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Abstract. This paper illustrates the application of the Discrete Wavelet Trans-

form (DWT) to the processing of electrocardiogram (ECG) for wandering and 
noise suppression. The proposed scheme allows reducing the computational 

complexity, while its fixed-point modeling shows the expected performance of 

possible future portable hardware implementations. The system has been tested 

using synthetic ECG signals, which allow to accurately measure the effect of 

the proposed processing. Moreover, results from real abdominal ECG signals 
acquired from pregnant women are presented in order to validate the presented 

approach. 

1 Introduction 

Electrocardiogram (ECG) acquisition from the human skin involves the use of high 

gain instrumentation amplifiers. This fact makes the ECG signal to be contaminated 

by different sources of noise [1]. This circumstance is highlighted when the target is 

the measurement of fetal ECG signals acquired over the mother’s abdomen [2]. Thus, 

denoising this type of signals is decisive for further parameter extraction, such as fetal 

heart rate estimation. Wavelet Transform (WT) [3] is a useful tool for a variety of 

signal processing and compression applications [4],[5]. This transform produces a 

time–frequency decomposition of the signal under analysis, which separates individ u-

al signal components more effectively than the traditional Fourier analysis . This fact 

makes WT one of the most used tools for biosignal processing, with ECG being an 

obvious candidate for this type of analysis. This paper proposes an arrangement of 

Discrete Wavelet Transform (DWT) structures for ECG signal processing, concretely 

for the suppression of different types of noise, including DC levels and wandering. 

2 Background 

The processing of ECG signals is necessary to remove contaminants from these sig-

nals that difficult visual inspection and ECG feature extraction. These contaminants 

have an instrumental and physiological origin [1]. Among these noises, the power line 

interference and the baseline wandering (BW) are the most significant. Apart from 

these, other noises may be wideband and complex stochastic process es that also dis-

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 491



tort the ECG signal. However, the BW and other wideband noises are not easy to be 

suppressed by analog hardware front-ends. Instead, software schemes are more pow-

erful and feasible for offline processing. However, hardware platforms are the goal 

for portable ECG acquisition and processing systems. Thus, we studied the methods 

for removing these noises using hardware implementations of digital systems that 

allow easier suppression of the mentioned wideband noises. Concretely, Wavelet 

Transform [3] can be applied in many fields , being the noise suppression within spe-

cific subbands for ECG signals  a highlight application [4]. 

BW has frequencies wandering between 0.15 and 0.3Hz. Wavelet Transform [3] 

can be used to remove the low frequency trend of a signal [6]. It applies wavelet de-

composition until a resolution level where the approximation sequence can capture 

the BW, then subtracts this part from the raw ECG signal and computes wavelet re-

construction. Considering the most important frequency bands in BW are below 1 Hz, 

to remove wandering it should be necessary to select the resolution level so the ap-

proximation captures the ECG components for frequencies lower than 1 Hz. On the 

other hand, wavelet denoising has emerged as an effective method requiring no com-

plex treatment of the noisy signal [7]. It localizes the most important spatial and fre-

quential features of a regular signal in a limited number of wavelet coefficients. 

Moreover, due to the orthogonal transform, the random noise is spread fairly uniform-

ly among all detail coefficients, assuring that wavelet shrinkage can reduce noise 

effectively while preserving the sharp features (peaks of QRS complex). 

3 One-step DWT-based BW and noise suppression  

Due to the similar wavelet structure for the application of BW and noise suppression, 

we propose here to apply in only one step both wavelet-based techniques. It will save 

important resources and/or time, which would facilitate any future hardware imple-

mentation. The required steps for the application of this approach are: 

1. Decomposition: the wavelet decomposition is applied down to a certain level L 

in order to produce the approximation coefficients   
   

 that capture the BW. 

2. Zeroing approximations: the approximation   
   

 is replaced by all-zero vector. 

3. Threshold details: the level M (with M<L) allowing to properly distinguish the 

presence of partial discharges in the noisy details must be selected. Additionally, 

for each level from i=1 to M, the appropriate threshold limit and rule (soft or 

hard) are applied to the detail coefficients   
   

 for better removing the noise.  

