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Abstract. In many fields of biology and medicine we are confronted
with the task of analyzing and estimating a complex process based on
partial observations. Many of these problems can be described by dynam-
ical system models with unknown states and parameters. The Bayesian
theory provides a statistical inference framework for such systems. But
there is a fundamental and not satisfactorily solved problem in Bayesian
inference of biological processes, that is how to approximate the poste-
rior distributions fast and accurately in real world applications. Here we
develop a new algorithm within the expectation propagation framework
to solve this problem. The usefulness of the method will be demonstrated
by applying it to two significantly different biomedically important prob-
lems: single-molecule fluorescence experiments and cardiovascular system
measurements.
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1 Introduction

In many fields of biology and medicine, we can model a complex process by the
following equation:

xt = f (xt−1, θ, vt)

yt = g (xt, θ, wt) (1)

where xt is the system state at time t = 0, . . . , T , yt is the corresponding ob-
servation, vt and wt are system and observation noise with vt ∼ N (0,Q) and
wt ∼ N (0,R), and θ denotes the vector of system parameters. A key problem
of model (1) is how to estimate θ and x0:T from noisy observation y1:T . Fol-
lowing the Bayes’ Theorem, the estimates can be obtained from the posterior
distribution

p (θ, x0:T |y1:T ) ∝
T∏
t=1

Ψt (xt−1, xt, θ) (2)
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with

Ψt (xt−1, xt, θ) = p (xt|xt−1, θ) p (yt|xt, θ) (3)

Since the posterior is generally intractable, numerical computation is required.
One widely used technique is Markov chain Monte Carlo (MCMC), which can
achieve exact estimates through iterative sampling. But it is might be too much
time consuming in many practical cases for the requirement of a large number
of iterations. In order to improve the efficiency of Bayesian estimation, a lot of
approximate Bayesian methods were developed to approximate the posteriors by
tractable distributions, such as nonlinear Kalman smoother [1] and variational
Bayesian method [2]. Minka [3] proposed an approximate inference algorithm
called expectation propagation (EP), which can decompose the global Bayesian
inference problem into a set of small-sized moment matching problems. In [4],
Heskes and Zoeter applied EP to estimation problems of dynamical systems, and
analyzed the advantages of EP over nonlinear Kalman smoother and variational
Bayesian method. However, the accurate and fast moment matching is still a
challenge for the EP framework of nonlinear dynamical system estimation. In
this paper, we propose a new EP approach, which can be applied to model (1)
with arbitrary f and g.

2 Expectation propagation framework

Generally, the approximate posterior distribution of (1) can be written as

p̂ (θ, x0:T |y1:T ) ∝
T∏
t=1

Ψ̂t (xt−1, xt, θ|γt) (4)

where Ψ̂t is a parametric approximation model of Ψt with undetermined param-
eter γt, and the EP approach iteratively refines the values of γ1:T by:

γt ← γnewt = argmin
γt

KL
(
qt (xt−1, xt, θ) ||

α̂t−1 (xt−1, θ) Ψ̂t (xt−1, xt, θ|γt) β̂t (xt, θ)
)

(5)

where

qt (xt−1, xt, θ) ∝ α̂t−1 (xt−1, θ)Ψt (xt−1, xt, θ) β̂t (xt, θ) (6)

α̂t−1 (xt−1, θ) and β̂t (xt, θ) denote approximations of p (xt−1, θ|y1:t−1) and p (xt, θ|yt+1:T )

obtained by
{
Ψ̂k|k 6= t

}
. It can be proved that if Ψ̂1:T are exponential family den-

sities, then (5) can be solved by matching moments of qt (xt−1, xt, θ) (see [4] for
details). In this paper, we only consider the case that Ψ̂t is a multivariate normal
distribution, then γt can be obtained by the first two moments of qt (xt−1, xt, θ),
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and qt (xt−1, xt, θ) can be equivalently described by the following submodel

xt−1, θ ∼ α̂t−1 (xt−1, θ)
vt ∼ N (0,Q)

