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Abstract. The analysis of microarray data typically involves a feature selection
method in order to select the most relevant genes while at the same time maximiz-
ing the information content. This work presents a methodology that use the Welch
t-test to filter the number of initial features embedded in two different frameworks
to select the predictor genetic profile: genetic algorithm and stepwise forward se-
lection approaches. The genetic algorithm strategy combines mutual information
and classification models to predict cancer outcome. Furthermore, a constructive
neural network model, C-Mantec, is applied providing reduced network architec-
tures with competitive results in comparison to other classifiers. Six free-public
cancer databases are used to test our approach.
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1 Introduction

DNA microarray technology has been widely used in cancer studies for prediction of
disease outcome [1]. It is a powerful platform successfully used for the analysis of
gene expression in a wide variety of experimental studies [2]. However, due to the large
number of features (in the order of thousands) and the small number of samples (mostly
less than a hundred) in this kind of datasets, microarray data analysis face the “large-
p-small-n” paradigm [3] also known as the curse of dimensionality. In this sense, the
microarray data analysis usually involves a preprocessing step, which consists in the
selection of features (genes) relevant for the classification step.

In this approach, a feature selection method based on genetic algorithms (GAs) and
classification methods is proposed, focusing on constructive neural networks (CNNs),
C-Mantec in particular, as a competitive choice for classification/prediction tasks. On
one hand, GAs are well considered as suitable evolutionary strategies for feature se-
lection in the literature. They are well adapted for problems with a large number of
features [4], and are applied to different areas, from object detection [5] to gene detec-
tion in microarray data [6]. The use of non redundant features is sometimes preferable.
Thus, our strategy incorporates a mutual information filter to minimize the correlation
between the selected features, at the same time that it increases the classifier perfor-
mance. On the other hand, CNNs have been proved to get similar classification results
than traditional multi-layer perceptrons (MLP) or support vector machines (SVM), with
the advantage that the architecture is dynamically estimated [7]. This is a critical factor
in the wrapper selection methods combined with neural networks, because the subsets
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analyzed are from different sizes (or even the complexity of the features selected need
projections in higher spaces), which implies that the use of the same architecture is not
always appropriate.

Additionally, it is a novelty the application of these constructive networks in mi-
croarray analysis, generating a more compact design which can be more suitable in the
bioinformatics field. Several comparison results are provided using other feature se-
lection strategy (Stepwise Forward Selection method) and different classification tech-
niques (LDA, SVM and Naive Bayes), in order to check the viability and suitability
of the scheme proposed in this paper. These results are tested over six public cancer
datasets (breast, colon, leukemia, lung, ovarian and prostate cancer) that are commonly
used in the literature.

The remainder of this paper is organised as follows: Section 2 sets out the feature
selection methodology of this approach describing the evolutionary strategy and the
constructive classification model proposed as a competitive alternative to other well
known classification models, and Section 3 shows the experimental results over several
well-known public cancer databases. Finally, Section 4 concludes the article.

2 Feature Selection Framework

Feature selection techniques can be organized into three broad categories: filter, wrap-
per and embedded methods [8]. Filter methods use statistical properties of the variables
to discard poorly descriptive features and are independent of the classifier. Wrapper
methods are more computationally demanding than filter methods, where the subsets of
features are evaluated within a classification algorithm with a measure of the goodness
of a feature subset as the improvement criteria. Embedded methods are also classifier
dependent, but they can be viewed as a search in the combined space of feature sub-
sets and classifier models. Thus, it is not possible to replace one classifier with other
different, since the feature selection and the classification method work as a whole.

This approach tries to achieve a two-fold objective; on the one hand, it is necessary
to select the most relevant genes with a significant influence in the disorders which are
being studied; on the other hand, good generalization rates in the prediction stage are
essential to determine the probability of suffering from a specific condition. It is known
that these approaches can improve the classification performance by discarding either
irrelevant or redundant features.

