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UTSB, Hautes Etudes d’Ingenieur, LAGIS UMR 8219 CNRS, Lille

laurent.peyrodie@hei.fr
3 ENSIAME UVHC, Universite de Valenciennes, France

antonio.pinti@univ-valenciennes.fr
4 Abou-Bekr Belkaid University, Telecommunication Laboratory, Tlemcen,Algeria

m boussahla@mail.univ tlemcen.dz
5 A5 EA 4708, I3MTO, CHRO 1, rue Porte Madeleine, 45032,Orléans, France
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Abstract. The segmentation of Multiple Sclerosis (MS) lesions on Mag-
netic Resonance Imaging (MRI) has become a crucial criterion for di-
agnosis and predicting prognosis in early disease. Automated MS lesion
segmentation is highly desirable for its low time computation, cost, effec-
tiveness and minimum user bias. We proposed to develop and evaluate an
automated lesion segmentation method based on Active Contours (AC)
model incorporating tissue knowledge issued from T1-weighted and tis-
sues distribution on Attenuated Inversion recovery (FLAIR) image. The
Gray Matter (GM) and White Matter (WM) as well as CerebroSpinal
Fluid (CSF) tissue classes issued from from T1-weighted and the tissues
intensities issued from FLAIR are used in order to determine an auto-
matic outlier of each tissue class is used in order to detect outliers. The
L2 metric used an integrated square estimator to detect outlier in order
separate MS lesions from the other tissues. The algorithm is evaluated for
(T1-weighted and FLAIR) public datasets of 20 MS patients. Comparing
our results with lesion delineation by a human expert and with pre-
viously extensively validated results shows the promise of the proposed
approach. These results require validation with data from other protocols
based on a conventional FLAIR sequence and a T1-weighted sequence.
Yet, we believe that our method allows fast and reliable segmentation of
FLAIR-hyperintense lesions, which might simplify the quantification of
lesions in basic research and even clinical trials.

Keywords: Multiple Sclerosis, Active Contours, Adaptive outlier, Split
Bregman
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1 Introduction