4. Reconstruction: the wavelet reconstruction based on the zeroing approximations 

of level L, the modified details of levels 1 to M, and original details of levels 

from M+1 to L, are computed to obtain the BW corrected and denoised signal. 

Thus, simultaneous BW and noise suppressions are easy to get using this wavelet-

based technique for which it is necessary to select the proper parameters . The selec-

tion of the wavelet family has to be based on the similarities between the ECG basic 

structure and the wavelet functions, and the type of processing to apply. For removing 

BW it should be necessary to select a resolution level such its corresponding appro x-

imation captures the ECG components for frequencies lower than 1 Hz. As at each 

decomposition level the frequency band of the approximation is reduced to the half, 
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the decomposition level for BW suppression can be calculated as      [          ] 

where Fs is the sampling frequency. On the other hand, the maximum level for detail 

thresholding, M, depends on several factors such as the SNR in the original signal or 

the Fs. Noise content is significant in high frequency detail subbands, while most of 

the spectral energy lies in low frequency subbands [7]. Thus, in order to avoid losing 

clinically important components of the signal, such as PQRST morphologies, only 

high frequency detail subbands should be treated for denoising. Many methods for 

setting the threshold limit have been proposed [7], [11]. The most time-consuming 

way is to set the threshold limit on a case-by-case basis, so satisfactory noise removal 

is achieved. For signal denoising, once the threshold to be applied is selected, it is 

rescaled using noise variance. Some authors [10] use the following expression for the 
noise variance:           |  

   |        . If the noise is white, the standard deviation 

from the details at the first level can be used to rescale the thresholds, (simple rescal-

ing). If not, best results are obtained estimating the noise standard deviation at each 

level independently, and using each one to rescale the associated thresholds, (multiple 

rescaling). Finally, soft and hard thresholding set zeros for all details whose absolute 

value is less than the specified threshold and, in addition, for soft thresholding, this 

threshold is subtracted to the rest of the details .  

3.2 Fixed-point modeling 

In this paper, appropriate software models for the mentioned DWT-based BW and 

noise suppression are presented. Software models allow performing quick and simple 

parameter analysis of the modeled signal processing, while the translation of these 

models to fixed-point arithmetic allows to replicate the functioning of the appropriate 

hardware implementations and to analyze consequently parameters such as truncation, 

number of samples in the data window, most adequate sampling rates, etc. Moreover, 

these software models will also enable very quick tests of the required processing. 

MATLAB was used for the modeling and validation of the proposed one-step DWT-

based processing. For fixed-point modeling, the most essential task is the right selec-

tion of word-lengths for the various variables in the system. On the other hand, two 

special modules required for our proposal are the DWT and the inverse DWT, which 

are designed to obtain high-performance results. Thus, the developed DWT and in-

verse DWT models include an input parameter to choose the wavelet family. Signal 

extension methods pad the borders of a signal to lessen discontinuity that might exist 

at the beginning and end of the signal and it is needed at each wavelet decomposition 

level. As the aim of the presented ideas is hardware development, it is important to 

consider the hardware implications of the extension mode. Thus, after careful evalua-

tion, an extension mode, called repetition padding, is proposed in this work. It is 

based on the repetition of the first samples at the beginning and the last samples at the 

end of the signal, using the same order that these samples have in the original signal. 

The required resources for hardware modeling are mainly control logic and some 

registers. The required low-pass and high-pass filters are modeled using FIR filter 

banks and direct structure, while the coefficients of these filters and the tap number 

are determined by the wavelet function. Selecting a wavelet function of higher order 

requires filters of higher tap number, and thus, a higher number of resources for 

hardware implementation. So, it is desirable a low order wavelet function. 
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For evaluating the performance of the proposed floating-point models, the SNR pa-

rameter has been used:       ̂        [ ∑      
 

∑      ̂  
 

 

]. DaIsy dataset ECG signals [9] 

are targeted for evaluating the proposed floating-point wavelet models, using 

Daubechies order 6 as wavelet function. This dataset contains 8 leads of skin potential 

recordings of a pregnant woman, three thoracic and five abdominal, sampled at 250 

sps rate and are 10-second long. Table 1 shows results for the parameter SNRMAT/dp 

that corresponds to the SNR between the approximation and details a1, d1, a7, d7 se-

quences obtained using the functions dwt.m and idwt.m available in the wavelet 

toolbox of MATLAB and the obtained using our floating-point models. The SNR 

values are very high, by the order of 300 dB, which indicates our floating-point model 

provides results equivalent to those obtained with wavelet toolbox functions.  