2.1 Stepwise Forward Selection procedure

An exhaustive evaluation of all the possible subsets of n features involves a complexity
of O(2n) which becomes unfeasible for large values of n. In this sense, many heuris-
tic algorithms have been proposed to reduce the computational complexity of wrapper
algorithms. Stepwise forward procedures for feature selection analyze the inclusion of
one or several features in order to improve the performance of the classification task.
Thus, sequential forward selection [9] chooses the best variable in each iteration by min-
imizing the misclassification rate, and includes it in the final subset of features, starting
with an empty set. The algorithm will continue to add variables until the resulting subset
does not improve, in terms of an specific criteria.
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2.2 Methodology approach

In this paper a methodology approach is presented based on GAs [5] and mutual in-
formation [10]. It can be viewed as a wrapper method with a combination of filter ap-
proaches (for removing feature redundancy), and classification methods. Since cancer
databases provide a huge number of genes, a pre-selection step to reduce the number of
variables is required. The Student´s t-test has been found more successful than other fil-
ter methods in terms of the quality of the features ranked [11]. Specifically, the Welch´s
t-test [12], which is an adaptation of the previous one, is applied assuming the two
classes (the patient has cancer or not) have unknown and unequal variances, because it
is not advisable to use the basic form if we are unsure if the requirements of the test
are satisfied [8]. A 5% of the total number of genes are retained (between 400 and 2000
genes, approximately, in the datasets selected), which will be the input of the genetic
algorithm of the next section.

Evolutionary Strategy. GAs are a class of optimization procedure inspired by the
biological mechanisms of reproduction. In this kind of optimization problems, a fitness
function f(x) should be maximized or minimized over a given space X of arbitrary
dimension.

Encoding and Initial Population. A simple encoding scheme to represent as much as
possible of the available information was employed, in which the chromosome is a
string of bits whose length is determined by the total number of genes. Each variable is
associated with one bit in the string. If the ith bit is active (value 1), then the ith gene
is selected in the chromosome. Otherwise, a value of 0 indicates that the corresponding
feature is ignored. In this way, each chromosome represents a different feature subset.
Both, the active features and the number of them are generated randomly. In all the
experiments, the population size of 100 individuals was used.

Selection, Crossover and Mutation. A selection strategy based on roulette wheel and
uniform sampling was applied, while an elite count value of 10 (number of chromo-
somes which are retained in the next generation) was selected. Scattered crossover, in
which each bit of the offspring is chosen randomly, was the choice for combining par-
ents of the previous generation. The crossover rate was set to 0.8. In addition to that,
a traditional mutation operator which flips a specific bit with a probability rate of 0.2
was considered. A modification which involves mutating a random number of bits be-
tween 1 and the number of active features of the individual is introduced. Since it was
empirically verified that the best subsets include few features, this change avoids the
increment on the number of active features in the last generations of the GA.

Fitness function. The fitness function assesses each chromosome in the population so
that it may be ranked against all the other chromosomes. The main goal of feature subset
selection is to use fewer features to achieve the same or better performance. Addition-
ally, it has been found that the combination of features with low redundancy among
them, i.e., by providing different information about the target class, and with a cer-
tain resemblance to the target class, can improve the performance rates [13]. Therefore,
the fitness function should contain three terms: the misclassification error, the number
of features selected and a redundancy measure among them. Datasets are splitted into
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training and testing sets in order to evaluate the generalization ability of the proposed
chromosome.

Statistical techniques such as mutual information [10] give us an idea of the cor-
relation between a pair of features. The mutual information between two continuous
random variables x and y is given by

I (y, z) =

∫ ∫
p (y, z) log

(
p (y, z)

p (y) p (z)

)
dy dz (1)

where p (y, z) is the joint probability density function of y and z, and p (y) and p (z)
are the marginal probability density functions of y and z respectively. The mutual in-
formation is symmetric.

Moreover, it is non-negative, with a zero value indicating that the variables are in-
dependent. The more correlated two variables are, the greater their mutual information.
Advantages of mutual information are that the dependency between variables is no
longer restricted to be linear and it can handle nominal or discrete features. Although
it is hard to compute for continuous data, the probability densities can be discretized
using histograms, which are considered as good approximations [14]. A measure which
incorporates the correlation of the features with the target class and penalizes the re-
dundancy among the selected features is described as follows [13]:

corr(x) =
1

t

k∑
i=1

k∑
j=i+1

I(xj , xi)−
1

k

k∑
j=1

I(xj , C) (2)

where k is the number of features selected, C is the target class and t is the number
of combinations between the pairs of the chromosome x analysed. Finally, the function
to be minimised is represented as follows:

fitness(x) = (1−ACC(x)) + λ
k

N
+ βcorr(x) (3)

where fitness(x) is the fitness value of the feature subset represented by x; ACC(x)
is the accuracy rate obtained by the classifier using the test set; N is the total number
of extracted features; finally, corr(x) defines the correlation among the features and
the target class, with the aim of avoiding the redundancy in the feature vector (equation
2). The parameters λ and β can take values in the interval (0, 1) and were empirically
chosen to 0.4 and 0.25, respectively.

