserted into the source code, and modified applications must

be recompiled.

Our work aims to address the limitations of such OS-

level frameworks by developing a corresponding automated

application-layer mechanism to appropriately empower and

guide the OS-layer actions without any additional program

recompilations. Our work, implemented in the standard

HotSpot Java Virtual Machine (JVM), divides the applica-

tion’s heap into separate regions for objects with different

(expected) usage patterns. At application run-time, our cus-

tom JVM automatically partitions and allocates heap data

into separate regions using an integrated object partitioning

strategy. Our JVM then transfers this information to the OS,

where it is used to guide physical memory management. For

this work, we extend HotSpot with two new object partition-

ing strategies: an offline profiling-based approach that classi-

fies program allocation points statically, as well as an online

sampling-based approach that segregates individual objects

at run-time. To communicate and interpret the JVM’s sug-

gestions regarding physical memory management, we adopt

a recent Linux OS extension and its associated API [21].

Our design supports such usage scenarios as prioritization

of memory capacity and bandwidth to improve performance,

and saving power by transitioning more memory ranks into

self-refresh states. It is flexible enough to adapt to differ-

ent provisioning goals and shifting demands at run-time. In

this paper, we describe the various components of our cross-

layer framework, and then demonstrate its utility to explore

configurations designed to reduce DRAM energy consump-

tion. We construct and use a custom benchmark to conduct

experiments made possible by our framework that reveal in-

teresting aspects of the power-performance tradeoff in the

memory subsystem, and the potential of our framework to

achieve DRAM energy savings. We integrate our approach

with two object partitioning algorithms, and evaluate their

effectiveness to control the placement of program objects

to reduce DRAM energy consumption with our cross-layer

framework.

This work makes the following important contributions:

1. We develop, implement, and evaluate a framework to au-

tomatically partition application data objects into distinct

classes based on their expected usage patterns,

2. We analyze the potential of memory power savings, and

the interplay between memory power, program speed,

and program bandwidth requirements by designing and

employing a custom benchmark program,

3. We build profiling and sampling routines into the HotSpot

JVM to automatically predict memory usage behavior,

and

4. We provide detailed experimental results, including anal-

ysis of DRAM power and performance, to evaluate our

cross-layer memory management framework using a

standard set of Java applications.

The rest of this paper is organized as follows. We present

related work and background information for the various

topics relevant to this work in Sections 2 and 3 respectively.

We provide an overview of our complete cross-layer mem-

ory management framework in Section 4. We describe our

experimental setup in Section 5. We discuss the results of ex-

periments to study the impact of our framework on DRAM

energy consumption in Section 6. We describe our object

partitioning strategies in Section 7. We present our detailed

experimental results and observations in Section 8. We dis-

cuss some directions for future research in Section 9. Finally,

we present our conclusions in Section 10.

2. Related Work

Several researchers have explored the effect of object lay-

outs on program performance. Hirzel [13] conducted an ex-

tensive evaluation to demonstrate the importance of data lay-

out for program performance. Zhang and Hirzel [41] employ

layout auditing to automatically select data layouts that per-

form well. Huang et. al. [20] use online class analysis to

produce better data layouts during garbage collection. Jula

and Rauchwerger [23] propose two memory allocators that

use automatically provided allocation hints to improve spa-

tial locality. Hirzel et. al. [14] and Guyer and Mckinley [11]

manipulate object layout to implement optimizations in the

garbage collector. In contrast to all of these works, which

only affect object layout in the virtual address space, our

framework controls the physical location of objects in mem-

ory as well. Another approach, by Sudan et. al. [37], attempts

to co-locate small, contiguous “chunks” of cache blocks

(called micro-pages) with similar access patterns into the

same row-buffer. This approach is similar to ours in that it

actually re-locates data in physical memory to increase effi-

ciency. However, it requires hardware changes (and optional

changes to the OS), while our approach is entirely software-

based.



Other works have explored integrating information at the

application-level with the OS and hardware to aid resource

management. Projects, such as Exokernel [9] and Dune [3],

attempt to give applications direct access to physical re-

sources. In contrast, our framework does not use or expose

any physical structures or privileged instructions directly to

applications. Banga, et. al. [2] propose a model and API

that allows applications to communicate their resource re-

quirements to the OS through the use of resource contain-

ers. Brown and Mowry [5] integrate a modified SUIF com-

piler, which inserts release and prefetch hints using an extra

analysis pass, with a runtime layer and simple OS support

to improve response time of interactive applications in the

presence of memory-intensive applications.

Researchers have also explored the possibility of cooper-

ation between the JVM and the OS to improve run-time per-

formance. For example, cooperation between the JVM heap

management and the OS virtual memory systems was pro-

posed to reduce paging or thrashing behavior during garbage

collections [12, 40]. However, our work has a different goal

and approach from such previous studies.

Also related is the concept of cache coloring [24], where

the OS groups pages of physical memory (as the same color)

if they map to the same location in a physically indexed

cache. Despite their similar names, coloring in our frame-

work is different than coloring in these systems. Cache col-

oring aims to reduce cache conflicts by exploiting spatial or

temporal locality when mapping virtual pages to physical

pages of different colors, while colors in our framework pri-

marily serve to signal usage intents from the JVM to the OS.

Prior work has also explored virtual memory techniques

for energy efficiency. Lebeck et. al. [28] propose several

policies for making page allocation power aware. Zhou et.

al. [42] track the page miss ratio curve, i.e. page miss rate

vs. memory size curve, as a performance-directed metric to

determine the dynamic memory demands of applications.

Petrov et. al. [35] propose virtual page tag reduction for

low-power translation look-aside buffers (TLBs). Huang et.

al. [19] propose the concept of power-aware virtual mem-

ory, which uses the power management features in RAM-

BUS memory devices to put individual modules into low

power modes dynamically under software control. All of

these works highlight the importance and advantages of

power-awareness in the virtual memory system – and ex-

plore the potential energy savings. In contrast to our work,

these systems do not employ integration between upper- and

lower-level memory management, and thus, are vulnerable

to learning inefficiencies as well as those resulting from the

operating system and application software working at cross

purposes.

3. Background

Although our cross-layer framework has the potential to

benefit numerous memory architectures, technologies, and

Figure 1. Organization of memory devices in a DDR*

memory subsystem.

variations, we focus our current study on today’s pervasive

JEDEC-style DDR* memory subsystems [22]. In this sec-

tion, we present an overview of how memory hardware is

organized in a typical DDR* memory subsystem and discuss

factors contributing to DRAM power consumption. Later,

we describe how memory is represented and managed by

the operating system and applications.

3.1 Organization of the Memory Subsystem

Figure 1 shows the organization of memory devices in a

DDR*-style memory system. Each processor employs a

memory controller that sends commands to its associated

DIMMs across a memory bus. To enable greater parallelism,

the width of the bus is split into multiple independent chan-

nels, which are each connected to one or more DIMMs. Each

DIMM comprises a printed circuit board with various de-

vices to manage frequency and control signals as well as a

set of ranks, which constitute the actual memory storage. A

rank is simply a set or block of memory that participates in a

memory access. Memory on different ranks is accessed inde-

pendently. A typical DIMM contains one, two, four, or eight

ranks, each ranging from 2GB to 8GB in capacity. Each rank

can be further subdivided into a set of banks, which contain

independent DRAM storage arrays and share circuitry to

interface with the memory bus.