On the other hand, the parameter SNRori/MAT  is used to compare original signal with 

the reconstructed signals (without any processing of the data) from level 1, sr1, and 

from 7, sr7 using wavelet toolbox functions, while SNRori/flp compares original signal 

with the reconstructed using our floating-point models. As Table 1 illustrates, the 

same RNS values for these two comparisons are obtained. Thus, results confirm the 

validity of the proposed floating-point wavelet models. 

Table 1. Evaluation of the proposed floating-point wavelet modules. 

 
 Real Abdominal ECG  (DaISy dataset)  

Parameter L1 L2 L3 L4 L5 L6 L7 L8 

a1 SNRMAT/dp 315.6 315.4 313.5 315.6 316.4 316.1 313.6 315.7 

d1 SNRMAT/dp 309.0 304.0 306.7 310.3 302.7 307.1 305.5 307.8 

a7 

d7 

SNRMAT/dp 307.8 296.5 306.6 313.6 303.0 300.1 302.2 305.5 

SNRMAT/dp 305.4 301.4 306.1 299.6 305.4 301.8 301.5 302.9 

sr1 
SNRori/MAT 237.6 239.9 239.2 239.3 239.5 238.2 239.0 238.0 

SNRori/dp 237.6 239.9 239.2 239.3 239.5 238.2 239.0 238.0 

sr7 
SNRori/MAT 230.2 230.0 230.2 230.7 230.1 230.3 230.0 230.1 

SNRori/dp 230.2 230.0 230.2 230.7 230.1 230.3 230.0 230.1 

 SNRori/MAT 17.35 24.57 16.75 4.84 22.97 26.99 29.42 29.84 

sBW SNRori/dp 17.31 24.26 17.02 4.91 23.64 27.70 28.57 28.52 

 SNRori/fixp 17.22 24.28 17.01 4.91 22.07 27.62 28.65 28.60 

 

In order to select the word-length for the DWT and inverse DWT fixed-point mod-

els, several studies varying word-lengths, from 34 to 12 bits, were made for lead-2 

DaISy dataset. For the 16-bit fixed-point representation, the SNR between original 

and reconstructed signal for J=1 is 67.98 dB, which is an acceptable value for real 

signal processing systems. On the other hand, the results of another study show that if 

wavelet-based preprocessing for BW suppression is applied there is almost no differ-

ence in terms of SNR between the use of the predefined MATLAB functions, the 

proposed floating-point models and 16-bit fixed-point models, as SBW   results of Table 

1 show (SNRori/fixp compares original signal with the processed using our 16-bit fixed-

point model). In addition, 16-bit fixed-point representation would offer a good bal-

ance between round-off errors and hardware implementation resources. Thus, 16-bit 

fixed-point representation of the data input and round-off after each level of decom-

position and reconstruction was selected.  
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A brief analysis of the input parameters of the developed one-step BW suppression 

and denoising model is detailed at the following: 

Wavelet function: The proposed fixed-point model allows using several wavelet fami-

lies as Daubechies, Coiflets, Symlets, Biorthogonal and Reverse Biorthogonal.  

Decomposition levels L and M: Our model automatically calculates the decomposi-

tion level for BW suppression according to the      [          ]. On the other hand, 

due to the difficulty to carry out a priori determination of the optimum maximum 

level M for detail thresholding, the proposed model allows selecting this parameter.  