Therefore, if two subsets achieve the same performance, while containing a different
number of features, the subset with fewer features is preferred. We also stimulate the
mixture of features less redundant among them, which is considered a good quality for
classification tasks. Nevertheless, among the three terms, error, feature subset size, and
correlation, the first one is our major concern.

C-Mantec algorithm. C-Mantec (Competitive Majority Network Trained by Error
Correction) [7] is a novel neural network constructive algorithm that utilizes compe-
tition between neurons and a modified perceptron learning rule to build compact archi-
tectures with good prediction capabilities. The novelty of C-Mantec is that the neurons
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Dataset #Genes Samples Class 0
(normal)

Class 1
(cancer)

Data Proportion

Leukemia 7129 72 25 47 0.347
Lung 12533 181 150 31 0.829
Colon 2000 62 22 40 0.355

Breast2Class 4869 78 33 44 0.423
Ovarian 15154 253 91 162 0.360
Prostate 12600 102 50 52 0.490

Table 1. Information about the six databases analyzed.

compete for learning the new incoming data, and this process permits the creation of
very compact neural architectures. At the single neuronal level, the algorithm uses the
thermal perceptron rule, introduced by Marcus Frean in 1992 [15], that improves the
convergence of the standard perceptron for non-linearly separable problems. C-Mantec,
as a CNN algorithm, has in addition the advantage of generating online the topology of
the network by adding new neurons during the training phase, resulting in faster training
times and more compact architectures [16, 17]. Its network topology consists of a single
hidden layer of thermal perceptrons that maps the information to an output neuron that
uses a majority function.

3 Experimental Results

In this section, six free-public cancer databases1 have been used to test our method-
ology. The information of each dataset is shown in Table 1. Two different comparison
frameworks are raised. Thus, the GA approach is compared to the classical stepwise for-
ward selection (SFS), where for each methodology several classification techniques are
applied, namely: linear discriminant analysis (LDA), support vector machines (SVM),
naive Bayes (NB) and the constructive neural network proposed (C-Mantec). With re-
gard to the parameter configuration, both LDA and NB use the default parameters
whereas SVM uses a radial basis function as kernel with a cost of C = 10. On the
other hand, the following values Imax = 10000 Fitemp = 3 and Gfact = 0.2 are em-
pirically selected for C-Mantec. For each classifier, a holdout validation strategy is used
by dividing the entire dataset on 60% − 40%, the first one to train the model and the
second to get the accuracy result. This training-testing procedure is launched 50 times
varying the training and testing set to avoid the highly dependency of the evaluation.

The comparison results between the previous frameworks are observed in Table 2.
By analysing the two feature selection methodologies, Leukemia, Lung and Ovarian
databases are successfully analysed, with accuracy rates close to 100% regardless of
the classifier applied. The complexity of the datasets Breast2Class, Colon and Prostate
is a little higher, which implies that the SFS algorithm does not manage to obtain suit-
able rates with this number of genes. On the contrary, although the GA selects a higher

1 http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html
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LDA SVM NB C-MANTEC

mean±std #genes mean±std #genes mean±std #genes mean±std #genes
SF

S
Leukemia 97.784±2.65 4 98.491±1.81 4 97.964±2.25 3 98.579±2.83 5

Lung 99.961±0.23 3 99.980±0.17 5 99.984±0.15 3 99.743±0.83 5
Colon 87.942±6.43 4 87.842±5.43 4 86.540±5.80 4 87.407±6.66 5

Breast2Class 81.524±6.08 4 82.783±5.57 3 78.532±5.84 3 76.900±9.02 7
Ovarian 99.978±0.15 4 99.972±0.17 4 99.938±0.25 3 99.826±0.51 4
Prostate 93.996±3.20 4 96.152±2.72 6 95.518±3.10 4 91.476±4.14 5

Average 93.531±3.12 3.83 94.203±2.65 4.33 93.079±2.90 3.33 92.32±4.00 5.17

G
A

Leukemia 99.943±0.06 5 99.829±0.19 4 99.786±0.10 5 99.363±0.19 7
Lung 99.672±0.15 4 85.533±0.69 66 99.989±0.02 6 99.467±0.13 5
Colon 94.733±0.53 8 71.850±1.72 65 94.817±0.65 21 96.203±0.52 12