3.2 DRAM Power Consumption

DRAM power consumption can be divided into two main

components: operation power, which is the power required

for active memory operations, and background power, which

accounts for all other power in the memory system.1 Op-

eration power is primarily driven by the number of mem-

ory accesses to each device, while background power de-

pends solely on the operating frequency and the current

1 For a full accounting of the various factors that contribute to power

consumption in a DDR3 memory subsystem, see [38].



power-down state of the memory devices. Modern mem-

ory devices perform aggressive power management to au-

tomatically transition from high power to low power states

when either all or some portion of the memory is not active.

Ranks are the smallest power manageable unit, which im-

plies that transitioning between power states is performed at

the rank level. As with any power-management technique,

turning off a portion of the device in a power-down state

incurs a wakeup penalty the next time that portion of the de-

vice is accessed. Current DDR3 technology supports mul-

tiple power-down states, each of which poses a different

tradeoff between power savings and wakeup latency. Table

3 in [6] provides a summary of power requirements and

wakeup latencies for the various power-down states for a

typical DDR3 device. Thus, controlling memory power con-

sumption requires understanding how memory accesses are

distributed across memory devices. Configurations tuned to

maximize performance attempt to distribute accesses evenly

across the ranks and channels to improve bandwidth and re-

duce wakeup latencies, while low-power configurations at-

tempt to minimize the number of active memory devices.

3.3 Operating System View of Physical Memory

During system initialization, the BIOS reads the memory

hardware configuration and converts it into physical address

ranges provided to the operating system. Many vendors pro-

vide options to control (prior to boot) how physical ad-

dresses are distributed among the underlying memory hard-

ware units. For example, options to enable channel and rank

interleaving ensure that consecutive physical addresses are

distributed across the system’s memory devices. At boot

time, the operating system reads the physical address ranges

from the BIOS and creates data structures to represent and

manage physical memory. Nodes correspond to the physi-

cal NUMA nodes in the hardware. Each node is divided

into a number of blocks called zones, which represent dis-

tinct physical address ranges. Next, the operating system

creates physical page frames (or simply, pages) from the ad-

dress ranges characterized by each zone. Page size varies

depending on the system architecture and configuration. On

the (x86-based) platform we use for this work, each page

addresses 4KB of memory. The kernel’s physical memory

management (allocation and recycling) operates on these

pages, which are stored and kept track of on various lists

in each zone. For example, a set of lists of pages in each

zone called the free lists describes all of the physical mem-

ory available for allocation.2 Most current operating systems

do not keep track of how physical pages map to the underly-

ing memory topology (i.e. the actual layout of DRAM ranks

and channels in hardware) during memory management.

2 For a more detailed description of memory management in the Linux

kernel we use as base for this work, see Chapter 3 in [33].

3.4 Automatic Heap Management in Managed

Language Runtimes

The operating system provides each process with its own vir-

tual address space for allocating and using memory at the

application level. Native applications use system calls, such

as brk and mmap, to request and manage virtual memory

resources. Programs written in managed languages, such as

Java, do not interact directly with the operating system, but

rather, execute inside a process virtual machine (VM) (also

called runtime system). On initialization, the VM allocates a

large virtual address space for use as the application’s heap.

When the application allocates an object (e.g., using Java’s

new instruction), the VM updates a pointer in the applica-

tion’s heap area to reserve space for the new object. Periodi-

cally, the heap area will fill with objects created by the appli-

cation, triggering a garbage collection (GC). During GC, the

VM frees up space associated with the dead (unreachable)

objects, and possibly shrinks or expands the virtual memory

space depending on the current need. In this way, the VM

automatically manages several aspects of the application’s

memory resources, including the size of the application’s

heap and where program objects are located in the virtual

memory space.

4. Cross-Layer Memory Management

Controlling the placement of program objects/data in mem-

ory to achieve power or performance efficiency requires col-

laboration between multiple layers of the vertical execu-

tion stack, including the application, operating system, and

DRAM hardware. For this work, we modify the HotSpot

JVM to divide its application heap into separate regions for

objects with different expected usage patterns. We integrate

our modified JVM with the OS-based framework proposed

by Jantz et al. [21], which allows application-level software

to communicate usage intents and provisioning goals to the

OS to guide management of memory hardware resources. In

this section, we briefly describe our adopted OS framework

before explaining our VM-based approach.

4.1 Guiding Memory Management with Colors

Our adopted OS framework provides two major components

for this work:

1. An application programming interface (API) for commu-

nicating to the OS information about how applications

intend to use memory resources (usage patterns), and

2. An operating system with the ability to keep track of

which memory hardware units (DIMMs, ranks) host

which physical pages, and to use this detail in tailoring

memory allocation to usage patterns.

To support the first component, the framework imple-

ments a memory coloring interface to facilitate communi-

cation of memory usage guidance from applications to the

operating system. In this approach, a color is an abstraction



that enables applications to indicate to the operating system

that some common behavior or intention spans a set of vir-

tual pages. Applications associate attributes (or combina-

tions of attributes) with each color, to provide information

to the operating system about how to manage the colored

range. More generally, an application can use colors to di-

vide its virtual pages into groups. Each color can be used to

convey one or more characteristics that the pages with that

color share. Contiguous virtual pages may or may not have

the same color. In this way an application provides a usage

map to the OS, and the OS consults this usage map in se-

lecting an appropriate physical memory scheduling strategy

for those virtual pages. Virtual pages that have not been col-

ored, and therefore do not provide any associated guidance,

are managed using a default strategy.

The memory coloring scheme is implemented using a

recent Linux kernel (v. 2.6.32-431.el6). The custom kernel

provides a system call API that enables applications to apply

colors to virtual ranges and bind colors to attributes that

describe memory usage intents. Using this API, applications

can apply and change colors and attributes at any time,

and the OS can efficiently interpret this information when

performing memory allocation, recycling, or page migration

decisions.

To provide the second major component, the OS frame-

work organizes and facilitates memory management over

power-manageable domains that are closely related to the

underlying hardware. These management units are called

“trays”. A tray is a software structure which contains sets

of pages that reside on the same power-manageable mem-

ory unit (i.e. DRAM rank). Each physical memory zone in

the adopted Linux kernel contains a set of trays, and the lists

of pages on each zone, which are used to manage physical

memory, are replaced with corresponding lists in each tray.

Figure 2 (taken from [21]) shows how the adopted kernel or-

ganizes its representation of physical memory with trays in

relation to the actual memory hardware. The kernel’s page

management routines, which operate on lists of pages at the

zone level are modified to operate over the same lists, but

at a subsidiary level of trays. That is, zones are subdivided

into trays, and page allocation, scanning, recycling are all

performed at the tray level.

4.2 Organizing Memory Objects in HotSpot

Incorporating application guidance during memory manage-

ment can enable the OS to achieve more efficient memory

bandwidth, power, and/or capacity distributions. While the

existing OS framework described in the previous subsection

facilitates communication between the applications and op-

erating system, it:

1. requires developers to manually determine the set of col-

ors or coloring hints that will be most useful, which may

be tedious or difficult for many applications, and

Figure 2. Organization of tray structures in relation to

memory hardware in our adopted Linux kernel [21].

2. requires all colors and coloring hints to be manually

inserted into source code, and all colored applications

must be recompiled.