The segmentation of Multiple Sclerosis (MS) from Magnetic Resonance (MR)
imaging is the prerequisite step for performing various quantitative analysis. The
MS disease is characterized by unpredictable episodes of clinical relapses and
remissions followed by continuous progression of disability over time in most in-
stances [16,11]. Demyelinating lesions within cerebral White Matter (WM) are
the hallmark of MS and its detection by T2-weighted MR imaging has become a
crucial diagnostic criterion [21]. Moreover, MS lesion (T2-hyper-intense) lesion
volume has been demonstrated to correlate with severity of symptoms, progres-
sion of disability and Gray-Matter (GM) atrophy [3]. Accordingly, MS lesion
volume has been of interest in basic research and has been determined in most
pivotal trials on disease-modifying drugs since the late nineties [17]. Automa-
tization of MS lesion segmentation is highly desirable with regard to time and
cost effectiveness but also constitutes a prerequisite to minimize user bias. Sev-
eral algorithms have been proposed in literature [19,13],but no gold standard
has been established. Therefore, in large clinical trials, lesions were manually
delineated slice by slice with the help of semi-automated segmentation methods.
Such task shows high intra- and inter-rater variability, and high time consuming
, which may cause variability in the interpretation by radiologist in the verifica-
tion phase.
In clinical trials, automatic segmentation should reduce the human interaction
and improve reproducibility. However, variability of MR protocols and the het-
erogeneity (contrast, location, size and shape) of the disease make difficult to
develop accurate segmentation for MS lesions with a high levels of reproducibil-
ity and reliability. In addition, the anatomical variability between subjects [19]
makes MS lesion segmentation results inevitably affected by intra and inter-
expert variability[20]. To reduce this variability, several Methods for automatic
MS lesion segmentation have been proposed in [22,12,9,6] and can be split in four
categories: Data-depend methods, Model-based methods, Atlas-based methods
and Outlier-based methods.
The Data-depend methods extract all the necessary information directly from
the patient image datasets. These methods model the distribution of the image
intensities using a Gaussian Mixture Model (GMM), where each Gaussian law
represents a tissue: e.g. Cerebro Spinal Fluid (CSF), gray matter (GM) or white
matter (WM). The GMM enables characterization of the image intensities with
a reduced number of parameters.
Model-based methods model the tissues of MS lesion as an independent class to
be extracted. A combination of intensity-based k-nearest neighbor classification
and template-driven segmentation was designed to segment different types of
brain tissue. Lesions are modeled as one of the expected tissue types, and the
class parameters are obtained through an operator supervised voxel sampling
on two randomly selected scans. Since the manual training step is highly data-
dependent, it is expected be conducted for each study or data set. Note that in
the model-based approaches, a training procedure, to either calibrate the classi-
fier parameters or to choose the tissue class representatives, is normally needed.
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In order to obtain desired segmentation results, the testing data sets are also
expected to be highly similar to the training sets, ideally from the same group.
Atlas-based methods proposed in [16] makes use of the relative consistent conti-
nuity and relationship residing in neighboring anatomical structures within the
same group of subjects. Lesions are treated as a subclass within the WM tissues,
and a topology preservation criterion is used to guarantee the topological equiv-
alence between the atlas and the patient images [24,1]. However, multiple atlases
are required to ensure this strict correspondence. In outlier-based methods [8],
MS lesions are detected as the outliers to the normal brain tissue distribution
(CSF , GM and WM) [8]. Outlier-based models relax the training requirement,
but they usually consider a thresholding step. The training step is crucial for
the segmentation performance and reproducibility, usually require certain prior
to be accurately set up. However the threshold is difficult to be determined.
To overcome this difficulty, we proposed to we develop a fully automatic method
for MS lesion segmentation based on Active Contours (AC) model that requires
no training, atlas, or thresholding steps. Our method can be regarded as a com-
bination of the model based and outlier-based approaches. The core algorithm
consists of three steps, and the separation of the lesion class from other normal
tissue types is achieved by minimizing L2 distance. We choose the L2 distance
for measuring similarity between the true Probability Density Function (PDF)
and the assumed Gaussian Mixture based PDF, motivated by the following two
reasons:

1. The L2 distance is strongly related to the inherently robust estimator L2E
[7].

2. There exists a closed-form expression for the L2 distance between Gaussian
mixtures, which in turn affords an efficient implementation of the segmen-
tation algorithm.

The paper is organized as follows. Section 2 provides more details about our
methodology; Section 3 presents the data and displays the segmentation results;
a conclusion along with future direction is drawn in section 4.

2 Method and Materials

For better understanding, we give a conceptual overview of the three major steps
of our algorithm. First, preprocessing is performed with the standard software
of SPM8. To surpass smoothing of the individual images by warping, the al-
gorithm operates in the space of the original T1w image, i.e. in native space.
Each pixel of the individual native T1w image is assigned to one of the three
tissue classes of GM, WM, or CSF. The FLAIR image is bias-corrected for MR
field inhomogeneity and coregistered to the T1w image. Second, both T1w and
FLAIR intensity intensity distributions are calculated for each of the three tissue
classes to determine adaptive outliers. Third, the MS lesion are segmented and
neighboring pixels are analyzed and assigned to lesions under certain conditions.
This is done iteratively until no further pixels are assigned to lesions.
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2.1 Data

This section presents the MS lesion segmentation challenge 2008 datasets, which
is the largest dataset publicly available at http://www.ia.unc.edu/MSseg/,
aims at evaluating and comparing algorithms in an independent and standard-
ized way for the MS lesion segmentation. Two public datasets can be downloaded
through http://www.ia.unc.edu/MSseg/download.php.
The first training dataset (labeled MR images) contains 10 cases from the Chil-
dren’s Hospital in Boston (CHB) and the second training dataset contain patient
10 from the University of North Carolina (UNC), which are labeled by a CHB ex-
pert rater. UNC cases were acquired on a Siemens 3T Allegra MRI scanner with
slice thickness of 1mm and in-plane resolution of 0.5mm The test dataset contains
25 cases, 15 from CHB and 10 from UNC. For each case, the centers provided
3 MR volumes: a T1-weighted image, a T2-weighted image and a FLAIR image.
These were co-registered and sampled to fit the isotropic 0.5×0.5×0.5mm3 reso-
lution. The data supplied was rigidly registered to a common reference frame and
resliced to isotropic voxel spacing using b-spline based interpolation. Multiple
sequences were provided, including T1, T2, FLAIR, and DTI.