Threshold limits and rescaling: Only thresholds requiring low hardware computation-

al cost were considered. The proposed model includes the possibility to select one of 

these three thresholds, universal,       √     , exponential,        (
   

 
)
√      or 

minimax [8],                          (              ), where ni represents the coef-

ficient length at each level i=1, …, M. These thresholds require operations such as 

square root and logarithm that would require the use of special fixed-point algorithms 

for hardware implementation. However, for a prefixed signal length, N, it will be 

possible to know the coefficient length at each level,   . Thus, our model uses thresh-

olds pre-computed just from N and M, since no other dependency on the signal to be 

denoised exists, a fact that is quite different to other proposed thresholds [7]. The 

following expression for estimating the noise variance          |  
   |         [10], and 

allows selecting simple or multiple rescaling [10]. The proposed rescaling can not be 

pre-calculated since it depends on the details. However, compared to other noise vari-

ance approximations, the complexity and the number of operations  are reduced. 

Threshold rules: The proposed model allows selecting soft or hard thresholding. The 

required operations can be easily implemented using fixed-point arithmetic. 

4 Results 

When working with real noisy ECG signals, it is not trivial to calculate a parameter 

that gives a quantitative measure about the applied technique. In order to better ana-

lyze our proposed one-step model, a separate study of BW and noise suppression has 

been made using synthetic ECG signals . For a quantitative evaluation of the BW 

suppression, we have employed synthetic ECG signals at 250, 500 and 1000 sps. 

Signals affected by BW are obtained adding a sine wave plus a DC level, using fre-

quencies from 0.15 to 0.31 Hz that fit to the frequency band in real BW. Our study 

has estimated the BW of the signals as the approximations from level 1 to 12 and has 

reconstructed the signal removing the estimated BW. Table 2 resumes the main re-

sults, showing the SNRs between the synthetic and the BW corrected signal. Accord-

ing to the expression of L, for signals sampled at 250, 500 and 1000 sps, the adequate 

decomposition level for BW suppression will be 7, 8 and 9, respectively which is 

corroborated by Table 2. This study also reflects that better BW suppression (higher 

SNR) is achieved if the signal is sampled at higher frequency.  

Synthetic ECG signals were also used to evaluate the performance of the noise 

suppression. These signals were contaminated adding Gaussian white noise to gener-

ate the noisy signal that is processed by the proposed model to obtain the denoised 

signal. This scenario is used by several authors [10] and allows visual inspection and 
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quantitative evaluation. There are several parameters to measure the quality of the 

denoised signal [7], [10], as the SNR Improvement Measure SNRIMP [10]. A study 

using 3, 4 and 5 as maximum level for wavelet denoising, M, the three types of 

thresholds mentioned, simple rescaling, and soft and hard thresholding were carried 

out. A total of 12 wavelet functions were used for this evaluation. The study also 

considers two noise levels, approximately 15 dB and 25 dB. Table 3 shows the best 

results for denoising. Observing these summarized results and all the generated  data, 

there are no large differences for the SNRIMP values of the different wavelet fun c-

tions. Comparing soft and hard thresholding, soft gets for both noise levels higher 

SNRIMP using less number of levels. Regarding thresholds, Thexp achieves best de-

noising if it is used along with soft thresholding, as it is the case with the combination 

Thminimaxi and hard thresholding. Observing all the denoised signals, it can be con-

firmed that hard thresholding almost do not decrease FQRS amplitude but for some 

signals introduces main discontinuities, while soft thresholding decrease FQRS ampli-

tudes but no distortion is introduced. Thus, it is not possible to establish the best 

threshold rule, since it will depend on the ECG signal to be denoised. 

Table 2. BW suppression analysis. 

Fs  

(Hz) 
N 

Fw 

(Hz) 
  SNR for estimated BW   

A4 A5 A6 A7 A8 A9 A10 A11 A12 

250 5400 

0.15 1.866 6.563 12.579 25.986 25.484 7.826 -7.957 -8.948 -9.199 

0.19 1.866 6.563 12.570 25.636 22.445 -0.216 -8.630 -9.072 -9.193 

0.23 1.866 6.563 12.555 24.591 16.422 2.536 -8.981 -9.003 -9.035 
0.27 1.866 6.563 12.548 23.882 10.589 -7.621 -8.874 -8.943 -8.977 