This work complements the OS framework by integrat-

ing application guidance with a custom Java virtual machine

that automatically partitions program objects into separately

colored regions. Our custom JVM divides the application’s

heap into multiple distinct regions, each of which is col-

ored to indicate how the application intends to use objects

within the region. For example, in our current configuration,

we divide the application’s heap into two regions: one for

objects that are accessed relatively frequently (i.e. hot ob-

jects), and another for objects that are relatively cold. Colors

are applied to each space during initialization and whenever

region boundaries change due to heap resizing. As the ap-

plication runs, the OS interprets colors supplied by the VM

and attempts to select physical memory scheduling strate-

gies tailored to the expected usage behavior of each region.

The VM is free to allocate and move objects among the

colored spaces, but it makes every effort possible to ensure

that the objects reside in the appropriate space. Depending

on the chosen coloring, this might require additional profil-

ing and/or analysis of object usage patterns or program in-

structions in order to be effective. Fortunately, the VM pro-

vides a convenient environment for monitoring application

behavior. Several VM tasks (such as selective compilation,

code optimization, and heap resizing) already use software

counters and other feedback to help guide optimization de-

cisions [1].

We employ Oracle’s HotSpot JVM to implement our

framework. Details about our specific HotSpot version and

how it is configured are provided in Section 5.3. The de-

fault garbage collector in HotSpot is generational, meaning

that the GC divides the heap into different areas according



Figure 3. Colored spaces in our JVM framework. Dotted

lines indicate possible paths for objects to move from one

colored space to another.

to the age of the data. Newly created objects are placed in

an area called the eden space, which is part of the younger

generation. The survivor space holds objects that have sur-

vived at least one young generation collection, while objects

that have survived a number of young generation GC’s are

eventually promoted, or tenured, to the older generation.

Figure 3 shows how our custom JVM framework orga-

nizes the application heap into separate spaces for hot and

cold objects. Each space within each generation is divided

into two equal-sized regions: one colored orange for hot (fre-

quently accessed) objects and the other colored blue for cold

objects. As the application executes, the VM attempts to al-

locate and move program objects into the appropriate col-

ored space. For this work, we implement two distinct strate-

gies for ensuring objects reside in the correct space: 1) an

offline strategy (described in Section 7.1) that uses profil-

ing information from a previous run to guide object coloring

decisions in later runs, and 2) an online strategy (described

in Section 7.2) that collects samples of program activity to

predict object usage in the same run. The VM consults the

available usage information at each object allocation point to

determine which color to assign the new object. Periodically,

perhaps at every garbage collection cycle, the VM may also

re-assign colors for live objects depending on the predicted

access patterns and / or program phase behavior.

5. Experimental Framework

In this section, we describe our experimental platform as

well as the tools and methodology we use to conduct our

experiments, including how we measure power and perfor-

mance.

5.1 Platform

All of the experiments in this paper were run on a single

socket HP ProLiant DL380p Gen8 server machine with an

Intel E5-2620 v2 (Ivy Bridge) processor. This machine has

6 2.1GHz cores with hyperthreading enabled (for a total

of 12 hardware threads) and 4 8GB DIMMs of HP DDR3

SDRAM with a maximum clock speed of 1600MHz (prod-

uct #: 713979-B21). Each DIMM is connected to its own

channel and is comprised of two 4GB ranks. We install 64-

bit CentOS 6.5 and select a recent Linux kernel (version

2.6.32-431.el6) as our default operating system. In order to

evaluate our approach against a realistic low-power baseline,

we configure the system’s BIOS to use the “Minimum Power

Usage” HP Power Profile [16]. This configuration selects a

number of options typical in a low-power machine, includ-

ing reduced operating frequencies for compute devices, and

no interleaving of physical memory addresses.

5.2 Power and Bandwidth Measurement

We adopt the analytical model described by David et. al. [6]

to estimate memory power consumption. This model is

based on background power, or power consumed regard-

less of the operational activity on the device and determined

only by the background power state, and operation power,

which depends on the commands executed by the device.

It uses previously collected power measurements as well

as the observed read/write bandwidth and the length of time

spent in each background power state to estimate power con-

sumption for each DIMM. For this work, we configure our

system’s memory devices to operate at a maximum speed of

1333MHz and use the model’s corresponding power mea-

surements listed in Tables 2 and 3 in [6]. To collect the other

parameters required by the DRAM energy model as well

as to estimate CPU energy consumption, we employ In-

tel’s Performance Counter Monitor (PCM) tool [17]. PCM

is a sampling-based tool that reads various activity counters

(registers) to provide details about how internal resources

are used by Intel devices. At every sample, PCM reports a

variety of counter-based statistics, including: the number of

cycles each DIMM spent in each background power state,

the average read/write bandwidth on each memory channel

(in MB/s), and an estimate (in Joules) of energy consumed

by the CPU (cores and caches).3 We run the PCM tool in the

background during each experiment to collect samples every

two seconds. We then aggregate the collected data in post-

processing to compute CPU/memory energy and bandwidth

estimates for each run.

5.3 HotSpot Java Virtual Machine

Oracle’s HotSpot Java Virtual Machine (build 1.6.0 32) [34]

provides the base for our JVM implementation. For this

work, we used the default HotSpot configuration for server-

class applications [18]. This configuration uses the “paral-

lel scavenge” garbage collector (PS-GC), which is a “stop-

the-world” collector (i.e. application threads do not run dur-

ing GC) that is capable of spawning multiple concurrent

scavenging threads during GC. For all of our experiments,

we configure HotSpot to use a static heap size to avoid re-

computing colored space boundaries during heap resizing.

3 PCM employs the RAPL counter interface to estimate CPU energy con-

sumption [7]. The RAPL interface also supports DRAM energy estimates,

which we would have used for this work, but this feature was disabled on

our experimental platform by the system vendor (HP).



6. Impact of Cross-Layer Framework on

Program Performance and DRAM Energy

Consumption

Current systems employ a hardware-based approach to man-

age memory power. During periods of low activity, the mem-

ory controller transitions individual ranks into low power

states (such as “self refresh”). To amplify the effectiveness of

this technique, it is desirable that pages that are very lightly

accessed are not located on the same memory ranks as pages

that are accessed frequently. In this section, we employ our

framework to control the placement of hot and cold objects

across memory ranks and demonstrate the effect of different

layouts on program performance and DRAM energy con-

sumption.

6.1 The MemBench Benchmark

In order to clearly isolate and measure the effect of con-

trolling object placement, we require a simple, memory-

intensive workload with well-defined, and easy to distin-

guish, sets of hot and cold objects. Hence, we construct a

custom benchmark (called MemBench) that differentiates

hot and cold objects statically by declaring objects with dis-

tinctive program types in its source code. The MemBench

benchmark creates two main types of objects: HotObject and

ColdObject. Each object contains an array of integers (com-

prising about 1MB of space per object) which represent the

objects’ memory resources. On initialization, MemBench al-

locates a large number of such objects and stores them in a

single, large, in-memory array. A certain portion of the ob-

jects (about 15% for these experiments) are allocated as the

HotObject type, while the remaining objects are allocated

as the ColdObject type. The order of object allocations is

randomized so that HotObjects and ColdObjects are stored

intermittently throughout the object array. For each of our

experiments, we configure MemBench to allocate 27GB of

program objects (or approximately 90% of the free memory

on our server node).