2.2 Data preprocessing

In our approach, preprocessing includes skull stripping using a model-based level
set approach [7] and the N3 inhomogeneity correction []. T1-sequence is used as
inputs for the skull-stripping process. T1-W sequences are used because they are
able of highlighting the complete structure of hard tissue, such as the skull [],
whose intensities are distinct from the intensities of pixels representing other soft
tissues present in the MRI datasets. MR images have been considered as more
suitable for characterizing the contrast and intensity properties of MS load, as
the signal from the cerebrospinal fluid (CSF) is nulled out and only GM and MS
load remain brighter than WM, and are used in clinical routine for MS lesion
segmentation. MS lesion depends on their contrast with respect to surrounding
tissues as well as their location into the WM. Our AC based automated segmen-
tation method takes advantage of these two characteristics. Three preprocessing
steps using SPM8 software http://www.fil.ion.ucl.ac.uk/spm/ were applied
before segmenting with our Active contours model:

The selected skull-stripping approach produced better results than those of
other well-known skull-stripping algorithms such as those in Refs. [33] and [34].
Subsequently, the inhomogeneity correction method described in [] is then ap-
plied to skull-stripped images to correct intensity inhomogeneity. This inhomo-
geneity correction method has been extensively tested and, in practice, works
admirably on our datasets regardless of the lesion load.

– The New Segment module of SPM8 was applied on T1-w images [14]. This
combined tissue segmentation, spatial normalization and image inhomogene-
ity correction approach resulted in probabilistic maps of GM , WM, CSF,
meninges and skull in T1 space as well as bias corrected T1-w image. The

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 881



MS lesion seg using AC model and adaptive outlier 5

presence of non-brain tissues in the MRI scans affects intensity distribu-
tions. This is also inherent to the capture process but it is not clear how the
probability density function of (GM, WM,CSF) is altered by those external
intensities. However, segmentation results are usually improved when those
voxels are masked out.

– Rigid registration of T1-w to the FLAIR image. The sub-sampled and cropped
so that they all have the same size, 159× 207× 79 voxels, and the same res-
olution, 1× 1× 2mm3. The tissue information obtained from preprocessing
steps allows the selection of relevant regions according to their location.

– FLAIR image was bias corrected and performs inter-subject intensity cali-
bration [19,23]. Spatial normalization is also performed by aligning the mid-
sagittal plane with the center of the images [10]. The average computing
time for these preprocessing steps was about 7 mins for each patient.

2.3 Segmentation using Active Contours ISE outlier

Our automatic MS lesion segmentation method was inspired from variational
model proposed by Bresson et al.[5]. Using total variation formulation for the
general image segmentation problem has several well known advantages, e.g.
the naturally given possibility to handle topological changes and final solution
is independence to the initialization. We proposed to formulate our variational
model in characteristic framework as follows:

E (χ) =

∫
Ω0

|∇χ| dx

︸ ︷︷ ︸
Eb(∂Ω)

+

∫
Ω0

DL2 (Ω, θ)χdx

︸ ︷︷ ︸
Edata(I,θ)

(1)

where λ is the weighting parameter and χ characteristic function framework
defined as:

χ (x) =

{
1 x ∈ Ω
0 x /∈ Ω

(2)

knowledge of the GM, WM and distributions of tissues are incorporated in
the formulation of our automatic segmentation method as an additive energy
term of the statistical descriptor using the L2 distance.
has been investigated as an estimation tool for a variety of parametric statistical
models and can be treated as a special case of the density power divergence [2]:

DL2 (Ω, θ) = log
α→1


∫

1

α
pα+1 (Ω| θ) dx+

∫
pα+1 (x) dx

−
∫

1 + α

α
pα+1 (Ω| θ) pα (x) dx

 (3)

The L2 distance [7] has been suggested as an alternative to nonparametric
penalized-likelihood estimations [4]. The L2 measures the difference of an un-
known probability density function p (x) and its parametric approximation p (x| θ).
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Note that p (x) doesn’t contain any parameter θ, it can thus be dropped from the
functional minimized in (3). Assuming that p (x) is a density probability func-
tion, p (x| θ) p (x) can therefore be viewed as the expectation of p (x| θ). Putting
these two considerations together, the L2 distance in (3) can be rewritten as:

DL2 (Ω, θ) = log

(∫
p2 (x| θ) dx− 2

m

m∑
i=1

p2 (xi| θ)

)
(4)

Where m is the number of channel and xi, ...,xN .

2.4 Adaptive outlier for MS Lesion segmentation

The remaining problem is how to separate the clusters of normal tissues (GM
and WM) from the outliers (MS lesions). This is achieved through a 3-step
procedure:

1. Based on the one-dimensional histogram of a combined T1w + FLAIR im-
age, model the lesion part with an independent class and make a pre-
liminary separation between lesions and the normal tissues. We adopt an
integrated image as the segmentation basis, whose intensity is given by

Icomb =
√
I2T1w

+ I2Flair. The optimal θ is obtained by minimizing the L2

distance using Integrated Square Error (ISE) given by:

DL2 (Ω, θ) = log



∑
i={WM,GM,MS}

αiN
(
Icomb|µi, σ

2

i

)
−

∑
i={WM,GM,MS}

βiN
(
IT1w|µi, σ

2

i

)
−

∑
i={WM,GM,MS}

γiN
(
IFLAIR|µi, σ

2

i

)


(5)

Where the parameters θ = [vWM , µWM , σWM , vGM , µGM ,σGM , vMS , µMS , σMs]
is the combined vector representing the portions, means and standard devi-
ations of WM , GM and MS-lesions Gaussian components.

2. Use multivariate Gaussian fitting to capture the GM and WM tissues in
T1w/FLAIR 2D-joint histogram to better capture and describe the GM and
WM tissues. However, the lesions tissues no longer con-form to a Gaussian
distribution, so we only focus on GM and WM and the parametric distribu-
tion calculated by GMM is given by:

p (I| θ) = αWMN (I|µWM , ΣWM ) + αGMN (I|µGM , ΣGM ) (6)

Where θ = {αWM , µWM , ΣWM , αGM , µGM , ΣGM} represents the weight,
means, and covariance matrices of the two Gaussian components. The com-
ponent N(xi|µk, Σk)k=1,2 represents the multivariate normal density func-
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tion. The optimal θ minimizing 2D-joint histogram is assumed as:

DL2 (Ω, θ) = log



2∑
k=1

2∑
l=1

αkαlN (0|µk − µl, Σk +Σl)

− 2

L

L∑
i=1

αWMN (x|µWM , ΣWM )

− 2

L

L∑
i=1

αGMN (x|µGM , ΣGM )


(7)

where αWM + αGM = 1.
3. Conduct automatic outlier (MS-lesions) detection based on the Gaussian

components from step 2 and the separation line obtained in step 1.

3 Fast Algorithm based on Split Bregman

We employ the Split Bregman method to find a contour minimizing AC energy
functional, in the Split Bregman method we replace ∇χ by a vectorial variable
d [15]. This results in the following unconstrained segmentation problem:

(χ∗, d∗) = argmin
χ,d

{∫
Ω0

|d|+ λ

∫
Ω0

DL2 (Ω, θ)χ+
µ

2

∫
Ω0

|d−∇χ|2
}

(8)

An extra vector b is added to the penalty function in equation (8). Then the two
unconstrained steps are iteratively solved by:

χk+1 = argmin
χk

{
λ

∫
Ω0

DL2 (Ω, θ)χk +
µ

2

∫
Ω0

∣∣dk −∇χk − bk
∣∣2}

dk+1 = argmin
dk

{∫
Ω0

∣∣dk∣∣+ µ

2

∫
Ω0

∣∣dk −∇χk − bk
∣∣2}

bk+1 = bk +∇χk+1 − dk+1

(9)

This segmentation problem can be solved when the optimality condition is sat-
isfied:

∆χ =
1

µ

{
λVL2 + µdiv

(
bk − dk

)}
(10)

Finally, the minimizing solution dk+1 is given by soft-thresholding:

dk+1 =
∇χk+1 + bk

|∇χk+1 + bk|
max

(∣∣∇χk+1 + bk
∣∣− 2

µ
, 0

)
(11)

Note that this results in a minimizer which values are between 0 and 1. Then, the
final active contour is given by the boundary of the set

{
x ∈ Ω|χfinal > 1/2

}
. Note

that the last line is the update of V k+1

L2
at each iteration.
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(a) First step of MS lesion
load segmentation

(b) segmentation results
before artifact pruning

(c) Final lesion segmenta-
tion

Fig. 1: segmentation results before artifact pruning

4 Results

4.1 Evaluation

For quantitative analysis of the MS lesions, we perform MS lesion segmentation
in cranial MR images using MRI datasets. The accuracy of segmentation can
be measured in many ways and is dependent on the objective of the study. The
goal of the proposed approach is to quantify the lesion load. However, the exact
measurement of lesion load would be challenging. Even in the case of manual
segmentation by radiologists, it is a known fact that significant to moderate
inter-variability in the results of the segmentation would exist between two or
more radiologists. Therefore, a direct voxels-by-voxels comparison between two
techniques is not an accepted method of evaluation. In most prior research,
several measures such as true-positive fraction (PF), FP fraction (PF), and sim-
ilarity index are used to provide a robust and accurate evaluation [26,25,18].
The True Positive defined by (TP = |S

∩
R|) pixels, are the pixels common to

both S and R. R is the ground truth segmentation and S is the segmentation
done by our automated method. True negative pixels are all IC pixels not out-
lined as lesions by experts (TP = |IC

∩
R|). False positives (FP = |S

∩
R|) are

those detected in S but not by R and false negatives (FN = |S
∩

R|) are those
identified in R but not in S. The validation measures used include the sensi-
tivity Sc = TP/(TP + FN) ,the specificity Sp = TN/(TN + FP ) . Accuracy

Ac = (TN + TP )/(TN + TP + FN + FP ) and statistics DSC = 2 |S
∩

R|
|S|+|R| .

ranges from 0.0 to 1.0 (perfect segmentation), with a value of 0.7 generally con-
sidered to be a good segmentation [24]. For each experiment, we assessed the
scores behavior with varying values of DSC. Table 1. lists several representative
results where the rows correspond to DSC = 0.5, 0.64, 0.82, respectively. In
the first row, Dice exceeds the value of 0.5, thus the largest possible set of pixels
detected as MS lesion is obtained. The last row refers to DSC 0.64 where the
maximal value was obtained in both experiments.
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Table 1: Quantitative evaluation of MS lesion segmentation for UNC datasets
UNC
Datasets

DSC calculated
for the method
in [15]

DSC of our
method

Case01 0,81 0,82

Case02 0,71 0,71

Case03 0,54 0,54

Case04 0,42 0,42

Case05 0,61 0,61

Case06 0,32 0,32

Case07 0,43 0,43

Case08 0,53 0,53

Case09 0,62 0,62

Case10 0,63 0,64

Table 2: Quantitative evaluation of MS lesion segmentation for UNC datasets
Datasets
CHB

Dice using
[15]

Dice of our
method

Case01 0.70 0,71

Case02 0.52 0,62

Case03 0.42 0,51

Case04 0.64 0,79

Case05 0.59 0,61

Case06 0.45 0,67

Case07 0.68 0,78

Case08 0.72 0,76

Case09 0.47 0,61

Case10 0.63 0.71
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(a) First step of MS lesion
load segmentation