Breast2Class 98.747±0.17 20 96.213±0.52 16 92.668±0.44 43 94.245±0.46 20
Ovarian 99.628±0.07 2 99.864±0.13 3 99.960±0.04 3 99.265±0.11 2
Prostate 99.750±0.10 11 99.950±0.05 10 98.940±0.27 9 99.308±0.13 11

Average 98.746±0.18 8.33 92.207±0.55 27.33 97.693±0.25 14.50 97.975±0.25 9.50

Table 2. Performance comparison among two different feature selection frameworks (SFS and
GA) and four classifiers (LDA, SVM, NB and C-MANTEC) for each cancer microarray dataset.
The results correspond to the best simulation for each database, by showing the accuracy of
each classification method in the format of mean±standard deviation and the number of genes
selected.

number of genes for these databases, it obtains a better accuracy rate. Thus, the im-
provement of the GA methodology with regard to the SFS selection approach is notable
since the search space analysed is wider and the heuristic fitness function leads to the
aim correctly. With the exception of the GA-SVM proposal for the Lung and Colon
data where the results could improve, the remaining combinations between GA and
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Fig. 1. Distribution of the most frequently selected genes (in 50 independent executions) by the
GA-CMANTEC strategy in Leukemia dataset.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 60



Analysis of Cancer Microarray Data 7

Index Accession Num. Gene Description References

4951 Y07604 at NME/NM23 nucleoside diphosphate kinase 4 [18–20]
3847 U82759 at Homeo box A9 [21, 22, 20]
1928 M31303 rna1 at Op 18 [21]
6225 M84371 rna1 s at CD19 Molecule [23]
1882 M27891 at CST3 Cystatin C [21, 18, 20, 22]
3320 U50136 rna1 at LTC4 synthase [21, 20, 22, 23]
5107 Z29067 at NIMA-related kinase 3 [20]
4847 X95735 at Zyxin [21, 18, 22, 23]
2354 M92287 at CCND3 Cyclin D3 [21, 18, 22, 23]

Table 3. Some of the best genes ranked with GA-CMANTEC which appear in other studies in
the literature.

any other classifier overcome in terms of classification accuracy the obtained ones for
the SFS approach. Additionally, the robustness of the selected features is considerably
higher in the GA (less standard deviation in the classification task on average), since
this approach evaluates the best subset of features (chromosomes) several times in the
whole process.

The strategy GA-CMANTEC has resulted quite suitable, obtaining the second best
result on average after LDA over all the datasets analysed. Therefore, it is possible
to conclude that constructive neural networks and, concretely, the C-Mantec classifier
provides good classification skills with a competitive performance in comparison to the
remaining alternatives in the bioinformatic field.

Focusing on the GA-CMANTEC approach, and as a brief biological analysis of
the features selected, Figure 1 displays the most selected genes, after 50 independent
executions, for the Leukemia database which is one of the most studied dataset in the
literature. In order to check the coherence of the selection, Table 3 shows the best se-
lected genes which also have been extracted in several related papers (last column of
the table). It should be noted that the applied methodology is different from one paper
to another. For instance, six of the nine genes are also reported in the list of the 50 most
important genes (selected from 7129) suggested in [21]. Finally, a graph of the most
frequent couples of genes is also presented in Figure 2, where stronger links are asso-
ciated with thicker lines. It is possible to observe that the Y07604 at and U82759 at
genes form a strong group which possibly provides a biological understanding of the
leukemia disease.

4 Conclusions

In this work, a new methodology approach combining genetic algorithm with construc-
tive neural networks has been proposed in order to predict cancer outcome. For six
free-public cancer databases, we first select the most relevant features with a significant
influence in the disorders studied comparing the GA with the SFS algorithm, testing the
prediction accuracy using C-Mantec, LDA, SVM or NB as classifiers.
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Fig. 2. Pairwise graph of the most frequently selected couples of genes in Leukemia dataset. It
should be noted that stronger links correspond to thicker lines.

On average, the strategy based on the GA approach leads to better prediction rates,
observing that these results are independent from the classifier used. Moreover, another
advantage of the GA method is the lower variability for the accuracy. In addition, C-
Mantec presents very competitive results in terms of prediction rate as well as selects
some features of the Leukemia database that have also been published in the literature
as the most significant ones related to this disease.

It could be interesting for future works to include biological information about the
genes into the selection procedure according to the studied disease, instead of making
this decision based only on the prediction rate.
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