After MemBench is done allocating the hot and cold ob-

jects, the object array is divided into 12 roughly equal parts

(one for each hardware thread on our server node) that are

each passed to their own software thread. The threads (si-

multaneously) iterate over their own portion of the object

array for some specified number of iterations, passing over

the cold objects, and only accessing memory associated with

the hot objects. When a hot object is reached, the thread per-

forms a linear scan over the object’s associated integer array,

storing a new value into each cell as it walks the array. The

benchmark completes when all threads have finished iterat-

ing over their portion of the object array. For these experi-

ments, we select a large enough number of iterations so that

each scanning thread runs for at least four minutes. Addi-

tionally, in order to allow experiments with different band-

width requirements, we provide an optional “delay” param-

eter for MemBench that can be configured to slow down the

rate at which memory accesses occur. The delay is imple-

mented by inserting additional computation between stores

to the integer array associated with each hot object. Specifi-

cally, the delay mechanism iteratively computes a Fibonacci

number between integer stores. Thus, computing a larger

Fibonacci number imposes a longer delay between mem-

ory accesses, which reduces the average bandwidth require-

ments for the workload. For our experiments, we use the sys-

tem timer (i.e. System.nanoTime()) to measure the delay with

varying Fibonacci numbers, and select numbers that induce

delays at regular intervals. Note that, even if we do not in-

sert additional computation between memory accesses, there

is still a short delay (85ns) between accesses according to

System.nanoTime().

6.2 Experimental Evaluation

We constructed three configurations to evaluate our cross-

layer framework with the MemBench benchmark. The de-

fault configuration employs the unmodified Linux kernel

with the default HotSpot JVM. The tray-based kernel con-

figuration runs MemBench with the unmodified HotSpot

JVM on the custom kernel framework described in Sec-

tion 4.1. Since the JVM in the tray-based kernel configura-

tion does not provide any memory usage guidance, the ker-

nel applies its default strategy of selecting pages from trays

in a round-robin fashion. This strategy effectively interleaves

contiguous virtual pages across memory devices. Our final

configuration, called hot/cold organize, uses the custom ker-

nel with our custom JVM that divides the application’s heap

into two separate colored spaces: one space colored orange

for hot objects and the other colored blue for cold objects.

Using the memory coloring API, we configure our frame-

work so that, whenever possible, demands from different

colored spaces are filled with physical pages from trays cor-

responding to different DIMMs. We also modify HotSpot’s

object allocator to recognize objects of the ColdObject type

and assign them to the space colored blue. Alternatively, Ho-

tObjects, as well as any other objects created by the Mem-

Bench workload, are allocated to the orange space. Thus, the

effect of the hot/cold organize configuration is to ensure that,

of the four 8GB DIMMs, three of the DIMMs are occupied

with pages that back ColdObjects, while the other DIMM is

used for the rest of the MemBench memory, including the

HotObjects.

We ran the MemBench benchmark with each of our three

configurations and with different delay parameters to vary

the bandwidth requirements for the workload. For these ex-

periments, we intend to isolate the power and performance

effects of object placement. Therefore, the following mea-

surements are collected only during the portion of the run

when threads are scanning and accessing the object array,

that is, after all allocation has completed. Our results report

the average over five runs for each configuration–delay pair.

The bars in Figure 4(a) (plotted on the left y-axis) com-

pare the performance (execution time) of the tray-based ker-



(a) (b)

Figure 4. MemBench evaluation. (a) plots performance relative to the default configuration as bars on the left y-axis and

average bandwidth as lines on the right y-axis. (b) shows energy consumed relative to default.

nel and hot/cold organize configurations to the default per-

formance with the same delay. To estimate the degree of

variability in our performance and energy results, we com-

pute 95% confidence intervals for the difference between the

means [10], and plot these intervals as error bars in Fig-

ures 4(a) and 4(b). (The error bars in Figure 4(a) are difficult

to see because there is little performance variability for these

experiments). Thus, we can see that the tray-based kernel

configuration performs about the same as the default config-

uration regardless of delay factor. The hot/cold organize con-

figuration exhibits relatively poor performance when there

is little delay between memory accesses, but performs more

like the default configuration as the delay is increased. In-

terestingly, we find this observed performance difference

is directly related to bandwidth on the memory controller.

The lines in Figure 4(a) show the average read/write band-

width (in GB/s) for MemBench with each configuration at

varying delays. Notice that the default and tray-based ker-

nel configurations actually produce much higher memory

bandwidth than hot/cold organize when the delay factor is

low. With very little delay between memory accesses, Mem-

Bench requires very high memory bandwidth to achieve

good performance. The default and tray-based kernel config-

urations both distribute hot objects across the system’s mem-

ory devices, allowing the system to exploit rank and channel

parallelism to achieve higher bandwidths. Alternatively, the

hot/cold organize configuration co-locates all the hot objects

onto a single DIMM that is connected to a single channel.

Consequently, this configuration cannot attain the bandwidth

required to achieve good performance when the delay is low.

Increasing the delay between memory accesses reduces the

bandwidth requirements for the workload, and thus, enables

hot/cold organize to achieve performance similar to the other

configurations.

While co-locating the hot objects onto a single DIMM

restricts bandwidth, this organization consumes much less

power, on average, than distributing accesses across all the

memory devices. We find that this power differential persists

even when the bandwidth requirements are reduced and the

performance of the different configurations is similar. Thus,

there is a significant potential for DRAM energy savings

with the hot/cold organize configuration. Figure 4(b) shows

the energy consumed with the tray-based kernel and hot/cold

organize configurations compared to the default configura-

tion with different delay factors. We plot two lines for each

configuration: one that compares only DRAM energy con-

sumption, and another to show the relative energy consump-

tion of the CPU and DRAM together. Observe that, in exper-

iments with low delay, the hot-cold organize configuration

actually requires more DRAM energy than the default con-

figuration due to its relatively poor performance. However,

our prototype framework enables significant energy savings

for workloads that do not require as much memory band-

width. At a maximum, the hot/cold organize configuration

achieves 39% DRAM energy savings (with delay=300).

As expected, the CPU energy consumed during these ex-

periments is closely related to the performance of the work-

load. When the delay between memory accesses is low, the

hot/cold organize configuration consumes more CPU energy

than the default configuration (about 2.8x in the worst case,

when delay=85). Similarly, when the delay is increased past

a certain point, the CPU consumes about the same amount

of energy regardless of the object layout configuration. As

a result, the hot/cold organize configuration significantly re-

duces the node’s combined (CPU+DRAM) energy when the

delay between memory accesses is greater than 150ns. In

the best case (delay=300), hot/cold organize reduces the

(CPU+DRAM) energy consumption by 15.8% compared to

the default configuration.

7. Object Partitioning Strategies

The experiments in the previous section demonstrate that

there is significant potential to reduce DRAM energy con-

sumption using our JVM framework. However, these exper-

iments use a custom benchmark that was written to explicitly

assign different program types to distinguish objects that are

accessed frequently from objects that are relatively cold. In



order to maximize the effectiveness of our framework, we

desire an approach that is able to automatically, efficiently,

and accurately distinguish and partition hot and cold objects

for arbitrary applications.

Such characterization of dynamic object usage patterns

can be achieved by observing earlier program behavior in the

same run (online) or by incorporating profiles collected dur-

ing a separate run (offline). Online partitioning strategies are

attractive because they can automatically adapt to different

program inputs and changes in program behavior during exe-

cution. However, profiling memory references at run-time to

gather information about each object’s usage patterns entails

significant overheads. On the other hand, offline partitioning

schemes can collect and analyze very detailed profiles of ap-

plication behavior and have very little run-time overhead. Of

course, such techniques depend upon the representativeness

of the profile run and can only provide static guidance.