(b) segmentation results
before artifact pruning

(c) Final lesion segmenta-
tion

Fig. 2: Segmentation of MS lesion on one MR slice for patient selected from CHB
datasets

(a) First step of MS lesion
load segmentation

(b) segmentation results
before artifact pruning

(c) Final lesion segmenta-
tion

Fig. 3: Segmentation of MS lesion on one MR slice for patient selected from UNC
datasets

5 Conclusion

A new method for automatic MS lesion segmentation from FLAIR and T1

datasets is performed. The proposed method models MS lesion pixels in an
additional class to the mixture of the normal brain tissues (CSF/GM/WM).
Neither training nor thresholding is needed to performed the fully automatic
segmentation based AC and outlier. Another advantage of our approach lies in
the fact that it involves no thresholding step. Without explicit modeling, either
soft or hard rejection, a predetermined threshold has to be used to decide the
separation line/plane between the normal tissue and the outlier pixels. Since
the thresholds are often data-dependent, manually chosen values tend to not
work consistently across different data sets. The proposed segmentation method
overcomes this difficulty, thanks to the strong capture capability of estimation,
and achieves great flexibility and broad applicability. Evaluation was carried out
on 20 patients from two public datasets. The accuracy of our method has been
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compared with four methods, with considerably better results with respect to
two other unsupervised methods, and similar or better results compared with
two optimized supervised approaches.
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19. Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls,
L., Ramió-Torrent́ı, L., Rovira, ı.: Segmentation of multiple sclerosis lesions in
brain mri: A review of automated approaches. Inf. Sci. 186(1), 164–185 (mar 2012)

20. Parodi, R., Sardanelli, F., Renzetti, P., Rosso, E., Losacco, C., Ferrari, A., Levrero,
F., Pilot, A., Inglese, M., Mancardi, G.: Growing region segmentation software
(gres) for quantitative magnetic resonance imaging of multiple sclerosis: intra-
and inter-observer agreement variability: a comparison with manual contouring
method. European Radiology 12(4), 866–871 (2002)

21. Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M.,
Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F.D., Montalban,
X., O’Connor, P., Sandberg-Wollheim, M., Thompson, A.J., Waubant, E., Wein-
shenker, B., Wolinsky, J.S.: Diagnostic criteria for multiple sclerosis: 2010 revisions
to the mcdonald criteria. Annals of Neurology 69(2), 292–302 (2011)

22. Prastawa, M., Gerig, G.: Automatic ms lesion segmentation by outlier detection
and information theoretic region partitioning. Int Conf Med Image Comput Com-
put Assist Interv (sept 2008)

23. Schmidt, P., Gaser, C., Arsic, M., Buck, D., Frschler, A., Berthele, A., Hoshi,
M., Ilg, R., Schmid, V.J., Zimmer, C., Hemmer, B., Mhlau, M.: An automated
tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis.
NeuroImage 59, 3774–3783 (2012)

24. Van Leemput, K., Maes, F., V, Dirk, V., Colchester, A., Suetens, P.: Automated
segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans.
on Medical Imaging 20(8), 677–688 (2001)

25. Wu, M., Rosano, C., Butters, M., Whyte, E., Nable, M., Crooks, R., Meltzer,
C.C., III, C.F.R., Aizenstein, H.J.: A fully automated method for quantifying and
localizing white matter hyperintensities on {MR} images. Psychiatry Research:
Neuroimaging 148(23), 133 – 142 (2006)

26. Zacharaki, E., Kanterakis, S., Bryan, R., Davatzikos, C.: Measuring brain lesion
progression with a supervised tissue classification system. In: Metaxas, D., Axel,
L., Fichtinger, G., Szkely, G. (eds.) Medical Image Computing and Computer-
Assisted Intervention MICCAI 2008, Lecture Notes in Computer Science, vol.
5241, pp. 620–627. Springer Berlin Heidelberg (2008)

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 889