wt ∼ N (0,R)

x′t, θ
′ ∼ β̂t (xt, θ)
xt = f (xt−1, θ, vt)

yt = g (xt, θ, wt) (7)

with qt (xt−1, xt, θ) = psub (xt−1, xt, θ|xt = x′t, θ = θ′, yt), where psub (·) denotes
the density under the submodel (7). Note that α̂t−1 (xt−1, θ) and β̂t (xt, θ) are
both multivariate normal distribution, then we can get the first two moments of
qt (xt−1, xt, θ) by the unscented Kalman filter [1]. However, it is easy to prove
that this method is equivalent to an unscented Kalman smoother (UKS) [5],
and γt keeps fixed after the first iteration because the sigma point positions
of (xt−1, xt, θ) in the unscented transformation only depends on α̂t−1 (xt−1, θ),
which means the approximate posterior distribution cannot be further refined
by multiple iterations.

3 Double-chain unscented expectation propagation

Here we propose a new unscented EP algorithm based on the double chain struc-
ture of Bayesian networks, which approximates the square of posterior instead
of the posterior itself with

p2 (x0:T , θ|y1:T ) ∝
T∏
t=1

Ψ2
t (xt−1, xt, θ)

≈
T∏
t=1

Ψ̂t,1(xt−1, xt, θ|γt,1)Ψ̂t,2(xt−1, xt, θ|γt,2)

where Ψ̂t,1 and Ψ̂t,2 are both approximations of Ψt, and the corresponding update
of γt,i can be written as

γt,i ← γnewt,i = argmin
γt,i

KL
(
qt,i (xt−1, xt, θ) ||Ψ̂t,3−i (xt−1, xt, θ|γt,3−i)

·α̂2
t−1 (xt−1, θ) Ψ̂t,i (xt−1, xt, θ|γt,i) β̂2

t (xt, θ)
)
(8)

where

qt,i (xt−1, xt, θ) ∝ α̂2
t−1 (xt−1, θ) Ψ̂t,3−i (xt−1, xt, θ|γt,3−i)
Ψt (xt−1, xt, θ) β̂

2
t (xt, θ) (9)
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α̂2
t−1 (xt−1, θ) and β̂2

t (xt, θ) denote approximations of p2 (xt−1, θ|y1:t−1) and

p2 (xt, θ|yt+1:T ) obtained by
{
Ψ̂k,l|k 6= t, l = 1, 2

}
. Then we can calculate γnewt,i

in (8) by applying the unscented Kalman filter to the following submodel

xt−1, x
′
t, θ ∼ α̂2

t−1 (xt−1, θ) Ψ̂t,3−i (xt−1, xt, θ|γt,3−i) β̂2
t (xt, θ)

vt ∼ N (0,Q)

wt ∼ N (0,R)

xt = f (xt−1, θ, vt)

yt = g (xt, θ, wt) (10)

with qt,i (xt−1, xt, θ) = psub−dc (xt−1, xt, θ|xt = x′t, yt), where psub−dc (·) denotes
the density under the submodel (10). We call this method the double-chain
unscented expectation propagation (DC-UEP). It can be observed that in the
DC-UEP, the information contained in Ψ̂t,3−i is used to modify the corresponding
sigma point positions such that γt,i can be iteratively refined and estimated with
more accuracy than in the UKS.

4 Applications

In this section, we apply the proposed method to two estimation problems which
arise from real world problems concerning single-molecule fluorescence experi-
ment and measurement of cardiovascular system.