Considering these tradeoffs, we construct two distinct ob-

ject partitioning strategies to integrate with our framework:

1) an offline approach that uses information collected dur-

ing a separate profile run to characterize program allocation

points as either hot or cold, and 2) an online approach that

monitors the run-time call stack to determine methods and

classes that are likely to correspond to hot objects. In this

section, we describe our offline- and online-based partition-

ing schemes.

7.1 Profiling for Hot and Cold Allocation Points

Our offline partitioning strategy profiles memory usage ac-

tivity related to program allocation points. For this ap-

proach, we instrument the HotSpot bytecode interpreter to

construct a hash table relating objects and their usage activ-

ity to their allocation points in the interpreted code. The hash

table is indexed by program allocation points (identified by

method and bytecode index) and values are a list of records

describing the size and access count of each object created

at that point. During the run, whenever the VM interprets a

new instruction (or one of its variants), it creates a record in

the global hash table to indicate that a new object was created

at that point. Then, whenever an object is accessed using one

of the object reference bytecodes (getfield, putfield,

etc.), the VM increments its access count.

After collecting the application’s memory profile, the

next step is to assign colors to the allocation points according

to the memory usage activity of the objects created at each

point. For this analysis, we are interested in maximizing the

size of the cold space because a larger space of cold objects

ensures that a larger portion of DRAM devices will be able to

reside in a low power state. We can express this problem as

an instance of the classical 0/1 knapsack optimization prob-

lem. In this formulation, each allocation point is an item,

which has a value equal to the total size of the objects cre-

ated at that point, and a weight equal to the sum of the access

counts for those objects. We assume some maximum number

of object accesses is the capacity of the knapsack. The opti-

mization problem then is to select items (allocation points)

such that the combined value (object size) is maximized

without the combined weight (access counts) exceeding the

capacity of the knapsack. Although the knapsack problem

is NP-complete, there exist well-known polynomial-time al-

gorithms that can approximate the solution to any specified

degree. We employ a popular dynamic programming algo-

rithm to find a partitioning that (nearly) maximizes the size

of the cold space [32].

To compare colorings across different workloads, we se-

lect knapsack capacities as a percentage of the total number

of accesses in the profile run. For example, with a knapsack

capacity of 5%, our technique selects allocation points such

that the objects created at these points together account for

no more than 5% of the total number of object accesses in the

profile run. For the chosen knapsack capacity, we compute a

partitioning of the program’s allocation points using the ap-

proach described above and store the result to a file on disk.

Then, at the start of any guided/measured program run, the

VM loads the partitioning information into memory. Specif-

ically, the hot/cold classification of each allocation point is

stored in a list on the point’s associated method object. Since

each node in this list requires only a few bytes of space (16 in

our current implementation), and since each method has only

a few allocation points (Table 1 in Section 8 lists the number

of static allocation points per method in each benchmark),

the space overhead required for this approach is small and

could be further optimized by recording information for only

the hot or cold allocation points. Whenever the application

allocates an object, the VM checks the associated method’s

list to determine whether the allocation point has a known

color. If so, the new object is assigned to the corresponding

colored space. Otherwise, the object is simply assigned to

some default colored space. In our experiments, we opt to

assign objects created at unknown allocation points to the

orange, or hot, space. Thus, if an unknown object is actually

hot, it will not thwart our power-saving strategy of keeping

hot objects off the cold DIMMs.

7.2 Sampling Application Threads’ Call Stacks for

Hot Methods and Classes

Our online approach is inspired by a technique proposed

by Huang et. al. [20]. This strategy combines simple static

analysis with light-weight sampling to automatically predict

methods and classes associated with hot program objects.

To implement this approach, the HotSpot compiler records

the list of classes with instances that might be accessed by

the compiled method. Specifically, any class whose instance

would be the source/target of a load/store instruction in the

compiled method is added to a list associated with the com-

piled method, which we call the ClassAccessList. At the

same time, a separate thread, invoked by a timer-driven sig-

nal, periodically examines the call stacks associated with

each application thread. For each method at the top of a call

stack, a counter associated with the method is set to indicate



Figure 5. Bandwidth (GB/s) and total heap allocations (GB) for each benchmark with the default configuration.

Table 1. Benchmark descriptions (AP=distinct static alloca-

tion points, AP/M=static allocation points per method).
Benchmark Description APs AP/M

DaCapo

avrora program simulator for AVR microcontroller 2402 2.54

batik produces SVG images from batik unit tests 5132 2.69

fop generates a PDF file from XSL-FO file 9061 5.96

eclipse performance tests for Eclipse IDE 9171 2.32

h2 transactions on an in-memory database 2132 2.21

jython interprets the pybench Python benchmark 10296 4.86

luindex uses lucene to index a set of documents 1826 2.27

lusearch uses lucene to search for keywords 1565 2.29

pmd analyzes set of Java classes for problems 2385 2.13

sunflow renders images using ray tracing 2717 2.51

tomcat runs queries against a Tomcat server 7237 2.54

tradebeans daytrader benchmark via Java Beans 14215 2.30

tradesoap daytrader benchmark via SOAP 14339 2.28

xalan transforms XML documents into HTML 2516 2.56

SciMark

fft Fast Fourier Transform 5579 3.13

lu LU matrix factorization 5582 3.13

sor Jacobi Successive Over-relaxation 5569 3.13

sparse sparse matrix multiply 5571 3.13

that the method is hot. Additionally, counters associated with

all of the classes on the method’s ClassAccessList are set to

indicate that instances of this class are likely to be hot. In

order to “cool down” methods and classes that are no longer

hot, we also periodically decrement the counters associated

with the hot methods and classes. In this way, methods and

classes that are not found on any thread’s call stack for some

number of sampling intervals will eventually become cold.

Whenever a new object is allocated, the allocator exam-

ines the counters associated with the method performing the

allocation and the class of the object that is to be allocated.

If either counter indicates that the new object is likely to be

hot, we allocate the object to the hot space. Otherwise, the

object is allocated to the cold space. It is important to note

that, in contrast to the offline approach, some objects might

change color as the application executes. At each garbage

collection cycle, the surviving objects’ colors are reassigned

according to the hotness/coldness of their classes.

8. Evaluation

8.1 Benchmarks and Experimental Configuration

We employ the entire suite of DaCapo benchmarks [4] as

well as four of the SciMark benchmarks from SPECjvm2008 [36]

to evaluate our cross-layer framework. Table 1 shows the

benchmarks we use to evaluate our framework along with a

short description, the number of allocation points reached

during execution, and the average number of allocation

points for each method that creates at least one object. Some

of our experiments use information collected during a pro-

file run with a small input size to guide coloring decisions

in a run with a default or large input size. Since most of the

workloads in SPECjvm2008 only include one input size, we

omit these from our study. All of our experiments measure

steady-state performance and energy consumption. For each

run of a DaCapo benchmark, we iterate the workload a total

of seven times. We use two initial iterations to put the bench-

mark into steady-state, and record the median run-time of

the final five iterations as the benchmark’s performance. For

the SciMark benchmarks, the SPECjvm2008 harness con-

tinuously iterates the workload for each run, starting a new

operation as soon as a previous operation completes. Each

run includes a warmup period of one minute and an iteration

period of at least four minutes. The score for each SciMark

run is the average time it takes to complete one operation

during the iteration period. For all of our performance and

energy measurements, we report the average result of five

runs as the final score for the benchmark.