0.31 1.866 6.563 12.561 24.063 6.442 -8.311 -8.886 -9.212 -9.339 

500 10800 

0.15 0.612 4.491 10.172 16.583 30.755 24.674 5.845 -9.762 -10.373 

0.19 0.612 4.491 10.170 16.541 29.129 21.425 -2.123 -10.440 -10.866 

0.23 0.612 4.491 10.168 16.485 26.036 14.864 0.825 -10.778 -10.796 

0.27 0.612 4.491 10.168 16.469 25.625 8.869 -9.412 -10.669 -10.750 
0.31 0.612 4.491 10.170 16.521 25.237 4.688 -10.16 -10.726 -10.064 

1000 21600 

0.15 0.104 1.040 5.684 11.679 18.344 33.993 23.436 4.831 -10.805 

0.19 0.104 1.040 5.684 11.678 18.319 31.447 20.792 -3.154 -11.545 

0.23 0.104 1.040 5.684 11.677 18.271 26.531 13.913 -0.238 -11.897 

0.27 0.104 1.040 5.684 11.677 18.255 24.680 7.822 -10.512 -11.771 

0.31 0.104 1.040 5.684 11.679 18.300 25.393 3.629 -11.258 -11.807 

Table 3. Denoising evaluation using synthetic ECG signals. 

M Threshold Wavelet SNR SNRIMP  M Threshold Wavelet SNR SNRIMP 

Soft thresholding 15 dB  Hard thresholding 15 dB 
3 Thexp coif3 21.2631 6.4015  4  Thminimax sym7 20.8648 5.9319 

3  Thexp db7 21.4798 6.3944  5  Thminimax sym7 20.8288 5.8958 
3  Thexp sym7 21.4286 6.3432  3  Thminimax sym7 20.8818 5.7964 
3  Thexp db5 21.4274 6.3420  4  Thminimax db5 20.5822 5.7206 

Soft thresholding 25 dB  Hard thresholding 25 dB 
3 Thexp bior3.9 29.5524 4.4960  3  Thminimax bior6.8 29.5025 4.5809 
3  Thexp sym7 29.2657 4.3440  4  Thminimax bior6.8 29.5801 4.4725 
3  Thexp bior6.8 29.2479 4.1915  3  Thminimax sym6 29.5035 4.4471 

3  Thminimax bior3.9 29.0937 4.1720  5  Thminimax bior6.8 29.5436 4.4360 

 

To study BW suppression and denoising it is also important visual inspection of the 

obtained signals, which in some cases is even more conclusive than quantitative 

measures. DaIsy dataset and Physionet Dataset [11] are targeted for evaluating the 
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proposed one-step BW and noise suppression. Physionet Dataset recordings are from 

Non-Invasive Fetal ECG Database including two thoracic and four abdominal chan-

nels sampled at 1ksps rate and 60-second long. For these signals the selected parame-

ters were wavelet function db6, M=3, universal threshold, soft thresholding, single 

rescaling for DaIsy dataset, and multiple rescaling for  Physionet Dataset. Figure 1.a) 

includes the obtained result for lead-4, where estimated BW and BW and noise cor-

rected signals are shown. Figure 1.b) includes results for lead-2 and lead-4.Finally, 

Figure 1.c) shows an example of results for ecgca 746 signal of Physionet Dataset 

including the detail of one of the fetal QRS complexes before and after processing . 

These figures show that the abdominal ECG signals are BW corrected and denoised 

while retaining its main characteristics as the fetal QRS complexes, which is very 

important for future parameter extraction [4].  

Fig. 1. a) Lead-4 DaIsy database, estimated BW and BW and noise corrected signal, b) Lead-1 

and Lead-2 DaIsy database signals and BW and noise corrected signals, c) ecgca 746 abdomen 

Lead-1Physionet Dataset signal, BW an noise corrected and signal detail. 

 
a) 

 
b)

c) 
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5 Conclusion 

This paper presents a fixed-point model for denoising ECG signals. It introduces a 

novel one-step wavelet-based method performing both BW and noise suppression 

with a sensible reduction of hardware resources. This model enables the study of 

different parameters that meet the specific ECG signal characteristics such as sample 

rate and noise levels. The presented results for synthetic ECG signals validate this 

method while applications on real AECG signal provided improved signals that are 

valid for further fetal heart rate extraction. The defined architecture also allows its 

hardware implementation, thus fitting portable ECG applications. 
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