4.1 Single-molecule fluorescence experiment

Fluorescence resonance energy transfer (FRET) is a powerful technique that is
commonly used to track binding or folding processes in macromolecules as a
spectroscopic ruler [6]. In a FRET experiment, two chemical groups, one donor
and one acceptor dye, are attached at defined positions to the molecule(s). After
excitation of the donor, the donor emits a donor photon (usually green), or the
energy is transfered to the nearby acceptor dye which then emits an acceptor
photon (usually red). The transfer efficiency (probability of an emitted photon
being an acceptor photon) can be calculated by the Förster law:

E =
1

1 + (r/R0)
6 (11)

where E is the transfer efficiency, r is the interdye distance, and R0 is the
dye-specific effective Förster radius which depends on the composition of the
dyes. Recently, the single-molecule FRET (smFRET) technique have been ma-
tured, which allows one to record arrival times of individual photons from single
molecules, and provides information of single molecular conformational changes.
[7] proposed that the trajectory of interdye distance of an smFRET can be de-
scribed by a Brownian dynamics:

ẋ = −∂V (x)

∂x
+
√
Qw (12)
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where x = r/R0, V (x) is the potential function of x, Q is the diffusion constant,
and w is a Gaussian white noise with deviation 1. From the estimation of V (x),
we can also get the estimation of stationary distribution of x since

π (x) ∝ exp

(
−2V (x)

Q

)
(13)

Here we apply the DC-UEP, UKS and the conventional time window (TW)
method to the estimation of interdye distance trajectory and its stationary distri-
bution of smFRET based on the Euler discrete-time model of (12). (The FRET
data are generated by the simulation model in Section V.D of [7].) Table 1 dis-
plays the means and variances of the estimation errors over 30 independent sim-
ulations. Not surprisingly, the Brownian dynamics based approximate Bayesian
methods perform significantly better than TW. Comparison of the DC-UEP
and UKS shows that the iterative modification in the DC-UEP approach can
effectively the estimation accuracy of the parameters.

Table 1. Quantitative comparison of errors of the estimating interdye distance trajec-
tories and the stationary distribution. The error of stationary distribution is defined
as KL (π (x) ||π̂ (x)) =

´
π (x) log (π (x) /π̂ (x)) dx.

Method RRMSE of x KL (π (x) ||π̂ (x))
mean var [×10−3] mean var

DC-UEP 0.0833 0.0635 0.0746 0.0011

UKS 0.0917 0.0775 0.1266 0.0047

TW 0.1201 0.2326 0.5130 0.0497

4.2 Cardiovascular system: Hidden signal and parameter estimation

The research in computational cardiovascular physiology has focused on the
development of forward models that describe the dynamics of the cardiovascular
system [8,9,10]. In previous studies it was shown that lumped parameter models
are reasonable approximations to describe the fluid flow in most regions of the
cardiovascular system. Typically these models predict blood pressure and flow
by ordinary differential equations (ODEs) in analogy to an equivalent electrical
RCL-circuit [8,9,10].

Fig. 1 is an example of lumped model of the cardiovascular system consisting
of 6 arterial segments, where each segment i is represented by an electrical RCL-
circuit, and the electrical current and voltage is related to arterial blood flow
qi and pressure pi, respectively. The electrical resistances Ri correspond to the
viscos flow resistance, the inductances Li account for the blood inertia forces
and the arterial compliances, i.e. the elasticity of the vessel walls, are described
by electrical capacitors Ci. Note that the evolution of the lumped model can be
described by an SDE (see [11] for details), and the parameters of the electric

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 533



analogue circuit are determined by the structural and physiological parameters
with [8]

Ri =
8νli
πr4i

, Li =
ρli
πr2i

, Ci =
2πr3i li
Eihi

. (14)

where li, ri, hi and Ei denote the length, radius, wall thickness and Youngs
modulus of the i-th segment. Therefore, we can use the Bayesian method to
estimate the structural and physiological parameters from some qi and pi. (This
kind of problems usually appear in the non-invasive measurement.)

Fig. 1. Human carotis bifurcation and the corresponding simplified network structure
with 6 segments.

Here we apply the DC-UEP and UKS to a simulation model of the cardiovas-
cular system shown in Fig. 1 with (q3, p3, q5, p5) given. (The detailed description
of the simulation model is given in [11].) The estimation results are given in
Table 2. It can be seen that the proposed DC-UEP significantly outperforms the
UKS.
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