The experimental configurations we evaluate in this sec-

tion use a custom Linux kernel as well as a custom version of

HotSpot. Since we wish to evaluate the performance and en-

ergy impact of only our JVM framework, we first conducted

experiments to determine the effect, if any, the custom kernel

has on performance and energy consumption. For these ex-

periments, we run all of our selected benchmarks using the

same unmodified HotSpot JVM with both the unmodified

Linux kernel and the custom Linux kernel with tray-based



Figure 6. Cold heap size as a percentage of total size with different object partitioning schemes.

allocation. For all but one of the benchmarks, we found there

is no significant performance difference between the two

kernel versions. The fft benchmark from SciMark runs 8%

faster on the custom kernel, which we suspect is because the

custom kernel’s page allocation strategy results in a more ef-

ficient distribution of the application’s data objects. The cus-

tom kernel consumes, on average, about 2% more DRAM

energy than the default Linux kernel, but 14 out of 18 bench-

marks show no significant difference in DRAM energy con-

sumption. For all of the remaining experiments in this sec-

tion, we use the default (unmodified) Linux kernel with the

default version of HotSpot as the baseline configuration.

Figure 5 shows the bandwidth (in GB/s, plotted on the

left y-axis) and the aggregate size of allocations to the

heap (in GB, plotted on the right y-axis) for each of our

selected benchmarks with the default configuration. Thus,

these workloads display a wide range of bandwidth and ca-

pacity requirements. On average, the DaCapo benchmarks

require much less bandwidth (less than 1 GB/s) than the Sci-

Mark benchmarks (more than 11 GB/s), but often allocate

more application data on the heap.

8.2 Experimental Evaluation

We now present a series of experiments to evaluate the per-

formance and effectiveness of our JVM framework with the

different object coloring strategies described in Section 7.

To evaluate our framework with the offline partitioning

strategy, we collect a profile of each benchmark’s memory

activity using its small input size. Next, we partition the

benchmark’s profiled allocation points into different colored

sets as described in Section 7.1 using knapsack capacities

of 2%, 5%, and 10%. We then employ the allocation point

partitionings to guide object coloring in a set of experiments

with the larger benchmark inputs.

We also perform a set of experiments to evaluate our

framework with the online partitioning strategy.4 For these

4 Our current implementation of the online partitioning strategy requires

that all the VM threads must be brought to a safepoint before the sampling

experiments, we configure our framework to sample the ap-

plication call stacks every 50ms. In preliminary experiments,

we found that shorter sampling periods significantly degrade

the performance of our benchmarks, while using longer sam-

pling periods did not affect performance. We also configure

the “cool down” mechanism to remove methods or classes

from the hot set within 500ms to 1000ms of the last time

sample that they were identified as hot.

8.2.1 Cold Heap Size

Figure 6 presents the aggregated size of objects assigned

to the cold space as a percentage of the total size with

each of the object partitioning strategies. For example, if

the profile run for the pmd benchmark is accurate, the 2%

knapsack partitioning scheme finds a set of allocation points

that account for about 22% of total heap size, but only about

2% of object accesses. We can make a few observations from

these results:

1. With the DaCapo benchmarks, increasing the knapsack

capacity increases the cold space size for the offline par-

titioning strategy as expected.

2. However, the knapsack capacity has very little effect on

the SciMark workloads. This is because the vast majority

of heap space is allocated at only a few allocation sites in

these benchmarks.

3. On average, the online profiling scheme assigns about

as many objects to the cold space as the 2% knapsack

partitioning. However, for several individual benchmarks

(e.g. avrora, batik, and eclipse) the proportion of cold

space objects for the offline and online approaches is

different.

thread is allowed to examine the call stacks. Unfortunately, this restriction

severely impacts the operation of the SciMark workloads, often causing

them to hang or crash. We are currently working to implement a sampling

strategy that does not require other threads to reach a safepoint before each

sample. For this work, however, we evaluate our online partitioning scheme

using only the benchmarks from the DaCapo benchmark suite.



Figure 7. Average power consumed (in W) for each DIMM with the default configuration.

Figure 8. Average power consumed (in W) for each DIMM with 2% knapsack coloring.

Figure 9. Average power consumed (in W) during benchmark execution for each DIMM with 5% knapsack coloring.



Figure 10. Average power consumed (in W) during benchmark execution with 10% knapsack coloring.

Figure 11. Average power consumed (in W) during benchmark execution with online object partitioning scheme.

8.3 Controlling Per-DIMM Power Consumption

Figure 7 shows the average power consumption (in W) for

each DIMM over the entire program run time for our base-

line configuration. For each benchmark, we plot four bars

corresponding to the four DIMMs in our hardware platform.

A higher bar indicates that the corresponding memory device

consumed energy at a faster rate during the benchmark run,

while lower bars show that the device did not consume much

power. Thus, we find that all of the DaCapo benchmarks con-

sume less power than the SciMark workloads. Benchmarks

such as avrora, batik, and luindex consume less than 2 watts

per DIMM, on average, over the application’s run time. On

the other hand, the SciMark workloads consume a great deal

of DRAM energy. For instance, fft requires almost 38 watts

across all four DIMMs according to our energy model. Also

note that memory usage activity is distributed almost evenly

across the ranks. This is an effect of the baseline configu-

ration’s physical page allocation policy, which does not at-

tempt to control how physical pages are distributed across

memory devices.

Figures 8, 9, and 10 show the same information as Fig-

ure 7, but for our runs that employ the offline partitioning

strategy with knapsack capacities of 2%, 5%, and 10%, re-

spectively, and Figure 11 shows the results with our online

partitioning strategy. For each of our colored runs, we con-

figure our framework to co-locate pages from the hot and

cold spaces onto different sets of DIMMs. Thus, the bars in

Figures 8–11, are colored differently to distinguish DIMMs

that are used for hot objects (orange bars) from ranks that

are used for cold objects (blue bars).

In addition to controlling object placement, our frame-

work enables each colored space to select its own alloca-

tion strategy to maximize efficiency. The cold space strategy

attempts to only select pages from trays that have already

furnished another page for similar use. In this way, the strat-

egy for the cold space attempts to minimize the number of

memory devices that need to stay powered up. The hot space

attempts to select pages from alternating DIMMs in order to

increase parallelism.

These results allow us to make several observations:



Figure 12. Performance with each colored configuration compared to default.

Figure 13. DRAM energy consumed with each colored configuration compared to default.

1. We find that the cold space allocation strategy is very

effective at keeping most of the cold ranks in a low power

state. This result is expected because most of the guided

runs do not allocate enough memory in the cold space to

affect more than one DIMM.

2. The figures illustrate the effect of different allocation

strategies employed by the hot and cold spaces on the

energy profile of individual DIMMs. Thus, while all the

hot DIMMs show uniform energy usage, the biased dis-

tribution of objects in the cold space produces a skewed

energy usage profile for the individual cold DIMMs.

3. We also see that, in some cases, the offline partitioning

strategy clearly and effectively distinguishes hot and cold

objects. For instance, benchmarks such as fft and lu con-

tain a majority of cold objects, and the offline strategy

accurately separates these objects from the rest of mem-

ory. However, in some cases with very little memory ac-

tivity, such as avrora with the 5% knapsack coloring, the

memory usage patterns in the profile run do not match

the guided run, and the cold ranks reside in a low-power

state less often than the hot ranks.

4. In the DaCapo benchmarks, we find a trend of increas-

ing cold memory activity as the capacity for the knap-

sack coloring used to guide the run is increased, but, on

average, this results in only a slight difference in power

consumed by the cold DIMMs.

5. The online strategy also consumes slightly less cold

memory energy than any of the offline approaches, but,

on average, this difference is small.

8.4 Performance and Energy Evaluation

Figures 12, 13, and 14 respectively compare the perfor-

mance, DRAM energy, and combined (CPU+DRAM) en-

ergy consumption of our JVM framework with offline and

online partitioning strategies to our baseline for all bench-

marks. Similar to our approach for Figures 4(a) and 4(b), we

plot 95% confidence intervals for the difference between the

means to estimate the degree of variability in these results.

To reduce clutter, we omit the error bars for the 2% and 10%

knapsack configurations, but note these are similar to the 5%

knapsack configuration.

As expected, the performance of some of the workloads

with custom JVM framework, such as the SciMark bench-



Figure 14. Combined (CPU+DRAM) energy consumed with each colored configuration compared to default.

marks, degrades when compared to the default configura-

tion. The baseline configuration enables more rank and chan-

nel parallelism than the custom JVM configurations, and

thus, workloads with high bandwidth requirements do not

perform as well with the custom JVM. In the worst case (fft),

this effect causes a performance loss of over 45%. However,

with the offline partitioning strategy, benchmarks with low

bandwidth requirements often achieve similar performance

or only slightly degrade when compared to the baseline con-

figuration. On average, the offline partitioning strategy de-

grades performance a little over 2% for all three knapsack

configurations. With the online strategy, a few benchmarks

incur more substantial performance losses (14% for lusearch

and 16% for sunflow), and on average, this technique incurs

a 5% performance penalty.

Results plotted in Figure 13 show that our custom JVM is

able to achieve our goal of substantially reducing DRAM en-

ergy savings over the baseline, regardless of the object par-

titioning strategy. On average, the offline partitioning strate-

gies reduce DRAM energy consumption by a little over 9%

for the DaCapo benchmarks, and by 13% to 14% for the Sci-

Mark workloads depending on the knapsack size. The online

strategy consumes slightly less DRAM energy than the of-

fline strategies with a 10% average reduction compared to

the baseline.

Figure 14 compares the combined (CPU+DRAM) energy

consumption of the JVM with our memory-power saving

strategies to the baseline approach. We find that most bench-

marks and configurations see either a net reduction or no

significant impact on combined energy consumption. How-

ever, similar to the observation with our MemBench bench-

mark (Figure 4b), we can see that programs that require

higher bandwidth and suffer a performance loss (for exam-

ple, fft and, with the online approach, sunflow and xalan)

consume higher overall combined (CPU+DRAM) energy.5

5 Note that all of our measurements only consider energy consumed while

the benchmark is running, and are not adjusted to account for energy con-

sumed while the machine is idle. Thus, when comparing two configura-

tions, the energy consumption of the configuration that finishes early may

One reason for this result is that with our machine configu-

ration many of the benchmarks expend relatively more en-

ergy in the CPU than in DRAM. For such workloads, even

small performance overheads have a disproportionate effect

on combined energy consumption. This effect is especially

pronounced for the DaCapo benchmarks, each of which con-

sumes more power in the CPU than in DRAM, and where,

on average, CPU energy comprises 60% of the combined

energy consumption. Overall, we find that the offline ap-

proaches are slightly more efficient than the online approach.

The most efficient offline approach (10%-KS) achieves an

average combined energy reduction of 2.2% with the Da-

Capo benchmarks, while the online approach saves 1.2% of

combined energy compared to the default configuration.

9. Future Work

Although cross-layer memory management can significantly

reduce DRAM energy consumption, our current implemen-

tation degrades performance in some cases, which negates

some of the (combined) energy savings. Our immediate fu-

ture work is to address these performance losses in order to

realize the full potential of this approach. For instance, we

will develop an adaptive online approach to enable the VM

to estimate the application’s bandwidth requirements and

modify its memory management policy to conserve energy

without slowing down high-bandwidth applications. Addi-

tionally, we have found that our online partitioning strategy

incurs a small profiling overhead, which grows as the sam-

pling frequency is increased. We plan to explore the potential

of a more asynchronous online profiling approach to over-

come this cost and to allow the collection of more accurate

profile information. In addition to saving power/energy, we

also plan to explore memory management algorithms that

take advantage of cross-layer guidance to automatically im-

prove performance. Our planned experiments include: 1) bi-

be under-reported compared to a more realistic scenario where the machine

continues to run after the benchmark has completed. Therefore, these re-

sults report a lower-bound on the potential benefits to combined energy

consumption.



asing the placement of high value data so that performance

critical data is distributed widely across memory channels,

and 2) tailoring page reclamation policies to access patterns

discovered during profiling.

While this work focuses on conventional memory sys-

tems in which all of the devices are homogeneous, there

is also significant potential for this approach on systems

containing different types of memory devices. For example,

some systems combine DRAM with non-volatile DIMMs [25,

39] or slower, but higher capacity DIMMs [8] to provide

varying capabilities and performance. Implementing cross-

layer management on such heterogeneous memory systems

will allow applications to automatically adapt to the under-

lying hardware, potentially exposing powerful new efficien-

cies. Finally, this work highlights the importance of data

object location on a page, and placement of a page in phys-

ical memory. We plan to explore and effectively exploit this

issue in the future.

10. Conclusion

Memory efficiency has become a very important factor for a

wide range of computing domains. We contend that power

and performance efficiency cannot be achieved by either

the operating system (OS) or the architecture acting alone,

but needs guidance from the application and communica-

tion with the OS and hardware to ideally allocate and re-

cycle physical memory. In this work, we design the first

application-level framework that collects information about

data object usage patterns to steer low-level memory man-

agement. Our cross-layer approach integrates the HotSpot

JVM and a custom Linux kernel to automatically provide

efficient distribution of memory resources for a wide range

of managed language applications.

We use our framework to show that memory power sav-

ing is correlated with the program’s bandwidth requirements

and performance. Our results indicate that a significant por-

tion of the memory allocated by many programs is cold.

We find that co-allocating such cold objects on a single

memory module can result in significant energy savings in

the memory subsystem. Overall, our cross-layer framework

shows good potential for enabling existing applications to

use memory more efficiently, without requiring any source

code modifications or recompilations.

Acknowledgments

We thank the anonymous reviewers for their thoughtful and

constructive feedback. This research is supported in part by

the National Science Foundation under CNS-1464288 and

CAREER award CNS-0953268. Intel Corporation provided

computing equipment for experiments in earlier versions of

this work.

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey

of adaptive optimization in virtual machines. Proceedings of the IEEE,

92(2):449–466, February 2005.

[2] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource

containers: a new facility for resource management in server systems.

In Proceedings of the third symposium on Operating systems design

and implementation, OSDI ’99, pages 45–58. USENIX Association,

1999.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David

Mazières, and Christos Kozyrakis. Dune: safe user-level access to

privileged cpu features. In Proceedings of the 10th USENIX con-

ference on Operating Systems Design and Implementation, OSDI’12,

pages 335–348. USENIX Association, 2012.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.

Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, B. Moss, Aashish

Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dinck-

lage, and Ben Wiedermann. The DaCapo benchmarks: Java bench-

marking development and analysis. In Proceedings of the 21st annual

ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications, OOPSLA ’06, pages 169–190, 2006.

[5] Angela Demke Brown and Todd C. Mowry. Taming the memory

hogs: using compiler-inserted releases to manage physical memory

intelligently. In Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation - Volume 4, OSDI’00.

USENIX Association, 2000.

[6] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte,

and Onur Mutlu. Memory power management via dynamic volt-

age/frequency scaling. In Proceedings of the 8th ACM International

Conference on Autonomic Computing, ICAC ’11, pages 31–40, 2011.

[7] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,

and Christian Le. Rapl: Memory power estimation and capping. In

Proceedings of the 16th ACM/IEEE International Symposium on Low

Power Electronics and Design, ISLPED ’10, pages 189–194, New

York, NY, USA, 2010. ACM.

[8] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch,

and Ricardo Bianchini. Memscale: Active low-power modes for main

memory. SIGPLAN Not., 47(4):225–238, March 2011.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an oper-

ating system architecture for application-level resource management.

SIGOPS Oper. Syst. Rev., 29(5):251–266, December 1995.

[10] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rig-

orous java performance evaluation. In Proceedings of the conference

on Object-oriented programming systems and applications, OOPSLA

’07, pages 57–76, 2007.

[11] Samuel Z. Guyer and Kathryn S. McKinley. Finding your cronies:

Static analysis for dynamic object colocation. In Proceedings of the

19th Annual ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, OOPSLA ’04, pages

237–250, 2004.

[12] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection

without paging. In Proceedings of the 2005 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI

’05, pages 143–153, New York, NY, USA, 2005. ACM.

[13] Martin Hirzel. Data layouts for object-oriented programs. In Pro-

ceedings of the 2007 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS ’07,

pages 265–276, 2007.

[14] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based

garbage collection. In Proceedings of the 18th Annual ACM SIGPLAN

Conference on Object-oriented Programing, Systems, Languages, and

Applications, OOPSLA ’03, pages 359–373, 2003.



[15] Urs Hoelzle and Luiz Andre Barroso. The Datacenter As a Computer:

An Introduction to the Design of Warehouse-Scale Machines. Morgan

and Claypool Publishers, 1st edition, 2009.

[16] HP. Power regulator for proliant servers, 2011.

[17] http://www.intel.com/software/pcm. Intel Performance Counter Mon-

itor, 2012.

[18] http://www.oracle.com/technetwork/java/javase/memorymanagement-

whitepaper 150215.pdf. Memory Management in the Java HotSpot

Virtual Machine, April 2006.

[19] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. Design and

implementation of power-aware virtual memory. In Proceedings of the

Annual Conference on USENIX Annual Technical Conference, ATEC

’03, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.

[20] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley,

J Eliot B. Moss, Zhenlin Wang, and Perry Cheng. The garbage col-

lection advantage: Improving program locality. In Proceedings of the

19th Annual ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, OOPSLA ’04, pages 69–

80, New York, NY, USA, 2004. ACM.

[21] Michael R. Jantz, Carl Strickland, Karthik Kumar, Martin Dimitrov,

and Kshitij A. Doshi. A framework for application guidance in virtual

memory systems. In Proceedings of the 9th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE

’13, pages 155–166, 2013.

[22] JEDEC. Ddr3 sdram standard, 2009.

[23] Alin Jula and Lawrence Rauchwerger. Two memory allocators that

use hints to improve locality. In Proceedings of the 2009 International

Symposium on Memory Management, ISMM ’09, pages 109–118,

2009.

[24] R. E. Kessler and Mark D. Hill. Page placement algorithms for

large real-indexed caches. ACM Trans. Comput. Syst., 10(4):338–359,

November 1992.

[25] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence

Chiu. Phase change memory in enterprise storage systems: Silver

bullet or snake oil? SIGOPS Oper. Syst. Rev., 48(1):82–89, May 2014.

[26] A. Kleen. A numa api for linux. SUSE Labs white paper, August

2004.

[27] Chris Lattner and Vikram Adve. Automatic pool allocation: Improving

performance by controlling data structure layout in the heap. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’05, pages 129–142,

New York, NY, USA, 2005. ACM.

[28] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power

aware page allocation. In Proceedings of the Ninth International

Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS IX, pages 105–116, New York, NY,

USA, 2000. ACM.

[29] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter,

Michael Kistler, and Tom W. Keller. Energy management for com-

mercial servers. Computer, 36(12):39–48, December 2003.

[30] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ran-

ganathan, Steven K. Reinhardt, and Thomas F. Wenisch. Disaggre-

gated memory for expansion and sharing in blade servers. In Pro-

ceedings of the 36th Annual International Symposium on Computer

Architecture, ISCA ’09, pages 267–278, New York, NY, USA, 2009.

ACM.

[31] Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos

Kozyrakis, Karthika Periyathambi, and Mark Horowitz. Towards

energy-proportional datacenter memory with mobile dram. In Pro-

ceedings of the 39th Annual International Symposium on Computer

Architecture, ISCA ’12, pages 37–48, Washington, DC, USA, 2012.

IEEE Computer Society.

[32] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and

Computer Implementations. John Wiley & Sons, Inc., New York, NY,

USA, 1990.

[33] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wiley

Publishing, Inc., Indianapolis, IN, 2008.

[34] Michael Paleczny, Christopher Vick, and Cliff Click. The Java

hotspottm server compiler. In JVM’01: Proceedings of the 2001 Sym-

posium on JavaTM Virtual Machine Research and Technology Sympo-

sium, pages 1–12, Berkeley, CA, USA, 2001. USENIX Association.

[35] P. Petrov and A. Orailoglu. Virtual page tag reduction for low-power

tlbs. In IEEE International Conference on Computer Design, pages

371–374, 2003.

[36] SPEC2008. Specjvm2008 benchmarks.

http://www.spec.org/jvm2008/, 2008.

[37] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi,

Rajeev Balasubramonian, and Al Davis. Micro-pages: Increasing

dram efficiency with locality-aware data placement. SIGARCH Com-

put. Archit. News, 38(1):219–230, March 2010.

[38] Micron Technology Inc. TN-41-01. Calculating Memory System

Power for DDR3. Technical report, 2007.

[39] Chun Jason Xue, Youtao Zhang, Yiran Chen, Guangyu Sun, J. Jianhua

Yang, and Hai Li. Emerging non-volatile memories: Opportunities

and challenges. In Proceedings of the Seventh IEEE/ACM/IFIP In-

ternational Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS ’11, pages 325–334, New York, NY, USA,

2011. ACM.

[40] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss.

Cramm: Virtual memory support for garbage-collected applications.

In Proceedings of the 7th Symposium on Operating Systems Design

and Implementation, OSDI ’06, pages 103–116, Berkeley, CA, USA,

2006. USENIX Association.

[41] Chengliang Zhang and Martin Hirzel. Online phase-adaptive data

layout selection. In Proceedings of the 22Nd European Conference on

Object-Oriented Programming, ECOOP ’08, pages 309–334, 2008.

[42] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,

Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss

ratio curve for memory management. In Proceedings of the 11th

international conference on Architectural support for programming

languages and operating systems, ASPLOS XI, pages 177–188. ACM,

2004.


